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Communication between processes

What problems emerge when communicating

� between separate address spaces

� between separate machines?

How do those environments differ from previous examples?

Recall that

� within a process, or with a shared virtual address space,
threads can communicate naturally through ordinary data
structures – object references created by one thread can
be used by another

� failures are rare and usually occur at the granularity of
whole processes

� OS-level protection is also performed at the granularity of
processes
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Communication between processes (2)

Most directly, introducing separate address spaces means
that data is not directly shared between the threads involved

� At a low-level the representation of different kinds of data
may vary between machines – e.g. big endian v little
endian

� Names used may require translation – e.g. object
locations in memory (at a low-level) or file names on a
local disk (at a somewhat higher level)

More generally, we’ll see four recurring problems in
distributed systems:

� Components execute concurrently

� Components (and/or their communication channels) may
fail independently

� Access to a ‘global clock’ cannot be assumed

� Inconsistent states can occur during operations (e.g.
related changes to objects on different machines)
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Communication between processes (3)

We’ll look primarily at two different mechanisms for
communication between processes

� Low-level communication using network sockets

✔ A ‘lowest-common-denominator’: protocols like TCP
are available on almost all platforms

✘ Much more for the application programmer to think
about; many wheels to re-invent

� Remote method invocation

✔ Remote invocations look substantially like local calls:
many low-level details are abstracted

✘ Remote invocations look substantially like local calls:
the programmer must remember the limits of this
transparency and still consider problems such as
independent failures

✘ Not well suited to streaming or multi-casting data
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Naming

How should processes identify which resources they wish to
access?

Within a single address space in a Java program we could use
object references to identify shared data structures and either

� pass them as parameters to a thread’s constructor

� access them from static fields

When communicating between address spaces we need
other mechanisms to establish

� unambiguously which item is going to be accessed

� where that item is located and how communication with
it can be achieved

Late binding of names (e.g. elite.cl.cam.ac.uk ) to
addresses (128.232.8.50 ) is considered good practice –
i.e. using a name service at run-time to resolve names, rather
than embedding addresses directly in a program
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Name services

1. Register

2. Resolve

4. Access

3. Address

Server

Client Name service

How does the client now how to contact the name service?

� A namespace is a collection of names recognised by a
name service – e.g. process IDs on one UNIX system, the
filenames that are valid on a particular system or the
Internet DNS names that are defined

� A naming domain is a section of a namespace operated
under a single administrative authority – e.g.
management of the cl.cam.ac.uk portion of the DNS
namespace is delegated to the Computer Lab

� Binding or name resolution is the process of making a
lookup on the name service
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Name services (2)

Although we’ve shown the name service here as a single
entity, in reality it may

� be replicated for availability (lookups can be made if any
of the replicas are accessible) and read performance
(lookups can be made to the nearest replica)

� be distributed, e.g. separate systems may manage
different naming domains within the same namespace
(updates to different naming domains require less
co-ordination)

� allow caching of addresses by clients, or caching of
partially resolved names in a hierarchical namespace

(See Part-II, Distributed Systems)
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Names

Names are used to identify things and so they should be
unique within the context that they are used. (A directory
service may be used to select an appropriate name to look
up – e.g. “find the nearest system providing service xyz”)

When a namespace contains a single naming domain then
simple unique IDs (UIDs) may be used – e.g. process IDs in
UNIX

� UIDs are simply numbers in the range 0:::2N � 1 for an
N -bit namespace. (Beware: UID 6= user ID in this
context!)

✔ Allocation is easy if N is large – just allocate successive
integers

✘ Allocation is centralized (designs for allocating process
IDs on highly parallel UNIX systems are still the subject
of research)

✘ What can be done if N is small? When can/should UIDs
be re-used?

Concurrent Systems and Applications 2001 – 8 Tim Harris



Names (2)

More usually a hierarchical namespace is formed – e.g.
filenames or DNS names

✔ The hierarchy allows local allocation if different
allocators agree to use non-overlapping prefixes

✔ The hierarchy can often follow administrative delegation
of control

✔ Locality of access within the structure may help
implementation efficiency (if I lookup one name in
/usr/bin/ then perhaps I’m likely to lookup other
names in that same directory)

✘ Lookups may be more complex. Can names be arbitrarily
long?
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Names (3)

We can also distinguish between pure and impure names

A pure name yields no information about the identified
object – where it may be located or where its details may be
held in a distributed name service. e.g. process IDs in UNIX

An impure name contains information about the object – e.g.
e-mail to tlh20@cam.ac.uk will always be sent to a mail
server in the University

� Are DNS names, e.g. elite.cl.cam.ac.uk pure or
impure?

� Are IPv4 addresses, e.g. 128.232.8.50 pure or impure?

Names may have structure while still being pure – e.g.
Ethernet MAC addresses are structured 48-bit UIDs and
include manufacturer codes, and broadcast/multicast flags.
This structure avoids centralized allocation

In other schemes, pure names may contain location hints.
Crucially, impure names prevent the identified object from
changing in some way (usually moving) without renaming
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Protection

Require protection against unauthorised:

� release of information
– reading or leaking data
– violating privacy legislation
– using proprietary software
– covert channels

� modification of information
– changing access rights
– can do sabotage without reading information

� denial of service
– causing a crash or intolerable load

How should access to resources be controlled?

� When a system is built from multiple processes

� ...when these may be executing on different systems

� ...when some may be operating as servers on behalf of
many clients
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Protection (2)

� Some other protection mechanisms:
– lock the computer room (prevent people from

tampering with the hardware)

– restrict access to system software

– de-skill systems operating staff

– keep designers away from final system!

– use passwords (in general challenge/response)

– use encryption

– legislate

� ref: Saltzer + Schroeder Proc. IEEE, Sept 75
– design should be public

– default should be no access

– check for current authority

– give each process minimum possible authority

– mechanisms should be simple, uniform and built in to
lowest layers

– should be psychologically acceptable

– cost of circumvention should be high

– minimize shared access
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Access matrix

Access matrix is a matrix of subjects against objects.

Subject (or principal) might be:

� users e.g. by system user ID
� executing process in a protection domain
� sets of users or processes

Objects are things like:

� files
� devices
� domains / processes
� message ports (in microkernels)

Matrix is large and sparse) don’t want to store it all.

Two common representations:

1. by object: store list of subjects and rights with each
object) access control list

2. by subject: store list of objects and rights with each
subject) capabilities
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Access control lists

Often used in storage systems:

� system naming scheme provides for ACLs to be inserted
at each level of a hierarchical name, e.g. files

� if ACLs stored on disk, check is made in software) must
only use on low duty cycle

� for higher duty cycle must cache results of check

� e.g. Multics: open file = memory segment.
On first reference to segment:
1. interrupt (segment fault)
2. check ACL
3. set up segment descriptor in segment table

� most systems check ACL
– when file opened for read or write
– when code file is to be executed

� access control by program, e.g. Unix
– exam prog, RWX by examiner, X by student
– data file, A by exam program, RW by examiner
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Capabilities

Capabilities associated with active subjects, so:

� store in address space of subject

� must make sure subject can’t forge capabilities

� easily accessible to hardware

� can be used with high duty cycle
e.g. as part of addressing hardware
– Plessey PP250
– CAP I, II, III
– IBM system/38
– Intel iAPX432

� have special machine instructions to modify (restrict)
capabilities

� support passing of capabilities on procedure call

Can also use software capabilities. Checked by encryption.
Nice for distributed systems
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Capabilities (2)

Tagged Architectures (e.g. IBM system/38):

� all words in memory and the processor registers are
tagged as containing either data or a capability

� tag stays with contents on all copy operations
� system checks ALU operations for validity

Capability segments (e.g. CAP):

� capabilities for code segment held in special capability
segment

� only a restricted set of operations are allowed on
capability segments

� provide a cache of entries in capability segments in
special capability registers

� use associative store, per domain capability list, central
capability list

� add enter capability

Software schemes (e.g. EROS)

� require capabilities for all system services
� fake out enter via IPC.
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Capabilities (3)

� Capabilities nice for distributed systems but:
– messy for application, and
– revocation is tricky.

� Could use timeouts (e.g. Amoeba).

� Alternatively: combine passwords and capabilities.

� Store ACL with object, but key it on capability (not
implicit concept of “principal” from OS).

� Advantages:
– revocation possible
– multiple “roles” available.

� Disadvantages:
– still messy (use ‘implicit’ cache?).
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Facilities in Java

We’ll now look at how these techniques apply to Java
applications

Within Java applications object references can be used as
unforgeable capabilities, e.g. when running multiple applets
within a single JVM

� Access modifiers on constructors prevent arbitrary
instantiation of classes

� Access control checks can be performed at instantiation
time and – if these fail – instantiation can be aborted by
throwing an exception

For many kinds of access the security manager provides a
mechanism for enforcing simple controls

� A security manager is implemented by
java.lang.SecurityManager (or a sub-class)

� An instance of this is installed using
System.setSecurityManager(...) (itself an
operation under the control of the current security
manager)
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Facilities in Java (2)

Most checks are made by delegating to a
checkPermission method, e.g. for dynamically loading a
native library

checkPermission(

new RuntimePermission(

"loadLibrary."+lib));

Decisions made by checkPermission are relative to a
particular security context. The current context can be
obtained by invoking getSecurityContext and checks
then made on behalf of another context

Permissions can be granted in a policy definition file, passed
to the JVM on the command line with
-Djava.security.policy= filename

grant {

permission java.net.SocketPermission

"*:1024-65535", "connect,accept";

};

http://java.sun.com/products/jdk/1.2/docs/
guide/security/index.html
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Low-level communication

Two basic network protocols are available in Java:
datagram-based UDP and stream-based TCP (see Digital
Communication I)

Communication occurs between UDP sockets which are
addressed by giving an appropriate IP address and a UDP
port number (0..65535, although 0 not accessible through
common APIs, 1..1023 reserved for privileged use)

UDP sockets provide unreliable datagram-based
communication that is subject to:

� Loss: datagrams that are sent may never be received, and

� Re-ordering: datagrams are forwarded separately within
the network and may arrive out of order

A checksum is used to guard against corruption (corrupt data
is discarded by the protocol implementation and the
application perceives it as loss)

The framing within datagrams is preserved – e.g. if
fragmentation occurs within the network
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Low-level communication (2)

Naming is handled by

� Using the DNS to map textual names into IP addresses,
InetAddress.getByName("elite.cl.cam.ac.uk")

� Using ‘well-known’ port numbers for particular UDP
services which wish to be accessible to clients (See the
/etc/services file on a UNIX system)

UDP sockets are represented by instances of
java.net.DatagramSocket . The 0-argument
constructor creates a new socket that is bound to an
available port on the local host machine. This identifies the
local endpoint for the communication

Datagrams are represented in Java as instances of
java.net.DatagramPacket . The most elaborate
constructor

DatagramPacket(byte buf[], int length,

InetAddress address, int port)

specifies the data to send (length bytes from within buf )
and the destination address and port
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UDP example

import java.net.*;

public class Send {

public static void main (String args[]) {

try {

DatagramSocket s = new DatagramSocket ();

byte[] b = new byte[1024];

int i;

for (i = 0; i < args.length - 2; i ++)

b[i] = Byte.parseByte (args[2 + i]);

DatagramPacket p = new DatagramPacket (

b, i,

InetAddress.getByName (args[0]),

Integer.parseInt (args[1]));

s.send(p);

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}

Concurrent Systems and Applications 2001 – 22 Tim Harris



UDP example (2)

import java.net.*;

public class Recv {

public static void main (String args[]) {

try {

DatagramSocket s = new DatagramSocket ();

byte[] b = new byte[1024];

DatagramPacket p =

new DatagramPacket (b, 1024);

System.out.println("Port: " +

s.getLocalPort());

s.receive(p);

for (int i = 0; i < p.getLength (); i ++)

System.out.print ("" + b[i] + " ");

System.out.println ("\nFrom: " +

p.getAddress () + ":" + p.getPort ());

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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Problems using UDP

Many facilities must be implemented manually by the
application programmer:

✘ Detection and recovery from loss

✘ Flow control (preventing the receiver from being
swamped with too much data)

✘ Congestion control (preventing the network from being
overwhelmed)

✘ Conversion between application data structures and
arrays of bytes (marshaling )

Of course, there are situations where UDP is directly useful

✔ Communication with existing UDP services (e.g. some
DNS name servers)

✔ Broadcast and multicast are possible (e.g. address
255.255.255.255) all machines on the local network
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TCP sockets

The second basic form of inter-process communication is
provided by TCP sockets

Naming is again handled using the DNS and well-known
port numbers as before. There is no relationship between
UDP and TCP ports having the same number

TCP provides a reliable bi-directional connection-based
byte-stream with flow control and congestion control

What doesn’t it do?

� Unlike UDP the interface exposed to the programmer is
not datagram based: framing must be provided explicitly

� Marshaling must still be done explicitly – but serialization
may help here

� Communication is one-to-one

In practice TCP forms the basis for many internet protocols –
e.g. FTP and HTTP are both currently deployed over it
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TCP sockets (2)

Two principal classes are involved in exposing TCP sockets
in Java:

� java.net.Socket represents a connection over which
data can be sent and received. Instantiating it directly
initiates a connection from the current process to a
specified address and port. The constructor blocks until
the connection is established (or fails with an exception)

� java.net.ServerSocket represents a socket
awaiting incoming connections. Instantiating it starts the
local machine listening for connections on a particular
port. ServerSocket provides an accept operation
that blocks the caller until an incoming connection is
received. It then returns an instance of Socket
representing that connection

The system will usually buffer only a small (5) number of
incoming connections if accept is not called

Typically programs that expect multiple clients will have one
thread making calls to accept and starting further threads
for each connection
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TCP example

import java.net.*;

import java.io.*;

public class TCPSend {

public static void main (String args[]) {

try {

Socket s = new Socket (

InetAddress.getByName (args[0]),

Integer.parseInt (args[1]));

OutputStream os = s.getOutputStream ();

while (true) {

int i = System.in.read();

os.write(i);

}

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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TCP example (2)

import java.net.*;

import java.io.*;

public class TCPRecv {

public static void main (String args[]) {

try {

ServerSocket serv = new ServerSocket (0);

System.out.println ("Port: " +

serv.getLocalPort ());

Socket s = serv.accept ();

System.out.println ("Remote addr: " +

s.getInetAddress());

System.out.println ("Remote port: " +

s.getPort());

InputStream is = s.getInputStream ();

while (true) {

int i = is.read ();

if (i == -1) break;

System.out.write (i);

}

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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Remote method invocation

Using UDP or TCP it was necessary to

� Decide how to represent data being sent over the
network – either packing it into arrays of bytes (in a
DatagramPacket ) or writing it into an OutputStream
(using a Socket )

� Use a rather inflexible naming system to identify servers –
updates to the DNS may be difficult, access to a specific
port number may not always be possible

� Distribute the code to all of the systems involved and
ensure that it remains consistent

� Deal with failures (e.g. the remote machine crashing –
something a ‘reliable’ protocol like TCP cannot mask)

Java RMI presents a higher level interface that addresses
some of these concerns. Although it is remote method
invocation, the principles are the same as for remote
procedure call (RPC) systems
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Remote method invocation (2)

12
4

3
1

client server

web server

registry

1. A server registers a reference to a remote object with the
registry (a basic name service) and deposits associated
.class files with a web server

2. A client queries the registry to obtain a reference to a
remote object

3. The client obtains the .class files needed to access the
remote object from a web server (if they are not already
available locally)

4. The client makes an RMI call to the remote object

The registry acts here as a name service, holding names of
the form //thor.cam.ac.uk/tlh20-example-1.2
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Remote method invocation (3)

Parameters and results are generally passed by making deep
copies when passed or returned over RMI

� i.e. copying proceeds recursively on the object passed,
objects reachable from that etc (! take care to reduce
parameter sizes)

� The structure of object graphs is preserved – e.g. data
structures may be cyclic

� Remote objects are passed by reference and so both
caller and callee will interact with the same remote
object if a reference to it is passed or returned

Note that Java only supports remote method invocation –
changes to fields must be made using get /set methods

Other implementation choices:

� Perform a shallow copy and treat other objects reachable
from that as remote data (as above, would be hard to
implement in Java) or copy them incrementally

� Emulate ‘pass by reference’ by passing back any changes
with the method results (what about concurrent updates?)
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RMI - Interfaces

Suppose that we wish to define a simple remote object on
which a single method spell is defined:

package tlh20.rmi;1

2

import java.rmi.*;3

4

public interface Phonetic extends Remote {5

6

public final static String URL =7

"//thor.cam.ac.uk/tlh20-example-1.2";8

9

public String [] spell (String s)10

throws RemoteException;11

}12

� All RMI invocations are made across remote interfaces
extending java.rmi.Remote

� The field URL in Lines 7–8 will be used to name a
particular remote object implementing this interface. It’s
included here for easy access by both client and server

� All remote methods must throw RemoteException
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RMI - Client

package tlh20.rmi;1

2

import java.rmi.*;3

4

public class PhoneticClient {5

6

public static void main (String [] args) {7

try {8

System.setSecurityManager (9

new RMISecurityManager ());10

11

Phonetic p = (Phonetic)12

Naming.lookup (Phonetic.URL);13

14

String [] results = p.spell ("Example");15

16

for (int r = 0; r < results.length; r++)17

System.out.println (results [r]);18

}19

catch (Exception e) {20

System.out.println ("Exception: " + e);21

}22

}23

}24
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RMI - Client (2)

Note how few differences there are in the client compared
with local invocations on an instance of a class
implementing Phonetic :

� The security manager installed in lines 9–10 is an
example one for use by RMI applications that use
downloaded code

� Lines 12–13 obtain an instance of a class implementing
the Phonetic interface. Invocations on this instance
will be made on a remote object registered under the
name Phonetic.URL

� The exception handler in lines 20–22 may see

– NotBoundException – no remote object has been
associated with the name Phonetic.URL

– RemoteException – if the RMI registry could not be
contacted (12–13) or if there was a problem with the
call (15)

– AccessException – if the operation has not been
permitted
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RMI - Server

package tlh20.rmi;1

2

import java.net.*;3

import java.rmi.*;4

import java.rmi.server.*;5

6

public class PhoneticServer7

extends UnicastRemoteObject8

implements Phonetic9

{10

public static void main (String [] args) {11

try {12

System.setSecurityManager (13

new RMISecurityManager ());14

15

PhoneticServer s = new PhoneticServer ();16

17

Naming.rebind (Phonetic.URL, s);18

System.out.println (Phonetic.URL +19

" server running");20

}21

catch (Exception e) {22

System.out.println ("Exception: " + e);23

};24

}25
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RMI - Server (2)

public PhoneticServer () throws RemoteException {26

super ();27

}28

29

private final static String [] WORDS = { "alfa",30

"bravo", "charlie", "delta", "echo", "foxtrot",31

"golf", "hotel", "India", "Juliet", "kilo",32

"Lima", "Mike", "November", "Oscar", "papa",33

"Quebec", "Romeo", "sierra", "tango", "uniform",34

"victor", "whiskey", "x-ray", "yankee", "zulu" };35

36

public String [] spell (String s)37

throws RemoteException38

{39

String source = s.toUpperCase ();40

String [] reply = new String [s.length ()];41

for (int i = 0; i < s.length (); i++) {42

try {43

int w = (int) source.charAt (i) - (int) ’A’;44

reply [i] = WORDS [w];45

}46

catch (Exception e) {reply [i] = "?";}47

}48

return reply;49

}50
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Putting it all together

� Compile the remote interface class, client and server:

$ javac tlh20/rmi/Phonetic.java

$ javac tlh20/rmi/PhoneticClient.java

$ javac tlh20/rmi/PhoneticServer.java

� Generate stub classes from the server:

$ export PUBCLASSES=/home/tlh20/\

public_html/java/classes/

$ rmic -v1.2 -d $PUBCLASSES \

tlh20.rmi.PhoneticServer

� Generate a security policy file:

grant {

permission java.net.SocketPermission

"*:1024-65535", "connect,accept";

permission java.net.SocketPermission

"*:80", "connect";

permission java.util.PropertyPermission

"java.rmi.server.codebase", "read";

permission java.util.PropertyPermission

"user.name", "read,write";

};
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Putting it all together (2)

� Start the server running:

$ export CODEBASE=http://hammer.thor.cam.ac.uk\

/~tlh20/java/classes/

$ java -Djava.rmi.server.codebase=$CODEBASE \

-Djava.security.policy=security.policy \

tlh20.rmi.PhoneticServer

//thor.cam.ac.uk/tlh20-example-1.2 server running

� Start the client running:

$ java -Djava.security.policy=security.policy \

tlh20.rmi.PhoneticClient

echo

x-ray

alfa

Mike

papa

Lima

echo
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RMI implementation

PhoneticServer_Stub

PhoneticClient PhoneticServer

UnicastRef

TCPConnection

UnicastServerRef

TCPTransport

Method

� The Stub class is the one created by the rmic tool – it
transforms invocations on the Phonetic interface into
generic invocations of an invoke method on
UnicastRef

� UnicastRef is responsible for selecting a suitable
network transport for accessing the remote object – in
this case TCP

� UnicastServerRef uses the ordinary reflection
interface to dispatch calls to remote objects
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RMI implementation (2)

With the TCP transport RMI creates a new thread on the
server for each incoming connection that is received

� A remote objects should be prepared to accept
concurrent invocations of its methods

� Remember: the synchronized modifier applies to a
method’s implementation. It must be applied to the
definition in the server class, not the interface

✔ This avoids deadlock if remote object A invokes an
operation on remote object B which in turn invokes an
operation on A

✘ The application programmer must be aware of how many
threads might be created and the impact that they may
have on the system
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RMI implementation (3)

1. Marshal

2. Generate ID

3. Set timer

5. Record ID

8. Unmarshal

6. Marshal

4. Unmarshal

7. Set timer

9. Acknowledge

Caller Called
method

RMI ServiceRMI Service

Client Server

What could be done without TCP?

We need to manually implement:

� Reliable delivery of messages subject to loss in the
network

� Association between invocations and responses – shown
here using per-call RPC identifier with which all
messages are tagged
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RMI implementation (4)

Even this simple protocol requires multiple threads: e.g. to
re-send lost acknowledgements after the client-side RMI
service has returned to the caller

What happens if a timeout occurs at 3? Either the message
sent to the server was lost, or the server failed before replying

� At-most-once semantics) return failure indication to
the application

� ‘Exactly’-once semantics) retry a few times with the
same RPC id (so server can detect retries)

What happens if a timeout occurs at 7? Either the message
sent to the client was lost, or the client failed

No matter what is done, the client cannot distinguish, on
the basis of these messages, server failures before / after
making some change to persistent storage
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Defining remote interfaces

Recall that with Java RMI the interface to a remote object is
defined as an ordinary interface that extends
java.rmi.Remote

✔ Easy to use in Java-based systems

✘ What about interoperability with other languages?

Java RMI is rather unusual in using ordinary language
facilities to define remote interfaces. Usually a specific
Interface Definition Language (IDL) is used

� This acts as a ‘lowest common denominator’ presenting
features common to many languages

� The IDL has language bindings that define how its
features are realized in a particular language

� An IDL compiler generates per-language stubs (contrast
with the rmic tool that only generates stubs for the JVM)
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OMG IDL

We’ll take OMG IDL (used in CORBA) as a typical example

//POS Object IDL example1

module POS {2

typedef string Barcode;3

4

interface InputMedia {5

typedef string OperatorCmd;6

void barcode_input(in Barcode item);7

void keypad_input(in OperatorCmd cmd);8

};9

};10

� A module defines a namespace within which a group of
related type definitions and interface definitions occur

� Interfaces can be derived using multiple inheritance

� Built-in types include basic integers (e.g. long holding
�231 : : : 231 � 1 and unsigned long holding
0 : : : 232 � 1), floating point types, 8-bit characters,
boolean s and octet s

� Parameter modifiers in , out and inout define the
direction in which parameters are copied
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OMG IDL (2)

Type constructors allow structures, discriminated unions,
enumerations and sequences to be defined:

struct Person {

string name;

short age;

};

union Result switch(long) {

case 1 : ResultDataType r;

default : ErrorDataType e;

};

enum Color { red, green, blue };

typedef sequence<Person> People;

Interfaces can define attributes (unlike Java interfaces), but
these are just shorthand for pairs of method definitions:

attribute long value;

!

long _get_value();

void _set_value(in long v);
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OMG IDL (3)

IDL construct Java construct
module package

interface interface + classes
constant public static final

boolean boolean
char , wchar char

octet byte
string , wstring java.lang.String

short short
unsigned short short

long long
unsigned long long

float float
double double

eunm, struct , union class
sequence , array array

exception class
readonly attribute Read-accessor method

attribute Read,write-accessor methods
operation Method

� ‘Holder classes’ are used for out and inout parameters
– these contain a field appropriate to the type of the
parameter
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Microsoft .NET

Instead of defining a separate IDL and per-language
bindings, the Microsoft .NET platform defines a common
language subset and programming conventions for making
definitions that conform to it

Many familiar features: static typing, objects (classes, fields,
methods, properties), overloading, single inheritance of
implementations, multiple implementation of interfaces, . . .

Metadata describing thse definitions is available at run-time,
e.g. to control marshaling

� Interfaces can be defined in an ordinary programming
language and do not need an explicit IDL compiler

� Languages vary according to whether they can be used to
write clients or servers in this system – e.g. JScript and
COBOL vs VB, C#, SML
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Transactions

We’ve now seen mechanisms for

� Controlling concurrent access to objects

� Providing access to remote objects

Using these facilities correctly, and particularly in
combination, is extremely difficult. What improved
abstractions could be provided?

Ideally the programmer may wish to write something like

transactionally {

if (source.balance() >= amount) {

source.withdraw (amount);

destination.deposit (amount);

return true;

} else {

return false;

}

}
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Transactions (2)

The intent is that code within a transactionally block
will execute without interference from other activities, in
particular

� other operations on the same objects

� system crashes

We’ll say that a transaction either commits (i.e. succeeds) or
aborts (i.e. fails).

Of course, we can’t provide complete resilience to system
crashes, but we can say that

� if enough of the system keeps working

� then the results of committed transactions are not lost

� and the effects of non-committed transactions are not
seen
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Transactions (3)

In more detail we’d like committed transactions to satisfy
four ‘ACID’ properties:

A tomicity – either all or none of the transaction’s operations
are performed

— programmers do not have to worry about ‘cleaning up’
after a transaction aborts; the system ensures that it has no

visible effects

Consistency – a transaction transforms the system from one
consistent state to another

— essentially the transaction must be implemented to
preserve desired invariants, e.g. totals across accounts

I solation – the effects of a transaction are not visible to other
transactions until it is committed

— in the strictest case, another transaction shouldn’t read the
source and destination amounts mid-transfer

Durability – the effects of committed transactions endure
subsequent system failures

— when the system confirms the transaction has committed
it must ensure any changes will survive faults
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Transactions (4)

These requirements can be grouped into two categories:

� Atomicity and durability refer to the persistence of
transactions across system failures.

We want to ensure that no ‘partial’ transactions are
performed (atomicity) and we want to ensure that system
state does not regress by apparently-committed
transactions being lost (durability)

� Consistency and isolation concern ensuring correct
behaviour in the presence of concurrent transactions

As we’ll see there are trade-offs between the ease of
programming within a particular transactional
framework, the extent that concurrent execution of
transactions is possible and the isolation that is enforced
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Persistent storage

Assume a fail-stop model of crashes in which

� the contents of main memory (and above in the memory
hierarchy) is lost

� non-volatile storage is preserved (e.g. data written to disk)

) if we want the state of an object to be preserved across
system failures then we must either

� ensure that sufficient replicas exist on different machines
that the risk of losing all is tolerable (Part-II Distributed
Systems)

� ensure that the enough information is written to
non-volatile storage in order to recover the state after a
restart

Can we just write object state to disk before every commit?
(e.g. invoking flush() on any kind of Java
OutputStream )

✘ Not directly: the failure may occur part-way through the
disk write (particularly for large amounts of data)
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Persistent storage – logging

We could split the update into stages:

1. Write details of the proposed update to an write-ahead
log – e.g. in a simple case giving the old and new values
of the data, or giving a list of smaller updates as a set of
(address; old ; new) tuples

0 1 2 3 4 5 6

48 65 6C 6C 6F 21 00

1: 65 -> 45
2: 6C -> 4C
3: 6C -> 4C
4: 6F -> 4F

Log

2. Proceed through the log making the updates

0 1 2 3 4 5 6

6C 6F 21 00

1: 65 -> 45
2: 6C -> 4C
3: 6C -> 4C
4: 6F -> 4F

Log

48 4C45

Crash during 1) no updates performed

Crash during 2) re-check log, either undo (so no changes)
or redo (so all changes made)
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Persistent storage – logging (2)

More generally we can record details of multiple
transactions in the log by associating each with a transaction
id. Complete records, held in an append-only log, may be of
the form:

� (transaction; operation; old ; new)

� or (transaction; start=abort=commit)

T1, x, add(1), 2, 3

T2, y, add(10), 17, 27

T2, ABORT

Log entriesObject values

y = 17

x = 3

C
ac

h
e

D
is

k

Object values

y = 17

x = 2

z = 42

Previous entries

T2, START

Checkpoint:
T2 active

Restart file
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Persistent storage – logging (3)

We can cache values in memory and use the log for recovery

� A portion of the log may also be held in volatile storage,
but records for a transaction must be written to
non-volatile storage before that transaction commits

� Values can be written out lazily: the system state can be
recovered using the log

A naïve implementation would be inefficient, e.g. when
aborting a transaction. A checkpoint mechanism can be
used, e.g. every x seconds or every y log records. For each
checkpoint:

� Force log records out to non-volatile storage

� Write a special checkpoint record that identifies the
then-active transactions

� Force cached updates out to non-volatile storage

Then write the location of the checkpoint record into a
restart file
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Persistent storage – logging (4)
T

ra
n

sa
ct

io
n

s

Checkpoint Failure

time

T
S

R
Q

P

P already committed before the checkpoint – any items
cached in volatile storage must have been flushed

Q active at the checkpoint but subsequently committed –
log entries must have been flushed at commit, REDO

R active but not yet committed – UNDO

S not active but has committed – REDO

T not active, not yet committed – UNDO
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Persistent storage – logging (5)

A general algorithm for recovery:

� The recovery manager keeps UNDO and REDO lists

� Initialize UNDO with the set of transactions active at the
last checkpoint

� REDO is initially empty

� Search forward from the checkpoint record:
– Add transactions that start to the UNDO list
– Move transactions that commit from the UNDO list to

the REDO list

� Then work backwards through the log from the end to the
checkpoint record:
– UNDOing the effect of transactions on the UNDO list

� Then work forwards from the log from the checkpoint
record:
– REDOing the effect of transactions in the REDO list

Storing old and new values in the log enables general
idempotent UNDO and REDO
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Persistent storage – shadowing

An alternative to logging: create separate old and new
versions of the data structures being changed

48 65 6C 6C 6F 21 00

0 1 2 3 4 5 6Old meta-data

An update starts by constructing a new ‘shadow’ version of
the data, possibly sharing unchanged components:

New meta-data

Old meta-data

48 65 6C 6C 6F 21 00

0 1 2 3 4 5 6

45 4C 4C 4F

7 8 9 A

The change is committed by a single in-place update to a
location containing a pointer to the current version. This last
change must be guaranteed atomic by the system.

How can this be extended for persistent updates to multiple
objects?
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Isolation

Recall our original example:

transactionally {

if (source.balance() >= amount) {

source.withdraw (amount);

destination.deposit (amount);

return true;

} else {

return false;

}

}

What can the system do in order to enforce isolation
between transactions specified in this manner?

A simple approach: execute transactions serially, allowing
only one to operate at a time

✔ Simple, ‘clearly correct’, independent of the operations
performed within the transaction

✘ Does not enable concurrent execution, e.g. two of these
operations on separate sets of accounts

✘ What happens if operations can fail?
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Isolation – serialisability

This idea of executing transactions serially provides a useful
correctness criteria for executing transactions in parallel:

� A concurrent execution is serialisable if there is some
serial execution of the same transactions that gives the
same result

Suppose we have two transactions:

T1: transactionally {

int s = A.read ();

int t = B.read ();

return s + t;

}

T2: transactionally {

A.credit (100);

B.debit (100);

}

If we assume that the individual read , credit and debit
operations are implemented atomically (e.g. by
synchronized methods) then an execution without further
concurrency control can proceed in 6 ways
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Isolation – serialisability (2)

Both of these concurrent executions are OK:

T1:

T2:

A.read B.read

A.credit B.debit

T1:

T2: B.debit

A.read

A.credit

B.read

Neither of these concurrent executions is valid:

T1:

T2:

A.read

A.credit

B.read

B.debit

T1:

T2: A.credit

A.read B.read

B.debit

In each case some – but not all – of the effects of T2 have
been seen by T1, meaning that we have not achieved
isolation between the transactions
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Isolation – serialisability (3)

We can depict a particular execution of a set of concurrent
transactions by a history graph

� Nodes in the graph represent the operations comprising
each transaction, e.g. T1: A.read

� An directed edge from node a to node b means that a
happened before b

– Operations within a transaction are totally ordered by
the program order in which they occur

– Conflicting operations on the same object are ordered
by the object’s implementation

For clarity we usually omit edges that can be inferred by the
transitivity of happens before

Suppose again that we have two objects A and B associated
with integer values and run transaction T1 that reads values
from both and transaction T2 that adds to A and subtracts
from B
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Isolation – serialisability (4)

These histories are OK. Either both the read operations see
the old values of A and B:

T1:

T2:

start commit

start commit

A.read B.read

B.debitA.credit

or both read operations see the new values:

T1:

T2:

start

start commit

commitA.read B.read

B.debitA.credit
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Isolation – serialisability (5)

These histories show non-serialisable executions in which
one read sees an old value and the other sees a new value:

T1:

T2:

A.read B.read

B.debitA.credit

start

start commit

commit

T1:

T2:

A.read B.read

B.debitA.credit

start

start commit

commit
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Isolation – serialisability (6)

We can derive a simpler serialisation graph in which nodes
represent transactions and a directed edge from node Ta to
Tb means that some node in Tb’s history graph is reachable
from some node in Ta’s

A history is serialisable iff its serialisation graph is acyclic

T1 T2 T2T1

T2T1 T2T1

These graphs show whether a particular execution of the
transactions corresponds to a serialisable execution

As we’ve seen in this example, one piece of code can lead
to both serialisable and non-serialisable histories

The transaction management system is responsible for
ensuring that a serialisable execution is chosen at run-time
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Isolation – two-phase locking

We’ll now look at some mechanisms for ensuring that
transactions are executed in a serialisable manner while
allowing more concurrency than an actual serial execution
would achieve

In two-phase locking (2PL) each transaction is divided into

� a phase of acquiring locks

� a phase of releasing locks

Locks must exclude other operations that may conflict with
those to be performed by the lock holder. Simple mutual
exclusion locks may suffice, but could limit concurrency. In
the example we could use a MRSW lock, held in read mode
for read and write mode for credit and debit

� If Ta performs an operation that comes before a
conflicting one by Tb then Ta must have released a lock
on the object and Tb acquired one

� At that point Ta must have entered its releasing phase – it
can’t acquire locks on further objects that Tb may have
previously updated

Concurrent Systems and Applications 2001 – 67 Tim Harris



Isolation – two-phase locking (2)

How does the system know when (and how) to acquire and
release locks if transactions are defined in the form:

transactionally {1

if (source.balance() >= amount) {2

source.withdraw (amount);3

destination.deposit (amount);4

return true;5

} else {6

return false;7

}8

}9

� Could require explicit invocations by the programmer,
e.g. additional operations to

– acquire a read lock on source before 2, release if the
else clause is taken,

– upgrade to a write lock on source before 3,

– acquire a write lock on destination before 4,

– release the lock on source any time after acquiring
both locks,

– release the lock on destination after 4
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Isolation – two-phase locking (3)

How well would this form of two-phase locking work?

✔ Ensures serialisable execution if implemented correctly

✔ Allows arbitrary application-specific knowledge to be
exploited, e.g. using MRSW for increased concurrency
over mutual exclusion locks

✔ Allowing other transactions to access objects as soon as
they have been unlocked increases concurrency

✘ Complexity of programming (e.g. 2PL) MRSW needs
an upgrade operation here)

✘ Risk of deadlock

✘ If Ta ! Tb then isolation requires that
– Tb cannot commit until Ta has
– Tb must abort if Ta does (‘cascading aborts’)

Some of these problems can be addressed by strict isolation
in which all locks are held until release: transactions never
see partial updates made by others

With Strict 2PL locks are only released when a transaction
commits or aborts – no cascading aborts but consider the
effect of long transactions...
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Isolation – timestamp ordering

Timestamp ordering (TSO) is another mechanism to enforce
isolation:

� Each transaction has a timestamp – e.g. of its start time.
These must be totally ordered, using a suitable tie-break if
necessary

� Each object requires fields to hold

– The timestamp of the most recent transaction

– The operation invoked upon it

� Each time an operation is invoked that conflicts with the
previous one on the object:

✔ It is allowed to proceed if it is from a transaction with
a later timestamp

✘ It is rejected as too late if it is from an earlier
transaction
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Isolation – timestamp ordering (2)

One serialisable order is achieved: that of the timestamps of
the transactions, e.g.

T1,1: start T2,1: start

T1,2: A.read() T2,2: A.credit()

T1,3: B.read() T2,3: B.debit()

✔ T1,1 executes,! timestamp 17

✔ T1,2 executes, A: 17,read

✔ T2,1 executes,! timestamp 42

✔ T2,2 executes, OK (later) A: 42,credit

✔ T2,3 executes, B: 42,debit

✘ T1,3 attempted: too late 17 earlier than 42 and read
conflicts with credit

In this case both transactions could have committed if T1,3
had been executed before T2,3
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Isolation – timestamp ordering (3)

✔ The decision of whether to admit a particular operation is
based on information local to the object

✔ Simple to implement – e.g. by interposing the checks on
each invocation (contrast with 2PL)

✔ Avoiding locking may increase concurrency (but see
below: the work performed may not be useful)

✔ Deadlock is not possible

✘ Cascading aborts are possible – e.g. if T1,2 had updated
A then it would need to be undone and T2 would have to
abort because it may have been influenced by T1

— could delay T2,2 until T1 either commits or aborts
(still avoiding deadlock)

✘ Serialisable executions can be rejected if they do not
agree with the transactions timestamps (e.g. executing T2
in its entirety, then T1)

Generally: the low overheads and simplicity make TSO good
when conflicts are rare
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Isolation – OCC

Optimistic Concurrency Control (OCC) is another
mechanism for enforcing isolation

A transaction operates on shadow copies of objects: changes
remain local. Copies may be taken at transaction start or
perhaps each time it accesses a new object

Upon commit:

� Validate that the the shadows were consistent...

� ...and no other transaction has committed an operation
on an object which conflicts with one intended by this
transaction

✔ If OK then commit the updates to the persistent objects,
in the same transaction-order at every object

✘ If not OK then abort: discard shadows and retry

Note that abort is easy: just discard the shadows

No cascading aborts or deadlock

But conflicts force transactions to retry
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Isolation – OCC (2)

Validation is the complex part of OCC. As usual there are
trade-offs between the implementation complexity,
generality and likelihood that a transaction must abort

We’ll consider a validation scheme using

� a single-threaded validator

� the usual distinction between conflicting and
commutative operations

Transactions are assigned timestamps when they pass
validation, defining the order in which the transactions have
been serialised. We’ll assign timestamps when validation
starts and then either

� confirm during validation that this gives a serialisable
order, or

� discover that it does not and abort the transaction

Elaborate schemes are probably unnecessary: OCC assumes
transactions do not usually conflict
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Isolation – OCC (3)

The validator maintains a preceding transactions list:

Validated Validation Objects Committed
transaction timestamp updated

P 10 A, B, C Yes

Q 11 D Yes

R 12 A, E

Transactions P and Q have been validated and committed
to persistent storage. R has been accepted by the validator
but its updates to objects A and E not yet committed

A current timestamp is maintained by each object, holding
the validation timestamp of the most recent transaction
committed to it:

Object Timestamp
A 12
B 10
C 10
D 11
E 10

The update to E remains to take place
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Isolation – OCC (4)

Before execution:

� Record the validation timestamp of the most recently
validated but not committed transaction – in this case 12.
This will be the base timestamp

Validation phase 1:

� Compare each shadow’s timestamp against the base
timestamp

✔ Shadow earlier (B,C,D,E): part of a consistent snapshot
before 12

✘ Otherwise (A): it may have seen a subsequent update

Validation phase 2:

� Compare the transaction T against each entry (Told) in
the list

✔ Told before the base timestamp

✔ Told has no conflicting updates

✘ Otherwise abort T
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Isolation – recap

We’ve seen three schemes:

1. 2PL uses explicit locking to prevent concurrent
transactions performing conflicting operations. Strict 2PL
enforces strict isolation and avoids cascading aborts.
Both may allow deadlock

✔ Use when contention is likely and deadlock
avoidable. Use strict 2PL if transactions are short or
cascading aborts problematic

2. TSO assigns transactions to a serial order at the time they
start. Can be modified to enforce strict isolation. Does
not deadlock but serialisable executions may be rejected

✔ Simple and effective when conflicts are rare.
Decisions are made local to each object: suitable for
distributed systems

3. OCC allows transactions to proceed in parallel on
shadow objects, deferring checks until they try to commit

✔ Good when contention is rare. Validator may allow
more flexibility than TSO
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Example

Finally, we’ll look at an example implementing TSO in Java

� This is, of course, only looking at enforcing isolation
between transaction – there is no persistent storage

� The syntax is more cumbersome than the

transactionally {

...

}

notation that may be desired in that the programmer must
use a try ...catch block to deal with aborting
transactions and must pass an additional transaction
object to each method

� In overview, an instance of TSOTransaction is created
for each transaction performed. This is used to keep track
of the objects that transaction accesses (instantiated from
sub-classes of TSOTransactorObject ). It records the
old state of each object to allow transactions to abort
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Example – main program

import java.util.Random;

class Example {

static Account a = new Account (100);

static Account b = new Account (100);

static volatile int u, a1, a2;

public static void main (String args[]) {

Thread t1 = new Thread () {

public void run () {

Random r = new Random ();

while (true) {

Transaction tx = null;

try {

tx = new TSOTransaction ();

int n = r.nextInt ();

b.delta (tx, -n);

a.delta (tx, n);

tx.commit (); u++;

} catch (Failure f) {

tx.abort (); a1++;

}

}

}

};
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Example – main program (2)

Thread t2 = new Thread () {

public void run () {

while (true) {

Transaction tx = null;

int total;

try {

tx = new TSOTransaction ();

total = a.read (tx) + b.read (tx);

tx.commit ();

System.out.println (

"Total=" + total +

" (" + u + "," + a1 +

"," + a2 + ")");

} catch (Failure f) {

tx.abort (); a2++;

}

}

}

};

t1.start ();

t2.start ();

}

}
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Example – Account

class Account extends TSOTransactorObject

{

int value;

Account (int value) { this.value = value; }

Object getState () {

return new Integer (value);

}

void setState (Object o) {

value = ((Integer)o).intValue();

}

void delta (Transaction tx, int change)

throws Failure

{

enter (tx); value += change;

}

int read (Transaction tx) throws Failure

{

enter (tx); return value;

}

}

Concurrent Systems and Applications 2001 – 81 Tim Harris



Example – TSOTransactorObject

abstract class TSOTransactorObject {

TSOTransaction mostRecent;

synchronized void enter (Transaction t)

throws Failure

{

TSOTransaction tx = (TSOTransaction) t;

if (mostRecent != null &&

mostRecent != tx) {

if (tx.earlierThan (mostRecent)) {

throw new Failure ("Too late");

} else {

mostRecent.waitFor ();

}

}

mostRecent = tx;

tx.enter (this, getState ());

}

abstract Object getState ();

abstract void setState (Object o);

}

Concurrent Systems and Applications 2001 – 82 Tim Harris



Example – Transaction

abstract class Transaction {

public static int STATUS_ACTIVE = 0;

public static int STATUS_COMMITTED = 1;

public static int STATUS_ABORTED = 2;

int status = STATUS_ACTIVE;

abstract void abort ();

abstract void commit () throws Failure;

synchronized void waitFor () throws Failure {

try {

if (status == STATUS_ACTIVE) wait ();

} catch (InterruptedException ie) {

throw new Failure("Interrupted");

}

}

synchronized void setStatus (int status) {

this.status = status;

notifyAll ();

}

}
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Example – TSOTransaction

import java.util.Vector;

class TSOTransaction extends Transaction {

Vector os = new Vector ();

Vector states = new Vector ();

long id = getNextId ();

static long nextId;

static synchronized long getNextId () {

return nextId ++;

}

boolean earlierThan (TSOTransaction other) {

return (id < other.id);

}

void enter (TSOTransactorObject o,

Object old) {

os.addElement (o);

states.addElement (old);

}
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Example – TSOTransaction (2)

void abort () {

for (int i = os.size() - 1; i >= 0; i --)

{

TSOTransactorObject tso;

tso = (TSOTransactorObject)

os.elementAt (i);

tso.setState (states.elementAt (i));

}

setStatus (STATUS_ABORTED);

}

void commit () throws Failure {

if (status != STATUS_ACTIVE)

throw new Failure ("Cannot commit");

setStatus (STATUS_COMMITTED);

}

}

$ javac *.java && java Example

Total=200 (2,1,0)

Total=200 (1003,2,2)

Total=200 (1095,2,2)

Total=200 (1222,3,4)

...
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