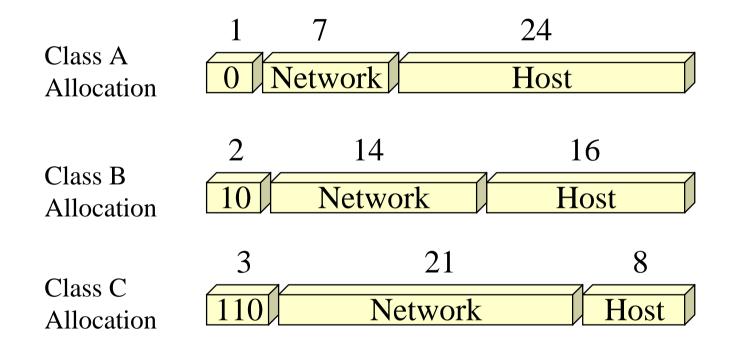


Digital Communications II: IPv6

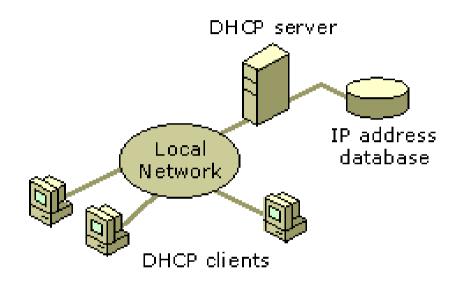
Richard Black


- What is wrong with IPv4
 - Some IPv4 technology
- Key differences in IPv6
 - Basic facts
 - Plus facts to understand ...
 - Basic Principles

Problems with IPv4

- Address space running out
 - 32bits, poor density, growth
 - Mobile Phones
- Routeing tables getting too big
 - Core routers are default-free
 - Need an entry per network
 - Insufficiently hierarchical
- Difficulty of configuration

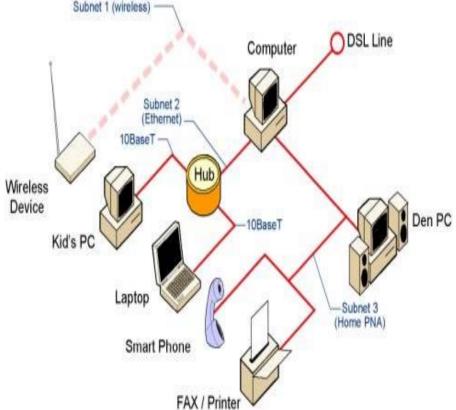
2²¹ means only two million organisations and core routers need to know about them all



Workarounds with IPv4

- RFC1918 private network addresses
 - **10/8**, 172.16/12, 192.168/16
- CIDR (classless inter-domain routeing)
 - Too little too late. Consider JANET:
 - Single AS786. 237 different routeing entries
 - Still 70000+ routeing entries (see p65)
- NAT
- DHCP

DHCP in one slide

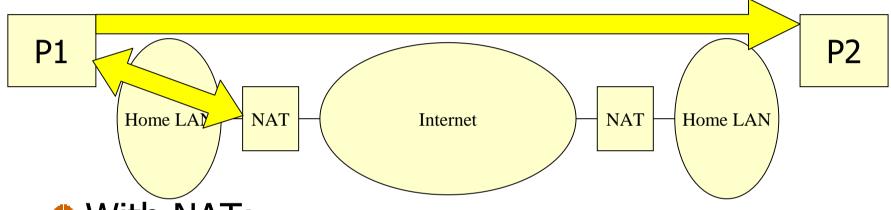


- Avoid static IP configuration
 - Assign dynamically

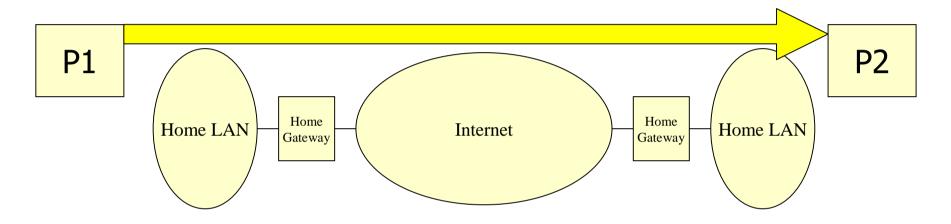
- Hosts request details
 - Identified by LL address
- Server replies
 - IP address and mask
 - Default router
 - DNS servers
 - Etc.
- IP address on lease
 - Client renews
- Naming Problems
 - Both DNS and SAP

NAT in one slide

DHCP+NAT = "Internet connection sharing"

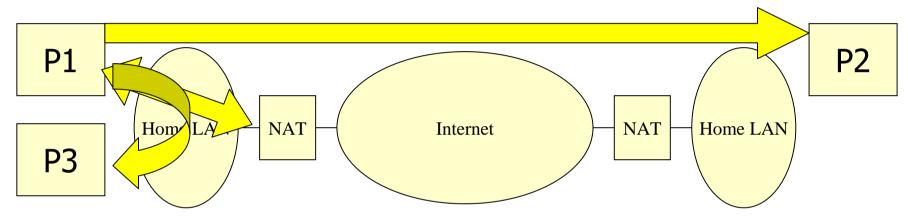

- NAT box is gateway
 - It has a real address
 - Its address gets shared
- Translates:
 - (local,port) (its, port')
 - Maintains a mapping
 - Has to understand some protocols (ftp)
- Also APP level relay
 - Web proxy / cache
- Naming problems

Advantages of IPv6

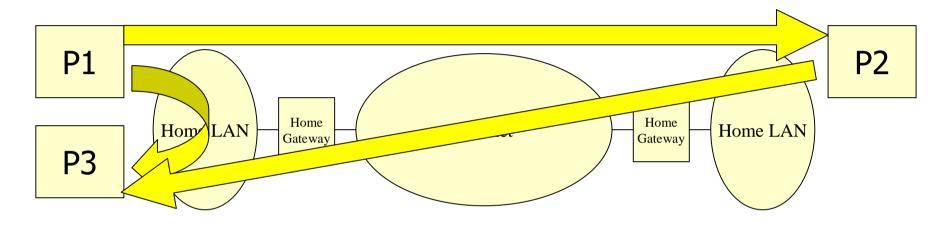

- Enormous address space: 128 bits
- Strict topology-based allocation
- More scaleable routeing
- Easier configuration
- Better security
- 15 years of experience

Problem 1: Peer-to-peer RTP audio example

- With NAT:
 - Need to learn the address "outside the NAT"
 - Provide that address to peer
 - Need either NAT-aware application, or applicationaware NAT
 - May need a third party registration server to facilitate finding peers


Solution 1: Peer-to-peer RTP audio example

With IPv6:


Just use IPv6 address

Problem 2: Multiparty Conference Example

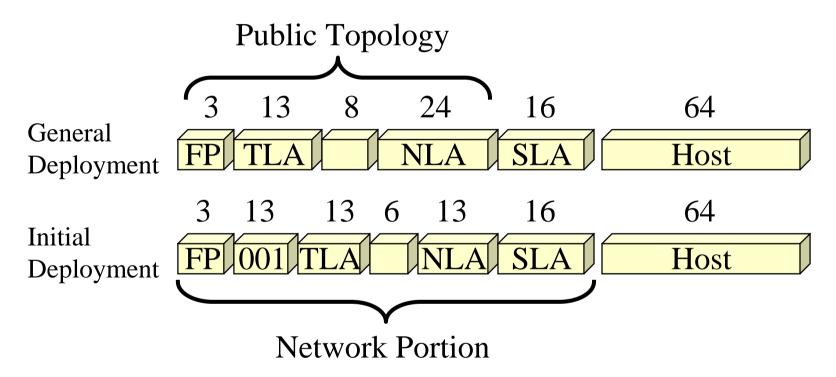
- With NAT, complex and brittle software:
 - 2 Addresses, inside and outside
 - P1 provides "inside address" to P3, "outside address" to P2
 - Need to recognize inside, outside
 - P1 does not know outside address of P3 to inform P2

Conference Example

- With IPv6:
 - Just use IPv6 addresses

What does an address look like

- 128 bits broken up into 16 bit groups
 - Each 16 bit group written in hex
 - No 0x, remove leading zeros
 - Groups separated by \':' colon
- A single run of 0: entries elided with ::
- Last two groups allow IPv4 notation
- Heavy use of prefix '/' notation
 - 2001:618:1::2:2a0 ::/0
 - 2002:80e8:10:0:/64 fe80::/96



Topology-based allocation

- Network Service Providers get allocations from registries
 - Backbone routeing tables are small
- NSPs make allocations to ISPs
 - ISPs have small routeing tables
- ISPs make allocations to companies
 - Addresses depend on service provider
 - May have to change addresses with provider
 - Multi-provider sites need research

IPv6 Address structure

FP Format Prefix NLA Next Level Aggregate

TLA Top Level Aggregate SLA Site Level Aggregate

More scalable routeing

- There are more network bits
- But any router has only to look at a few
 - Usually only one of TLA or NLA or SLA
- Compare JANET again
 - One TLA for JANET
 - One NLA per institution
 - Institution uses SLA like current "subnets"

- Designed to be easier on routers
 - Header is fixed size
 - No fragmentation at routers
- Extension headers
 - Either fixed size or have own length

Base	Extension		Extension	Doto
Header	Header 1	• • •	Header N	Data

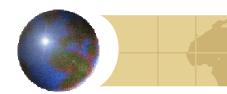
Base Header

vers	class	flow label		
	length	next	hop lim	

Source Address

Destination Address

- Compare with IPv4 (page 3)
 - Bigger
 - Simpler
- Extension for anything else

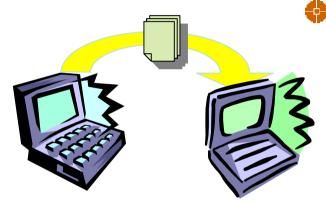

Extension Headers

- Included in specific order
 - Hop by Hop
 - Destination (for intermediates)
 - Routing
 - Fragment
 - Authentication
 - Encapsulating Security Payload
 - Destination (for final destination)

Path MTU discovery

- Recommended in IPv4
- Necessary in IPv6
- Relies on "too big" ICMP
- Another example of "soft state"

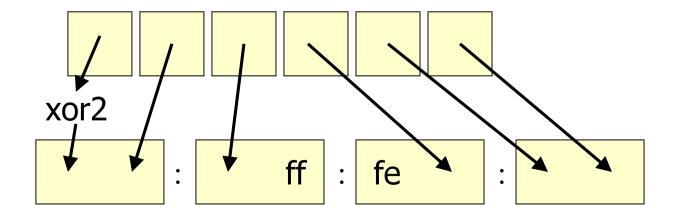
IPv6 Neighbour Discovery


- Replaces ARP, ICMP redirect etc.
- Used for:
 - Router discovery
 - Parameter and prefix discovery
 - Address resolution
 - Address auto-configuration
- Send Neighbour solicitation for:x:yz to ff02::1:ff x:yz

Address auto-configuration

- Router advertises prefix (/64)
- Machines chose an address using MAC
- Look for duplicate before using
 - Send Neighbour solicitation for intended addr
- Also have link local addresses (fe80::)
- Possible privacy concerns
 - An advantage to NAT after all?
 - Work on anonymous addresses

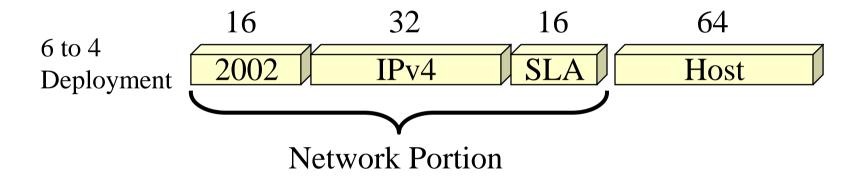
Problem 3: Ad-hoc networking


• IPv4: media lock + 63 sec.

- Try DHCP
- Wait for timeout
- Select Link Local address
 - From 169.254/16
 - See draft-ietf-zeroconf-ipv4-linklocal
- Conflict detect
- IPv6: media lock + 1 sec.
 - Configure using MAC
 - Conflict detect

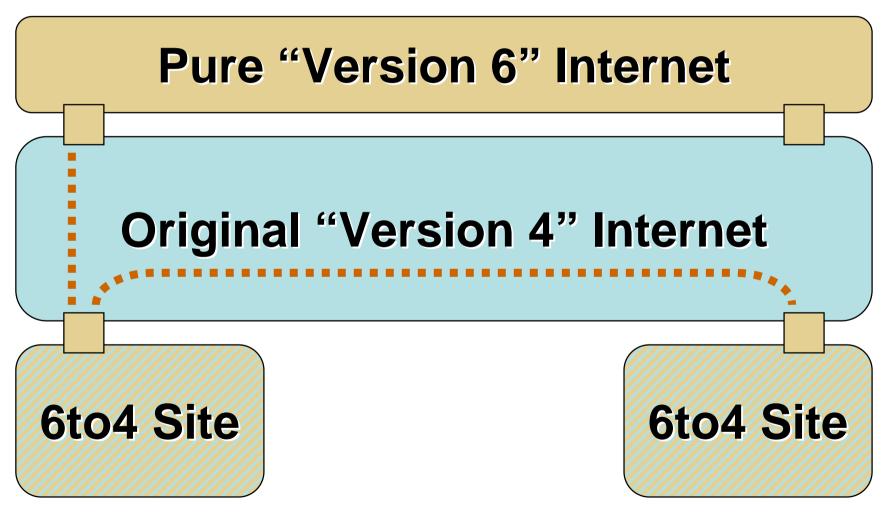
IPv6 on Ethernet (802.2)

- New Ethernet type (0x86dd)
- IPv6 multicast packets FF....::wx:yz sent to Ethernet 33-33-w-x-y-z
- Auto-configuration from Ethernet address



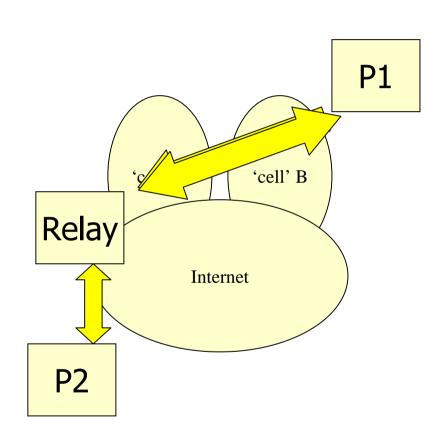
Transition Mechanisms

- Tunnel IPv6 over IPv4 (see p78)
- Static/Configured tunnels
 - Especially by ISPs and 6bone
 - Tunnel broker service
- 6over4
 - Use an IPv4 multicast enabled cloud as a single IPv6 link
- 6to4


6to4 Address allocation

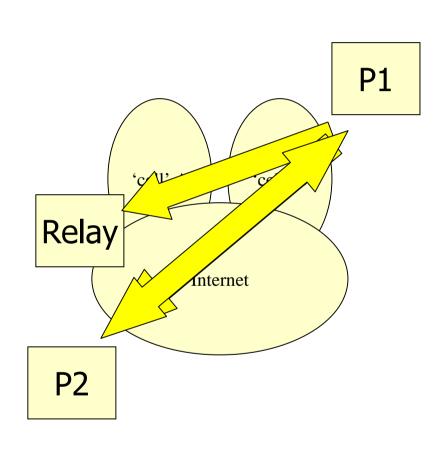
- Stateless tunnel over the IPv4 network
 - Assume IPv4 address of "lower layer"
 - Entire campus fits behind one IPv4 address
 - No dependence on IPv6 core

A picture of 6to4



- Each mobile host:
 - Has a unique permanent address
 - Adopts a "home agent" on home network
 - Sends location updates to agent.
 - Acquires "care-of address" on foreign networks
- Home agent:
 - Intercepts packets intended for mobile host
 - Forwards to mobile host's care-of-address

- Less complex than Mobile IPv4
 - Requires **no extra functionality** in off site routers
- Reuses many standard IPv6 services
- Improved support for low latency handoff
 Stateless Address Configuration
- Fast convergence to optimal route
- Improved security/authentication mechanisms


from "cell" to "cell"

IPv4:

- Tell server,
- Packets are relayed through the server

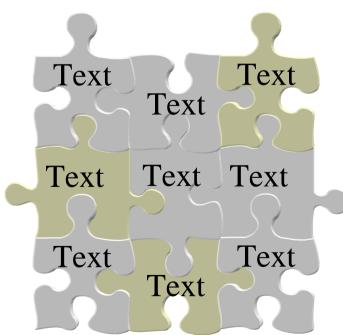
"cell" with IPv6

!Pv6:

- Tell server + peer
- Packets take direct path

Where to Get More Information

- http://www.microsoft.com/windows2000/li brary/technologies/communications/
- http://msdn.microsoft.com/downloads/sdk s/platform/tpipv6.asp



The End

Give the big picture of the subject

Explain how all the individual topics fit together

