Continuous Mathematics

UNIVERSITY OF CAMBRIDGE

Computer Laboratory

Computer Science Tripos, Part IB, Part II (General) Diploma in Computer Science

Michaelmas Term 2001
R. J. Gibbens

Problem sheet

William Gates Building
JJ Thomson Avenue
Cambridge
CB3 0FD
http://www.cl.cam.ac.uk/

1. Given $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ what are the real and imaginary parts of $z_{3}=z_{1} z_{2}$?
2. Given $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ what is the modulus, $\left|z_{1}\right|$, of z_{1} and what is the modulus of $z_{3}=z_{1} z_{2}$?
3. Given $z_{2}=x_{2}+i y_{2}$ what is $\arg \left(z_{2}\right)$, the argument of z_{2} ? Is it unique?
4. Express $z_{1}=x_{1}+i y_{1}$ in complex polar form using the modulus and argument of z_{1}.
5. Suppose that $\left|z_{1}\right|=\left|z_{2}\right|=1$. Using an Argand diagram, explain how computing their product $z_{3}=$ $z_{1} z_{2}$ amounts to a rotation in the complex plane. Why is the multiplication of these complex variables reduced an addition? What is the value of $\left|z_{3}\right|$?
6. Given $z=\exp (2 \pi i / 5)$, what is the value of z^{5} ? Explain your result using an Argand diagram.
7. Consider the complex exponential function $f(x)=\exp (2 \pi i \omega x)$. What are the real and imaginary parts of $f(x)$ as functions of x ?
8. For the imaginary number $i=\sqrt{-1}$, consider the quantity \sqrt{i}. Express \sqrt{i} as a complex exponential. In what quadrant of the complex plane does it lie? What are the real and imaginary parts of $\sqrt{\hat{i}}$? What is the modulus of $\sqrt{\bar{i}}$?
9. Given $f(x)=\cos (1 / x)$, does $\lim _{x \rightarrow 0} f(x)$ exist? What happens if instead $f(x)=x \cos (1 / x)$?
10. Show that "continuity at $x=a$ " does not imply "differentiable at $x=a$ " by constructing a suitable counterexample.
11. Write down the Taylor's series approximation to the value of a function $f(b)$ given only the function and it's first three derivatives evaluated at $x=a$, namely, $f(a), f^{\prime}(a), f^{\prime \prime}(a)$ and $f^{\prime \prime \prime}(a)$. You may assume that these derivatives exist and that f and each of its deriavtives is a continuous function.
12. Give an expression for computing $f(t)$ if we know only its projections $<f(t), \Psi_{j}(t)>$ onto this set of basis functions $\left\{\Psi_{j}(t)\right\}$. Explain what is happening.
13. What will be the Fourier Transform of the $m^{\text {th }}$ derivative of $f(x)$ with respect to x in terms of the Fourier Transform, $F(\mu)$, of $f(x):\left(\frac{d}{d x}\right)^{m} f(x)$?
14. What happens to the Fourier Transform after shifting $f(x)$ by a distance $\alpha: f(x-\alpha)$?
15. What happens to the Fourier Transform after dilating $f(x)$ by a factor a : $f(x / a)$?
16. What is the principal computational advantage of using orthogonal functions, over non-orthogonal ones, when representing a set of data as a linear combination of a universal set of basis functions?

If $\Psi_{k}(x)$ belongs to a set of orthonormal basis functions, and $f(x)$ is a function or a set of data that we wish to represent in terms of these basis functions, what is the basic computational operation we need to perform involving $\Psi_{k}(x)$ and $f(x)$?
17. Any real-valued function $f(x)$ can be represented as the sum of one function $f_{e}(x)$ that has even symmetry (it is unchanged after being flipped around the origin $x=0$) so that $f_{e}(x)=f_{e}(-x)$, plus one function $f_{o}(x)$ that has odd symmetry, so that $f_{o}(x)=-f_{o}(-x)$. Such a decomposition of any function $f(x)$ into $f_{e}(x)+f_{o}(x)$ is illustrated by

$$
\begin{aligned}
& f_{e}(x)=\frac{1}{2} f(x)+\frac{1}{2} f(-x) \\
& f_{o}(x)=\frac{1}{2} f(x)-\frac{1}{2} f(-x) .
\end{aligned}
$$

Use this type of decomposition to explain why the Fourier transform of any real-valued function has Hermitian symmetry: its real-part has even symmetry, and its imaginary-part has odd symmetry.
Comment on how this redundancy can be exploited to simplify computation of Fourier transforms of real-valued, as opposed to complex-valued, data.
18. Newton's definition of a derivative in his formulation of The Calculus captures the notion of integerorder differentiation, e.g. the first or second derivative, etc. But in scientific computing we sometimes need a notion of fractional-order derivatives, as for example in fluid mechanics.
Explain how "Fractional Differentiation" (derivatives of non-integer order) can be given precise quantitative meaning through Fourier analysis.
Suppose that a continuous function $f(x)$ has Fourier Transform $F(\mu)$. Outline an algorithm (as a sequence of mathematical steps, not an actual program) for computing the $1.5^{t h}$ derivative of some function $f(x)$

$$
\frac{d^{(1.5)} f(x)}{d x^{(1.5)}}
$$

19. Given the definition of the Fourier transform and its inverse show that if α and A are non-zero constants then

$$
\widehat{F}(\mu)=A \int_{-\infty}^{\infty} f(x) e^{-i \alpha \mu x} d x
$$

implies that

$$
f(x)=\frac{|\alpha|}{2 \pi A} \int_{-\infty}^{\infty} \widehat{F}(\mu) e^{i \alpha \mu x} d \mu
$$

In order to see what is going on start with the case $\alpha=1$ and $A=1 / 2 \pi$.
20. Comment on the strengths and weakness of the Fourier analysis approach compared with an approach using wavelets.

