Learning Guide and Examples: Information Theory and Coding

12 lectures by J Daugman, Michaelmas Term

Prerequisite courses: Continuous Mathematics, Probability, Discrete Mathematics

Overview and Historical Origins: Foundations and Uncertainty. Why the movements and
transformations of information, just like those of a fluid, are law-governed. How concepts of
randomness, redundancy, compressibility, noise, bandwidth, and uncertainty are intricately
connected to information. Origins of these ideas and the various forms that they take.

Mathematical Foundations; Probability Rules; Bayes’ Theorem. The meanings of proba-
bility. Ensembles, random variables, marginal and conditional probabilities. How the formal
concepts of information are grounded in the principles and rules of probability.

Entropies Defined, and Why They Are Measures of Information. Marginal entropy, joint
entropy, conditional entropy, and the Chain Rule for entropy. Mutual information between
ensembles of random variables. Why entropy is a fundamental measure of information content.

Source Coding Theorem; Prefix, Variable-, & Fixed-Length Codes. Symbol codes. Binary
symmetric channel. Capacity of a noiseless discrete channel. Error correcting codes.

Channel Types, Properties, Noise, and Channel Capacity. Perfect communication through
a noisy channel. Capacity of a discrete channel as the maximum of its mutual information over
all possible input distributions.

Continuous Information; Density; Noisy Channel Coding Theorem. Extensions of the dis-
crete entropies and measures to the continuous case. Signal-to-noise ratio; power spectral
density. Gaussian channels. Relative significance of bandwidth and noise limitations. The
Shannon rate limit and efficiency for noisy continuous channels.

Fourier Series, Convergence, Orthogonal Representation. Generalized signal expansions in
vector spaces. Independence. Representation of continuous or discrete data by complex expo-
nentials. The Fourier basis. Fourier series for periodic functions. Examples.

Useful Fourier Theorems; Transform Pairs. Sampling; Aliasing. The Fourier transform for
non-periodic functions. Properties of the transform, and examples. Nyquist’s Sampling Theo-
rem derived, and the cause (and removal) of aliasing.

Discrete Fourier Transform. Fast Fourier Transform Algorithms. Efficient algorithms for
computing Fourier transforms of discrete data. Computational complexity. Filters, correla-
tion, modulation, demodulation, coherence.

The Quantized Degrees-of-Freedom in a Continuous Signal. Why a continuous signal of fi-
nite bandwidth and duration has a fixed number of degrees-of-freedom. Diverse illustrations of
the principle that information, even in such a signal, comes in quantized, countable, packets.

Gabor-Heisenberg-Weyl Uncertainty Relation. Optimal “Logons.” Unification of the time-
domain and the frequency-domain as endpoints of a continuous deformation. The Uncertainty
Principle and its optimal solution by Gabor’s expansion basis of “logons.” Multi-resolution
wavelet codes. Extension to images, for analysis and compression.

Kolmogorov Complexity and Minimal Description Length. Definition of the algorithmic
complexity of a data sequence, and its relation to the entropy of the distribution from which
the data was drawn. Shortest possible description length, and fractals.

Recommended book:

Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory. New York: Wiley.




Worked Example Problems

Information Theory and Coding: Example Problem Set 1

Let X and Y represent random variables with associated probability distributions p(z) and
p(y), respectively. They are not independent. Their conditional probability distributions are
p(zly) and p(y|z), and their joint probability distribution is p(z,y).

1. What is the marginal entropy H(X) of variable X, and what is the mutual information
of X with itself?

2. In terms of the probability distributions, what are the conditional entropies H(X|Y") and
H(Y|X)?

3. What is the joint entropy H(X,Y'), and what would it be if the random variables X and
Y were independent?

4. Give an alternative expression for H(Y) — H(Y'|X) in terms of the joint entropy and
both marginal entropies.

5. What is the mutual information /(X;Y")?




Model Answer — Example Problem Set 1

1. H Zp x) log, p(

tion with 1tself.

2. H(X|Y) = Zp Zp z|y) log, p(zly) =

H(Y|X) = Zp Zp ylz)log, p(ylz) =

3. H(X ZZp:Bylongxy)

) is both the marginal entropy of X, and its mutual informa-

ZZP z,y) log, p(x|y)
ZZP z,y)log, p(ylz)

If X and Y were mdependent random variables, then H(X,Y) = H(X)+ H(Y).

4 H(Y) - H(Y|X)

p(
PAEY) =2 2wyl
or: ZZp z,y) log, px|

or: I(X;Y)=H(X)

|
=

= H(X)+ H(Y) - H(X,Y).



Information Theory and Coding: Example Problem Set 2

1. This is an exercise in manipulating conditional probabilities. Calculate the probability
that if somebody is “tall” (meaning taller than 6 ft or whatever), that person must be male.
Assume that the probability of being male is p(M) = 0.5 and so likewise for being female
p(F) = 0.5. Suppose that 20% of males are T' (i.e. tall): p(T|M) = 0.2; and that 6% of
females are tall: p(T|F) = 0.06. So this exercise asks you to calculate p(M|T).

If you know that somebody is male, how much information do you gain (in bits) by learning
that he is also tall? How much do you gain by learning that a female is tall? Finally, how
much information do you gain from learning that a tall person is female?

2. The input source to a noisy communication channel is a random variable X over the
four symbols a, b, ¢, d. The output from this channel is a random variable Y over these same
four symbols. The joint distribution of these two random variables is as follows:

y=a § 1 15 i
y=b % 5 i 0
y=c¢ % m 1 0
y=d % % i 0

(a) Write down the marginal distribution for X and compute the marginal entropy H(X) in
bits.

rite down the marginal distribution for Y and compute the marginal entropy in
b) Write d th inal distribution for Y and te th inal ent H(Y)1i
bits.

(c) What is the joint entropy H(X,Y') of the two random variables in bits?
(d) What is the conditional entropy H(Y|X) in bits?
(e) What is the mutual information 7(X;Y") between the two random variables in bits?

(f) Provide a lower bound estimate of the channel capacity C' for this channel in bits.



Model Answer — Example Problem Set 2

1. Bayes’ Rule, combined with the Product Rule and the Sum Rule for manipulating con-
ditional probabilities (see pages 7 - 9 of the Notes), enables us to solve this problem.
First we must calculate the marginal probability of someone being tall:

p(T) = p(T|M)p(M) + p(T|F)p(F) = (0.2)(0.5) + (0.06)(0.5) = 0.13

Now with Bayes’ Rule we can arrive at the answer that:

_ p(T[M)p(M) _ (0.2)(0.5)
PMIT) ===y = sy LT

The information gained from an event is -log, of its probability.

Thus the information gained from learning that a male is tall, since p(T'|M) = 0.2,
is 2.32 bits.

The information gained from learning that a female is tall, since p(T|F) = 0.06, is
4.06 bits.

Finally, the information gained from learning that a tall person is female, which requires
us to calculate the fact (again using Bayes’ Rule) that p(F|T) = 0.231, is 2.116 bits.

2. (a) Marginal distribution for X is (3, 1, 1, 1)-

Marginal entropy of X is 1/2 + 1/2 + 1/2 + 1/2 = 2 bits.

(b) Marginal distribution for Y is (3, 1, %, §)-

Marginal entropy of Y is 1/2 + 1/2 + 3/8 4+ 3/8 = 7/4 bits.

(c) Joint Entropy: sum of —plogp over all 16 probabilities in the joint distribution
(of which only 4 different non-zero values appear, with the following frequencies):
(1)(2/4) + (2)(3/8) + (6)(4/16) + (4)(5/32) =1/2 + 3/4 + 3/2 + 5/8 = 27/8 bits.

(d) Conditional entropy H(Y|X): (1/4)H(1/2, 1/4, 1/8, 1/8) + (1/4)H(1/4, 1/2, 1/8,
1/8) + (1/4)H(1/4, 1/4, 1/4, 1/4) + (1/4)H(1, 0,0, 0) = (1/4)(1/2 + 2/4 + 3/8 +
3/8) + (1/4)(2/4+ 1/2 +3/8 +3/8) + (1/4)(2/4 + 2/4 + 2/4 4+ 2/4) + (1/4)(0)
= (1/4)(7/4) + (1/4)(7/4) + 1/2 + 0 = (7/8) + (1/2) = 11/8 bits.



(e)

There are three alternative ways to obtain the answer:

I(X;Y)=H() - H(Y|X) =7/4-11/8 = 3/8 bits. - Or,
I(X;Y)=H(X)— H(X|Y) = 2-13/8 = 3/8 bits. - Or,

I(X;Y)=HX)+HY)—-HX,)Y) =2+ 7/4 - 27/8 = (16+14-27)/8 = 3/8
bits.

Channel capacity is the maximum, over all possible input distributions, of the mu-
tual information that the channel establishes between the input and the output.
So one lower bound estimate is simply any particular measurement of the mutual
information for this channel, such as the above measurement which was 3/8 bits.



Information Theory and Coding: Example Problem Set 3

A. Consider a binary symmetric communication channel, whose input source is the
alphabet X = {0, 1} with probabilities {0.5,0.5}; whose output alphabet is Y = {0, 1};
and whose channel matrix is
1—e€ €
( € 1—e¢ )

where € is the probability of transmission error.

1. What is the entropy of the source, H(X)?

2. What is the probability distribution of the outputs, p(Y’), and the entropy of this out-
put distribution, H(Y)?

3. What is the joint probability distribution for the source and the output, p(X,Y’), and
what is the joint entropy, H(X,Y)?

4. What is the mutual information of this channel, I(X;Y)?

5. How many values are there for ¢ for which the mutual information of this channel is
maximal? What are those values, and what then is the capacity of such a channel in bits?

6. For what value of € is the capacity of this channel minimal? What is the channel ca-
pacity in that case?

B. The Fourier transform (whether continuous or discrete) is defined in the general case
for complex-valued data, which gets mapped into a set of complex-valued Fourier coefficients.
But often we are concerned with purely real-valued data, such as sound waves or images, whose
Fourier transforms we would like to compute. What simplification occurs in the Fourier do-
main as a consequence of having real-valued, rather than complex-valued, data?



Model Answer — Example Problem Set 3

A.
1. Entropy of the source, H(X), is 1 bit.

2. Output probabilities are p(y = 0) = (0.5)(1 —€) + (0.5)e = 0.5 and p(y = 1) =
(0.5)(1 —€) + (0.5)e = 0.5. Entropy of this distribution is H(Y) = 1 bit, just as for the
entropy H(X) of the input distribution.

3. Joint probability distribution p(X,Y’) is

0.5(1 —¢) 0.5€
0.5¢ 0.5(1 —¢)
and the entropy of this joint distribution is H(X,Y") Zp y) log, p(z,y)
—(1 —€)1og(0.5(1 —€)) — elog(0.5¢) = (1 —€) — (1 —¢) log(l —€) + e — elog(e)

=1—¢€log(e) — (1 —¢€)log(1 —¢)

4. The mutual information is I(X;Y) = H(X) + H(Y) — H(X,Y), which we can evalu-
ate from the quantities above as: 1+ elog(e) + (1 — €) log(1 — €).

5. In the two cases of e = 0 and € = 1 (perfect transmission, and perfectly erroneous transmis-
sion), the mutual information reaches its maximum of 1 bit and this is also then the channel
capacity.

6. If ¢ = 0.5, the channel capacity is minimal and equal to 0.

B. Real-valued data produces a Fourier transform having Hermitian symmetry: the real-
part of the Fourier transform has even-symmetry, and the imaginary part has odd-symmetry.
Therefore we need only compute the coefficients associated with (say) the positive frequen-
cies, because then we automatically know the coefficients for the negative frequencies as well.
Hence the two-fold “reduction” in the input data by being real- rather than complex-valued,
is reflected by a corresponding two-fold “reduction” in the amount of data required in its
Fourier representation.




Information Theory and Coding: Example Problem Set 4

1. Consider a noiseless analog communication channel whose bandwidth is 10,000 Hertz.
A signal of duration 1 second is received over such a channel. We wish to represent
this continuous signal exactly, at all points in its one-second duration, using just a finite
list of real numbers obtained by sampling the values of the signal at discrete, periodic
points in time. What is the length of the shortest list of such discrete samples required
in order to guarantee that we capture all of the information in the signal and can recover
it exactly from this list of samples?

2. Name, define algebraically, and sketch a plot of the function you would need to use in
order to recover completely the continuous signal transmitted, using just such a finite
list of discrete periodic samples of it.

3. Consider a noisy analog communication channel of bandwidth €2, which is perturbed by
additive white Gaussian noise whose power spectral density is Ny. Continuous signals
are transmitted across such a channel, with average transmitted power P (defined by
their expected variance). What is the channel capacity, in bits per second, of such a
channel?

Model Answer — Example Problem Set 4

1. 20,000 discrete samples are required.

2. The sinc function is required to recover the signal from its discrete samples, defined as:
, sin(mx)
sinc(x) = ———=
T

P
3. The channel capacity is €2log, (1 + m) bits per second.
0



Information Theory and Coding: Example Problem Set 5

A. Consider Shannon’s third theorem, the Channel Capacity Theorem, for a continuous com-
munication channel having bandwidth W Hertz, perturbed by additive white Gaussian noise
of power spectral density Ny, and average transmitted power P.

1. Is there any limit to the capacity of such a channel if you increase its signal-to-noise

without limit? If so, what is that limit?

ratio
0

2. Is there any limit to the capacity of such a channel if you can increase its bandwidth
W in Hertz without limit, but while not changing Ny or P? If so, what is that limit?

B. Explain why smoothing a signal, by low-pass filtering it before sampling it, can prevent
aliasing. Explain aliasing by a picture in the Fourier domain, and also show in the picture
how smoothing solves the problem. What would be the most effective low-pass filter to use
for this purpose? Draw its spectral sensitivity.

C. Suppose that women who live beyond the age of 70 outnumber men in the same age
bracket by three to one. How much information, in bits, is gained by learning that a certain
person who lives beyond 70 happens to be male?

10



Model Answer — Example Problem Set 5

A.
1. The capacity of such a channel, in bits per second, is

P
— Wloe, (1+ 1
C=w Og2< + N0W>

Increasing the quantity NOLW inside the logarithm without bounds causes the capacity to
increase monotonically and without bounds.

2. Increasing the bandwidth W alone causes a monotonic increase in capacity, but only up

to an asymptotic limit. That limit can be evaluated by observing that in the limit of small
P

a, the quantity In(1 + «) approaches «. In this case, setting a = Mo and allowing W to

become arbitrarily large, C' approaches the limit N% log,(€). Thus there are vanishing returns

from endless increase in bandwidth, unlike the unlimited returns enjoyed from improvement
in signal-to-noise ratio.

B.

The Nyquist Sampling Theorem tells us that aliasing results when the signal contains Fourier
components higher than one-half the sampling frequency. Thus aliasing can be avoided by
removing such frequency components from the signal, by low-pass filtering it, before sampling
the signal. The ideal low-pass filter for this task would have a strict cut-off at frequencies
starting at (and higher than) one-half the planned sampling rate.

C.

Since p(female|old)=3*p(male|old), and since p(female|old)+p(malelold)=1, it follows that
p(male|old) = 0.25. The information gained from an observation is —log, of its probability.
Thus the information gained by such an observation is 2 bits.

11



Information Theory and Coding: Example Problem Set 6

The information in continuous but bandlimited signals is quantized, in that such continu-
ous signals can be completely represented by a finite set of discrete numbers. Explain this
principle in each of the following four important contexts or theorems. Be as quantitative as
possible:

1. The Nyquist Sampling Theorem.
2. Logan’s Theorem.
3. Gabor Wavelet Logons and the Information Diagram.

4. The Noisy Channel Coding Theorem
(relation between channel bandwidth W, noise power spectral density Ny, signal power
P or signal-to-noise ratio P/NoW , and channel capacity C' in bits/second).

12



Model Answer — Example Problem Set 6

1. Nyquist’s Sampling Theorem: If a signal f(x) is strictly bandlimited so that it contains
no frequency components higher than W, i.e. its Fourier Transform F'(k) satisfies the
condition

F(k) =0 for |k| > W (1)

then f(x) is completely determined just by sampling its values at a rate of at least
2W. The signal f(x) can be exactly recovered by using each sampled value to fix the
amplitude of a sinc(x) function,

sin(mz)

sinc(x) = p— (2)

whose width is scaled by the bandwidth parameter W and whose location corresponds
to each of the sample points. The continuous signal f(z) can be perfectly recovered
from its discrete samples f,(77) just by adding all of those displaced sinc(x) functions
together, with their amplitudes equal to the samples taken:

f@) =% fr (%) % (3)

Thus we see that any signal that is limited in its bandwidth to W, during some duration
T has at most 2WT degrees-of-freedom. It can be completely specified by just 2WT real
numbers.

2. Logan’s Theorem: If a signal f(z) is strictly bandlimited to one octave or less, so that the
highest frequency component it contains is no greater than twice the lowest frequency
component it contains

kmaac S kazn (4)
i.e. F(k) the Fourier Transform of f(x) obeys

FIk| > ez = 2kmin) = 0 (5)

and
F(|k| < kmin) =0 (6)

and if it is also true that the signal f(z) contains no complex zeroes in common with
its Hilbert Transform, then the original signal f(z) can be perfectly recovered (up to
an amplitude scale constant) merely from knowledge of the set {x;} of zero-crossings of
f(x) alone.

{z;} such that f(z;) =0 (7)

Obviously there is only a finite and countable number of zero-crossings in any given
length of the bandlimited signal, and yet these “quanta” suffice to recover the original
continuous signal completely (up to a scale constant).

13



3. Gabor Wavelet Logons and the Information Diagram.
The Similarity Theorem of Fourier Analysis asserts that if a function becomes narrower
in one domain by a factor a, it necessarily becomes broader by the same factor a in the
other domain:

f(x) — F(k) (8)
1,k ()

flar) — 2|

An Information Diagram representation of signals in a plane defined by the axes of time
and frequency is fundamentally quantized. There is an irreducible, minimal, volume that
any signal can possibly occupy in this plane: its uncertainty (or spread) in frequency,
times its uncertainty (or duration) in time, has an inescapable lower bound. If we define
the “effective support” of a function f(z) by its normalized variance, or normalized
second-moment (Az), and if we similarly define the effective support of the Fourier
Transform F'(k) of the function by its normalized variance in the Fourier domain (Ak),
then it can be proven (by Schwartz Inequality arguments) that there exists a fundamental
lower bound on the product of these two “spreads,” regardless of the function f(x):

2|

(Az)(AR) > - (10)
47

This is the Gabor-Heisenberg-Weyl Uncertainty Principle. It is another respect in which
the information in continuous signals is quantized, since they must occupy an area in
the Information Diagram (time - frequency axes) that is always greater than some irre-
ducible lower bound. Therefore any continuous signal can contain only a fixed number
of information “quanta” in the Information Diagram. Each such quantum constitutes
an independent datum, and their total number within a region of the Information Di-
agram represents the number of independent degrees-of-freedom enjoyed by the signal.
Dennis Gabor named such minimal areas “logons.” The unique family of signals that
actually achieve the lower bound in the Gabor-Heisenberg-Weyl Uncertainty Relation
are the complex exponentials multiplied by Gaussians. These are sometimes referred to
as “Gabor wavelets:”

f(l‘) — e—ikoxe—(x—x0)2/a2 (11)

localized at epoch xy, modulated by frequency kg, and with size constant a.

4. The Noisy Channel Coding Theorem asserts that for a channel with bandwidth W, and
a continuous input signal of average power P, added channel noise of power spectral
density Ny, or a signal-to-noise ratio P/NoW , the capacity of the channel to communicate
information reliably is limited to a discrete number of “quanta” per second. Specifically,
its capacity C' in bits/second is:

p
C =W log, (1 + N0W> (12)

This capacity is clearly “quantized” into a finite number of bits per second, even though
the input signal is continuous.

14



Information Theory and Coding: Example Problem Set 7

(a) What is the entropy H, in bits, of the following source alphabet whose letters have
the probabilities shown?

A B C D
1/4 1/8 1/2  1/8

(b) Why are fixed length codes inefficient for alphabets whose letters are not equiprob-
able? Discuss this in relation to Morse Code.

(c) Offer an example of a uniquely decodable prefix code for the above alphabet which
is optimally efficient. What features make it a uniquely decodable prefix code?

(d) What is the coding rate R of your code? How do you know whether it is optimally
efficient?

(e) What is the maximum possible entropy H of an alphabet consisting of N different
letters? In such a maximum entropy alphabet, what is the probability of its most
likely letter? What is the probability of its least likely letter?

15



Model Answer — Example Problem Set 7

(a)

The entropy of the source alphabet is

H==3 pilog,pi = (1/4)(2) + (1/8)(3) + (1/2)(1) + (1/8)(3)

i=1

= 1.75 bits.

Fixed length codes are inefficient for alphabets whose letters are not equiprobable
because the cost of coding improbable letters is the same as that of coding more
probable ones. It is more efficient to allocate fewer bits to coding the more probable
letters, and to make up for the fact that this would cover only a few letters, by
making longer codes for the less probable letters. This is exploited in Morse Code,
in which (for example) the most probable English letter, e, is coded by a single dot.

A uniquely decodable prefix code for the letters of this alphabet:
Code for A: 10

Code for B: 110

Code for C: 0

Code for D: 111 (the codes for B and D could also be interchanged)

This is a uniquely decodable prefix code because even though it has variable length,
each code corresponds to a unique letter rather than any possible combination of
letters; and the code for no letter could be confused as the prefix for another letter.

Multiplying the bit length of the code for each letter times the probability of oc-
curence of that letter, and summing this over all letters, gives us a coding rate of:

R = (2 bits)(1/4)+(3 bits)(1/8)+(1 bit)(1/2)+(3 bits)(1/8) = 1.75 bits.

This code is optimally efficient because R = H : its coding rate equals the en-
tropy of the source alphabet. Shannon’s Source Coding Theorem tells us that this
is the lower bound for the coding rate of all possible codes for this alphabet.

The maximum possible entropy of an alphabet consisting of N different letters is
H = log, N. This is only achieved if the probability of every letter is 1/N. Thus
1/N is the probability of both the “most likely” and the “least likely” letter.

16



Information Theory and Coding: Example Problem Set 8

(a)

(b)

(e)

What class of continuous signals has the greatest possible entropy for a given vari-
ance (or power level)? What probability density function describes the excursions
taken by such signals from their mean value?

What does the Fourier power spectrum of this class of signals look like? How would
you describe the entropy of this distribution of spectral energy?

An error-correcting Hamming code uses a 7 bit block size in order to guarantee the
detection, and hence the correction, of any single bit error in a 7 bit block. How
many bits are used for error correction, and how many bits for useful data? If the
probability of a single bit error within a block of 7 bits is p = 0.001, what is the
probability of an error correction failure, and what event would cause this?

Suppose that a continuous communication channel of bandwidth W Hertz, which
is perturbed by additive white Gaussian noise of constant power spectral density,
has a channel capacity of C' bits per second. Approximately how much would C be
degraded if suddenly the added noise power became 8 times greater?

You are comparing different image compression schemes for images of natural scenes.
Such images have strong statistical correlations among neighbouring pixels because
of the properties of natural objects. In an efficient compression scheme, would you
expect to find strong correlations in the compressed image code? What statistical
measure of the code for a compressed image determines the amount of compression
it achieves, and in what way is this statistic related to the compression factor?

17



Model Answer — Example Problem Set 8

(a)

The family of continuous signals having maximum entropy per variance (or power
level) are Gaussian signals. Their probability density function for excursions z
around a mean value p, when the power level (or variance) is o2, is:
1 N2 /62
p(z) = ———e (@ H7/20
2o

The Fourier power spectrum of this class of signals is flat, or white. Hence these
signals correspond to “white noise.” The distribution of spectral energy has uniform
probability over all possible frequencies, and therefore this continuous distribution
has maximum entropy.

An error-correcting Hamming code with a 7 bit block size uses 3 bits for error cor-
rection and 4 bits for data transmission. It would fail to correct errors that affected
more than one bit in a block of 7; but in the example given, with p = 0.001 for a
single bit error in a block of 7, the probability of two bits being corrupted in a block
would be about 1 in a million.

The channel capacity C' in bits per second would be reduced by about 3W, where
W is the channel’s bandwidth in Hertz, if the noise power level increased eight-fold.
This is because the channel capacity, in bits per second, is

P
C = Wlog, (1+ )
0gy | 1 + N
If the signal-to-noise ratio (the term inside the logarithm) were degraded by a factor
of 8, then its logarithm is reduced by -3, and so the overall capacity C' is reduced
by 3W. The new channel capacity C’ could be expressed either as:

C'=C-3W

or as a ratio that compares it with the original undegraded capacity C:

c : C

In an efficient compression scheme, there would be few correlations in the com-
pressed representations of the images. Compression depends upon decorrelation.
An efficient scheme would have low entropy; Shannon’s Source Coding Theorem
tells us a coding rate R as measured in bits per pixel can be found that is nearly
as small as the entropy of the image representation. The compression factor can
be estimated as the ratio of this entropy to the entropy of the uncompressed image
(i.e. the entropy of its pixel histogram).

18



Information Theory and Coding: Example Problem Set 9

A. Prove that the information measure is additive: that the information gained from ob-
serving the combination of N independent events, whose probabilities are p; for i = 1....N, is
the sum of the information gained from observing each one of these events separately and in
any order.

B. What is the shortest possible code length, in bits per average symbol, that could be
achieved for a six-letter alphabet whose symbols have the following probability distribution?

{111111

C. Suppose that ravens are black with probability 0.6, that they are male with probability
0.5 and female with probability 0.5, but that male ravens are 3 times more likely to be black
than are female ravens.

If you see a non-black raven, what is the probability that it is male?

How many bits worth of information are contained in a report that a non-black raven is
male?

Rank-order for this problem, from greatest to least, the following uncertainties:
(1) uncertainty about colour;

(ii) uncertainty about gender;

(ili) uncertainty about colour, given only that a raven is male;

(iv) uncertainty about gender, given only that a raven is non-black.

D. If a continuous signal f(t) is modulated by multiplying it with a complex exponential
wave exp(iwt) whose frequency is w, what happens to the Fourier spectrum of the signal?

Name a very important practical application of this principle, and explain why modulation is
a useful operation.

How can the original Fourier spectrum later be recovered?
E. Which part of the 2D Fourier Transform of an image, the amplitude spectrum or the
phase spectrum, is indispensable in order for the image to be intelligible?

Describe a demonstration that proves this.

19



Model Answer — Example Problem Set 9

A. The information measure assigns log,(p) bits to the observation of an event whose prob-
ability is p. The probability of the combination of N independent events whose probabilities
N

are pp....py 18 Hpi
i=1
Thus the information content of such a combination is:

N
logy([] i) = 1ogy(p1) + logy(p2) + - - - + logy (pw)
=1

which is the sum of the information content of all of the separate events.

B.
Shannon’s Source Coding Theorem tells us that the entropy of the distribution is the lower
bound on average code length, in bits per symbol. This alphabet has entropy

H==3 pilog,p; = (1/2)(1) + (1/4)(2) + (1/8)(3) + (1/16)(4) + (1/32)(5) + (1/32)(5) =

i=1

1% or % bits per average symbol (less than 2 bits to code 6 symbols!)

C.

Givens: p(B|m) = 3p(B|f), p(m)=p(f)=0.5, p(B)= 0.6 and so p(NB) = 0.4 where m
means male, f means female, B means black and N B means non-black. From these givens plus
the Sum Rule fact that p(m)p(B|m) + p(f)p(B|f) = p(B) = 0.6, it follows that p(B|f) = 0.3
and p(B|m) = 0.9, and hence that p(NB|m) =1—-0.9 =0.1

Now we may apply Bayes Rule to calculate that

PN Blm)p(m) _ (0105
p(NB) (0.4)

p(m|NB) = =0.125=1/8

From the information measure log,(p), there are 3 bits worth of information in discovering
that a non-black raven is male.

(i) The colour distribution is { 0.6, 0.4 }

(ii) The gender distribution is { 0.5, 0.5 }

(iii) The (colour | male) distribution is { 0.9, 0.1 }

(iv) The (gender | non-black) distribution is { 0.125, 0.875 }

Uncertainty of a random variable is greater, the closer its distribution is to uniformity. There-
fore the rank-order of uncertainty, from greatest to least, is: ii, i, iv, iii.

D. Modulation of the continuous signal by a complex exponential wave exp(iwt) will shift
its entire frequency spectrum upwards by an amount w.

All of AM broadcasting is based on this principle. It allows many different communica-

tions channels to be multi-plexed into a single medium, like the electromagnetic spectrum, by
shifting different signals up into separate frequency bands.
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The original Fourier spectrum of each of these signals can then be recovered by demodulating
them down (this removes each AM carrier). This is equivalent to multiplying the transmitted
signal by the conjugate complex exponential, exp(—iwt).

E. The phase spectrum is the indispensable part. This is demonstrated by crossing the am-
plitude spectrum of one image with the phase spectrum of another one, and wvice versa. The
new image that you see looks like the one whose phase spectrum you are using, and not at all
like the one whose amplitude spectrum you’ve got.
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Information Theory and Coding: Example Problem Set 10

1.
Consider n different discrete random variables, named X, X, ..., X,,, each of which has en-
tropy H(X;).

Suppose that random variable X; has the smallest entropy, and that random variable X}
has the largest entropy.

What is the upper bound on the joint entropy H (X1, Xo, ..., X,,) of all these random variables?
Under what condition will this upper bound be reached?

What is the lower bound on the joint entropy H (X7, Xs,..., X,,) of all these random vari-
ables?

Under what condition will the lower bound be reached?

2.
Define the Kolmogorov algorithmic complexity K of a string of data.

What relationship is to be expected between the Kolmogorov complexity K and the Shannon
entropy H for a given set of data?

Give a reasonable estimate of the Kolmogorov complexity K of a fractal, and explain why it
is reasonable.

3.

The signal-to-noise ratio SN R of a continuous communication channel might be different in
different parts of its frequency range. For example, the noise might be predominantly high
frequency hiss, or low frequency rumble. Explain how the information capacity C' of a noisy
continuous communication channel, whose available bandwidth spans from frequency w; to
wy, may be defined in terms of its signal-to-noise ratio as a function of frequency, SN R(w).
Define the bit rate for such a channel’s information capacity, C, in bits/second, in terms of
the SN R(w) function of frequency.

(Note: This question asks you to generalise beyond the material lectured.)
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Model Answer — Example Problem Set 10

1.
The upper bound on the joint entropy H (X1, Xs,..., X,,) of all the random variables is:

H(X1, X5, ...X,) < ZH(X,-)
i=1

This upper bound is reached only in the case that all the random variables are independent.

The lower bound on the joint entropy H(X;, Xs,...,X,) is the largest of their individual
entropies:
H(Xy, Xo, ..., X)) > H(Xy)

(But note that if all the random variables are some deterministic function or mapping of each
other, so that if any one of them is known there is no uncertainty about any of the other
variables, then they all have the same entropy and so the lower bound is equal to H(X;) or

H(X}).)

2.

The Kolmogorov algorithmic complexity K of a string of data is defined as the length of the
shortest binary program that can generate the string. Thus the data’s Kolmogorov complexity
is its “Minimal Description Length.”

The expected relationship between the Kolmogorov complexity K of a set of data, and its
Shannon entropy H, is that approximately K ~ H.

Because fractals can be generated by extremely short programs, namely iterations of a map-
ping, such patterns have Kolmogorov complexity of nearly K = 0.

3.

The information capacity C' of any tiny portion Aw of this noisy channel’s total frequency
band, near frequency w where the signal-to-noise ratio happens to be SN R(w), is:

C = Awlogy(1 4+ SNR(w))

in bits/second. Integrating over all of these small Aw bands in the available range from w; to
ws, the total capacity in bits/second of this variable-SNR channel is therefore:

w?2
C= /1 logy(1 + SN R(w))dw
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Information Theory and Coding: Example Problem Set 11

1.

Construct an efficient, uniquely decodable binary code, having the prefix property and having
the shortest possible average code length per symbol, for an alphabet whose five letters appear
with these probabilities:

| Letter | Probability |

A 1/2
B 1/4
C 1/8
D 1/16
E 1/16

How do you know that your code has the shortest possible average code length per symbol?

2.
For a string of data of length N bits, what is the upper bound for its Minimal Description
Length, and why?

Comment on how, or whether, you can know that you have truly determined the Minimal
Description Length for a set of data.

3.

Suppose you have sampled a strictly bandlimited signal at regular intervals more frequent
than the Nyquist rate; or suppose you have identified all of the zero-crossings of a bandpass
signal whose total bandwidth is less than one octave. In either of these situations, provide
some intuition for why you now also have knowledge about exactly what the signal must be
doing at all points between these observed points.

4.

Explain how autocorrelation can remove noise from a signal that is buried in noise, producing
a clean version of the signal. For what kinds of signals, and for what kinds of noise, will this
work best, and why? What class of signals will be completely unaffected by this operation
except that the added noise has been removed? Begin your answer by writing down the au-
tocorrelation integral that defines the autocorrelation of a signal f(z).

Some sources of noise are additive (the noise is just superimposed onto the signal), but other

sources of noise are multiplicative in their effect on the signal. For which type would the
autocorrelation clean-up strategy be more effective, and why?
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Model Answer — Example Problem Set 11

1.
Example of one such code (there are others as well):

| Letter | Code |

A 1
B 01
C 001
D 0000
E 0001

This is a uniquely decodable code, and it also has the prefix property that no symbol’s code
is the beginning of a code for a different symbol.

The shortest possible average code length per symbol is equal to the entropy of the dis-
tribution of symbols, according to Shannon’s Source Coding Theorem. The entropy of this
symbol alphabet is:

H == pilogy(pi) = 1/2+2/4+3/8 +4/16 + 4/16 = 1(7/8)

bits, and the average code length per symbol for the above prefix code is also (just weighing
the length in bits of each of the above letter codes, by their associated probabilities of appear-
ance): 1/2 + 2/4 + 3/8 + 4/16 + 4/16 = 1(7/8) bits. Thus no code can be more efficient
than the above code.

2.

For a string of data of length N bits, the upper bound on its Minimal Description Length is
N. The reason is that this would correspond to the worst case in which the shortest program
that can generate the data is one that simply lists the string itself.

It is often impossible to know whether one has truly found the shortest possible descrip-
tion of a string of data. For example, the string:
011010100000100111100110011001111111001110. ..

passes most tests for randomness and reveals no simple rule which generates it, but it turns
out to be simply the binary expansion for the irrational number v/2 — 1.

3.

The bandlimiting constraint (either just a highest frequency component in the case of Nyquist
sampling, or the bandwidth limitation to one octave in the case of Logan’s Theorem), is re-
markably severe. It ensures that the signal cannot vary unsmoothly between the sample points
(i.e. it must be everywhere a linear combination of shifted sinc functions in the Nyquist case),
and it cannot remain away from zero for very long in Logan’s case. Doing so would violate
the stated frequency bandwidth constraint.

4.
The autocorrelation integral for a (real-valued) signal f(z) is:

9@) = [ Fw)f (@ +y)dy
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i.e. f(x) is multiplied by a shifted copy of itself, and this product integrated, to generate a
new signal as a function of the amount of the shift.

Signals differ from noise by tending to have some coherent, or oscillatory, component whose
phase varies regularly; but noise tends to be incoherent, with randomly changing phase. The
autocorrelation integral shifts the coherent component systematically from being in-phase
with itself to being out-of-phase with itself. But this self-reinforcement does not happen for
the noise, because of its randomly changing phase. Therefore the noise tends to cancel out,
leaving the signal clean and reinforced. The process works best for purely coherently signals
(sinusoids) buried in completely incoherent noise. Sinusoids would be perfectly extracted from
the noise.

Autocorrelation as a noise removal strategy depends on the noise being just added to the
signal. It would not work at all for multiplicative noise.
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