Computer Vision

Computer Science Tripos (Pt II, II-Gen, Dipl), Lent Term
16 Lectures by J G Daugman
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Overview. Goals of computer vision; why they are so difficult.

. Image sensing, pixel arrays, CCD cameras. Image coding.

Biological visual mechanisms, from retina to primary cortex.

. Mathematical operations for extracting structure from images.

Edge detection operators; the Laplacian and its zero-crossings.

Scale-space; multi-resolution. Wavelets as visual primitives.

. Higher brain visual mechanisms; streaming; reciprocal feedback.
. Texture, colour, stereo, and motion descriptors. Disambiguation.
. Lambertian and specular surface properties. Reflectance maps.

. Infering 3D shape from shading: surface geometry. Codons.

. Perceptual psychology and cognition. Vision as model-building.

. Lessons from neurological trauma and deficits. Visual illusions.

. Bayesian inference in vision. Classifiers; probabilistic methods.

. Object-centred coords. Appearance-based vs model-based vision.
. Vision as a set of inverse problems. Regularisation.

. Case study: face detection and recognition; facial interpretation.
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Syllabus for Computer Vision

Aims

The aims of this course are to introduce the principles, models and applications of com-
puter vision, as well as some mechanisms used in biological visual systems that may inspire
design of artificial ones. The course will cover: image formation, structure, and coding; edge
and feature detection; neural operators for image analysis; texture, colour, stereo, motion;
wavelet methods for visual coding and analysis; interpretation of surfaces, solids, and shapes;
data fusion; probabilistic classifiers; visual inference and learning; and face recognition.

Lectures

e Goals of computer vision; why they are so difficult. How images are formed, and the
ill-posed problem of making 3D inferences from them about objects and their properties.

e Image sensing, pixel arrays, CCD cameras, framegrabbers. Elementary operations on
image arrays; coding and information measures.

e Biological visual mechanisms from retina to cortex. Photoreceptor sampling; receptive
field profiles; spike trains; channels and pathways. Neural image encoding operators.

e Mathematical operators for extracting image structure. Finite differences and directional
derivatives. Filters; convolution; correlation. 2D Fourier domain theorems.

e Fdge detection operators; the information revealed by edges. The Laplacian operator
and its zero-crossings. Logan’s Theorem.

e Scale-space, multi-resolution representations, causality. Wavelets as visual primitives.

e Higher level visual operations in brain cortical areas. Multiple parallel mappings; stream-
ing and divisions of labour; reciprocal feedback through the visual system.

e Texture, colour, stereo, and motion descriptors. Disambiguation and the achievement of
invariances.

e Lambertian and specular surfaces. Reflectance maps. Discounting the illuminant when
infering 3D structure and surface properties.

e Inferring 3D shape from shading: surface geometry. Boundary descriptors; Fundamental
Theorem of Curves; codons.

e Perceptual psychology and visual cognition. Vision as model-building and graphics in
the brain. Learning to see.

e Lessons from neurological trauma and visual deficits. Visual illusions and what they
may imply about how vision works.

e Bayesian inference in vision; knowledge-driven interpretations. Classifiers. Probabilistic
methods in vision.

e Object-centred coordinates. Solid parameterisation and superquadrics. Appearance-
based wversus volumetric model-based vision.

e Vision as a set of inverse problems; mathematical methods for solving them: energy
minimisation, relaxation, regularisation.

e Approaches to face detection, face recognition, and facial interpretation.



Objectives
At the end of the course students should:

e understand visual processing from both “bottom-up” (data oriented) and “top-down”
(goals oriented) perspectives

e be able to decompose visual tasks into sequences of image analysis operations, represen-
tations, specific algorithms, and inference principles

e understand the roles of image transformations and their invariances in pattern recogni-
tion and classification

e be able to analyse the robustness, brittleness, generalisability, and performance of dif-
ferent approaches in computer vision

e be able to describe key aspects of how biological visual systems encode, analyse, and
represent visual information

e be able to think of ways in which biological visual strategies might be implemented in
machine vision, despite the enormous differences in hardware

e understand in depth at least one important application domain, such as face recognition,
detection, or interpretation

Recommended book

* Shapiro, L. & Stockman, G. (2001). Computer Vision. Prentice Hall.




1 Overview. Goals of computer vision; why they are so difficult.

Computer vision seeks to generate intelligent and useful descriptions of visual
scenes and sequences, and of the objects that populate them, by performing
operations on the signals received from video cameras.
Some examples of computer vision applications and goals:

e automatic face recognition, and interpretation of expression

e visual guidance of autonomous vehicles

e automated medical image analysis, interpretation, and diagnosis

e robotic manufacturing: manipulation, grading, and assembly of parts

e OCR: recognition of printed or handwritten characters and words

e agricultural robots: visual grading and harvesting of produce

e smart offices: tracking of persons and objects; understanding gestures

e biometric-based visual identification of persons

e visually endowed robotic helpers

e security monitoring and alerting; detection of anomaly

e intelligent interpretive prostheses for the blind

e tracking of moving objects; collision avoidance; stereoscopic depth

e object-based (model-based) compression of video streams

e general scene understanding

In many respects, computer vision is an “Al-complete” problem: building
general-purpose vision machines would entail, or require, solutions to most
of the general goals of artificial intelligence. It would require finding ways of
building flexible and robust visual representations of the world, maintaining
and updating them, and interfacing them with attention, goals and plans.

Like other problems in Al, the challenge of vision can be described in terms of
building a stgnal-to-symbol converter. The external world presents itself only
as physical signals on sensory surfaces (such as videocamera, retina, micro-
phone...), which explicitly express very little of the information required for
intelligent understanding of the environment. These signals must be converted
ultimately into symbolic representations whose manipulation allows the ma-
chine or organism to interact intelligently with the world.



Although vision seems like such an effortless and immediate faculty for humans
and other animals, it has proven exceedingly difficult to automate. Some of
the reasons for this include the following:

1. An image is a two-dimensional optical projection, but the world we wish
to make sense of visually is three-dimensional. In this respect, vision is
“inverse optics:” we need to invert the 3D — 2D projection in order to
recover world properties (object properties in space); but the 2D — 3D
inversion of such a projection is, strictly, mathematically impossible.

In another respect, vision is “inverse graphics:” graphics begins with a 3D
world description (in terms of object and illuminant properties, viewpoint,
etc.), and “merely” computes the resulting 2D image, with its occluded
surfaces, shading and shadows, gradients, perspective, etc. Vision has to
perform exactly the inverse of this process!

A classical and central problem in computer vision is face recognition.
Humans perform this task effortlessly, rapidly, reliably, and unconsciously.
(We don’t even know quite how we do it; like so many tasks for which our
neural resources are so formidable, we have little “cognitive penetrance”
or understanding of how we actually perform face recognition.) Consider
these three facial images (from Pawan Sinha, MIT, 2002):

Which two pictures show the same person?

Most current computer algorithms select 1 and 2 as the same person,
since those images are more similar than 1 and 3.



2. Very few visual tasks can be successfully performed in a purely data-driven
way (“bottom-up” image analysis). Consider the next image example:
the foxes are well camouflaged by their textured backgrounds; the foxes

occlude each other; they appear in several different poses and perspective
angles; etc. How can there possibly exist mathematical operators for such

an image that can:
e perform the figure-ground segmentation of the scene (into its objects
and background)
e infer the 3D arrangements of objects from their mutual occlusions
e infer surface properties (texture, colour) from the 2D image statistics
e infer volumetric object properties from their 2D image projections

e and do all of this in “real time?” (This matters quite a lot in the
natural world “red in tooth and claw,” since survival depends on it.)



Consider now the actual image data of a face, shown as a pixel array
with luminance plotted as a function of (X,Y) pixel coordinates. Can you
see the face in this image, or even segment the face from its background,
let alone recognize the face? In this form, the image reveals both the
complexity of the problem and the poverty of the data.

This “counsel of despair” can be given a more formal statement:
Most of the problems we need to solve in vision are ill-posed, in Hadamard’s
sense that a well-posed problem must have the following set of properties:

e its solution exists;

e its solution is unique;

e its solution depends continuously on the data.

Clearly, few of the tasks we need to solve in vision are well-posed problems in
Hadamard’s sense. Consider for example the problems of:

e infering depth properties from an image
e infering surface properties from image properties
e infering colours in an illuminant-invariant manner

e infering structure from motion, shading, texture, shadows, ...
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e infering a 3D shape unambiguously from a 2D line drawing:

e interpreting the mutual occlusions of objects, and stereo disparity

e recognizing a 3D object regardless of its rotations about its three axes in
space (e.g. a chair seen from many different angles)

e understanding an object that has never been seen before:

e ctc. ...

...but enough counsel of despair. Let us begin with understanding what an
image array is.



2 Image sensing, pixel arrays, CCD cameras, image coding.

A CCD video camera contains a dense array of independent sensors, which
convert incident photons focused by the lens onto each point into a charge
proportional to the light energy there. The local charge is “coupled” (hence
CCD) capacitively to allow a voltage (V=Q/C) to be read out in a sequence
scanning the array. The number of pixels (picture elements) is typically about
442,000 within a grid that is 1/3” x 1/3” in size, so each pixel sensor is a mere
13 microns across (0.013 mm).

Spatial resolution of the image is thus determined both by the density of el-
ements in the CCD array, and by the properties of the lens which is forming
the image. Luminance resolution (the number of distinguishable grey levels)
is determined by the number of bits per pixel resolved by the digitizer, and by
the inherent signal-to-noise ratio of the CCD array.

Colour information arises (conceptually if not literally) from three separate
CCD arrays preceded by different colour filters, or mutually embedded as sub-
populations within a single CCD array. It is encoded into the camera output
either as a high-frequency “chrominance burst” (to be separately demodulated
and decoded); or else signaled on a separate channel (“luma” and “chroma”
portions of an S signal); or else provided as three separate RGB colour chan-
nels (red, green, blue).

A framegrabber contains a high-speed analogue-to-digital converter (ADC)
which discretizes this video signal into a byte stream. Standard pixel array

formats are:

e NTSC (North American standard): 640 x 480 pixels, at 30 frames/second
(actually there is an interlace of alternate lines scanned out at 60 “fields”
per second)

e PAL (European, UK standard): 768 x 576 pixels, at 25 frames/second
(actually alternate lines are scanned out at 50 “fields” per second)

Note what a vast quantity of data a video sequence contains! 768 x 576
pixels/frame x 25 frames/second = 11 million pixels per second. Each pixel
may be resolved to 8 bits in each of the three colour planes, hence 24 x 11
million = 264 million bits per second! How can we possibly cope with this
data flux, let alone understand the objects and events creating such an image
stream? ...



2.1 Image formats and sampling theory

Images are represented as rectangular arrays of numbers representing image
intensities at particular locations. Each element of such an array is called a
pixel, for picture element. A colour image may be represented in three separate
such arrays called “colour planes,” containing red, green, and blue components
as monochromatic images. An image with an oblique edge might look like:
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There are many different image formats used for storing and transmitting
images in compressed form, since raw images are large data structures that
contain much redundancy (e.g. correlations between nearby pixels) and thus
are highly compressible. Different formats are specialized for compressibility,
manipulability, or the properties of printers and browsers. Some examples:

e . jpeg - ideal for variable compression of continuous colour images, with a
“quality factor” (typically 75) that can be specified. Useful range of DCT
compression goes from 100:1 (“lossy”) to about 10:1 (almost lossless).

e .mpeg - a stream-oriented, compressive encoding scheme used mainly for
video (but also multimedia). Individual image frames are .jpeg com-
pressed, but an equal amount of redundancy is removed temporally by
inter-frame predictive coding and interpolation.

e .gif - ideal for sparse binarized images. Only 8-bit colour. Very compres-
sive and favoured for web-browsers and other bandwidth-limited media.

e .tiff - a complex, full-colour format (up to 24 bits per pixel with 3 colour
planes). Favoured for scanners, quality printing and publishing.

e .bmp - a non-compressive bit-mapped format in which individual pixel
values can easily be extracted.

In addition there are varieties of colour coordinates used for “colour separa-
tion,” such as HSI (Hue, Saturation, Intensity), or RGB (Red, Green, Blue),
CMY, etc. But regardless of the sensor properties and coding format used,
ultimately the image data must be represented numerically pixel by pixel.
Typically this involves the conversion (e.g. by a tool such as xv) of the various
compressed formats into .bmp, with header files for format and dimensions.



The total number of independent pixels in an image array determines the spa-
tial resolution of the image. Independent of this is the grey-scale (or colour)
resolution of the image, which is determined by the number of bits of infor-
mation specified for each pixel. These separate dimensions are illustrated in
the following family of images, showing the effects of differing quantization
accuracies for spatial and luminance information.

It is typical for a monochromatic (“black & white”) image to have resolu-
tion of 8 bits/pixel. This creates 256 different possible intensity values for
each pixel, from black (0) to white (255), with all shades of grey in between.
A full-colour image may be quantized to this depth in each of the three colour
planes, requiring a total of 24 bits per pixel. However, it is common to rep-
resent colour more coarsely or even to combine luminance and chrominance
information in such a way that their total information is only 8 or 12 bits/pixel.

Because quantized image information is thus fundamentally discrete, the op-
erations from calculus which we might want to perform on an image, like
differentiation (to find edges) or integration (to perform convolutions or trans-
forms), must be done in their discrete forms. The discrete form of a derivative
is a finite difference. The discrete form of an integral is a (suitably normal-
ized) summation. However, for the sake of conceptual familiarity, it is still
commonplace in computer vision to represent such operations using their usual
notations from continuous mathematics, with the understanding that the oper-
ation itself (as with everything else in Computer Science!) is of course discrete.

The discreteness of image arrays imposes an upper limit on the amount of
information they can contain. One way to describe this is by the total bit
count, but this does not relate to the optical properties of image information.
A better way is through Nyquist’s Theorem, which tells us that the highest
spatial frequency component of information contained within the image is equal
to one-half the sampling density of the pixel array. (Intuitively, this is because
at least two samples are required to signify a single cycle of a sinewave: its
peak and its trough.) Thus, a pixel array containing 640 columns can rep-
resent spatial frequency components of image structure no higher than 320
cycles/image. For the same reason, if image frames are sampled in time at
the rate of 30 per second, then the highest temporal frequency component of
information contained in the image sequence is 15 Hertz.
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3 Biological visual mechanisms, from retina to primary cortex.

A strategy that has long inspired researchers in Computer Vision, whether
they work on low-level problems (such as sensor design, image coding, and
feature extraction), or high-level problems (such as pattern recognition, infer-
ence, and visual learning), is:

Neurobiological Visual Principles = Machine Vision

The structure of biological nervous tissue and the nature of events that occur in it are utterly
different from those found in computing hardware. Yet since the only general-purpose visual
systems that exist today are the biological ones, let us learn what we can from “wetware.”

Neurons are sluggish but richly interconnected devices having both analogue and discrete
aspects. Fundamentally they consist of an enclosing membrane that can separate electrical
charge (hence there is generally a voltage difference between inside and out). The membrane
is a lipid bilayer that has a capacitance of about 10,000 yFarads/cm?, and it also has pores
that are differentially selective to different ions (mainly Na®, K™, and C17). These ion species
enter or leave a neuron through protein pores studding its lipid membrane, acting as conduc-
tances (hence as resistors). The resistors for Na™ and K* have the further crucial property
that their resistance is not constant, but voltage-dependent. Hence as more positive ions
(Na't) flow into the neuron, the voltage becomes more positive on the inside, and this further
reduces the membrane’s resistance to Na™, allowing still more to enter. This catastrophic
breakdown in resistance to Na™ constitutes a nerve impulse. Within about a msec a slower
but opposite effect involving K* takes over, eventually restoring the original voltage. Follow-
ing a short refractory period of about 2 msec during which ions are actively pumped back
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in opposite directions to reach their original electro-osmotic equilibrium concentrations, the
neuron is ready for action again. Meanwhile, the impulse thus generated propagates down the
axon, at a speed of about 100 m/sec. This signalling pulse can be described as discrete, but
the antecedent summations of current flows into the neuron (from various influences by other
neurons) which caused the catastrophic impulse are fundamentally analogue events.

Overall, the human brain contains about 100 billion neurons (10''). On average each neuron
may have connections with about 1,000 to 10,000 others, and so the total number of synapses
(= junctions between neurons) in the brain is a staggering 10'°. Yet balanced against this
massive connectivity, is the surprising sluggishness of neurons: as indicated above, the time
course of nerve impulse generation prevents “clocking” of nerve pulses any faster than about
300 Hz. Neural activity is fundamentally asynchronous: there is no master clock on whose
edges the events occur. A further contrast with computing systems is that it is rarely possible
to distinguish between processing and communications, as we do in computing. In the brain,
there are just impulses implementing both, by exchange of signals amongst neurons. It is not
so much a hierarchical architecture as a parallel one, with reciprocal connections amongst dif-
ferent areas. About 2/37% of the brain receives visual input; we are quite fundamentally visual
creatures. There are some 30 known different visual areas, of which the primary visual cortex
in the occipital lobe at the back of the brain has been the most extensively studied.
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The mammalian eye is formed from a collapsed ventrical of the brain. The retina is about
1 mm thick and contains about 120 million light-sensitive photoreceptors, of which only 6 mil-
lion are cones (in 3 wavelength-selective classes nominally red, blue, and green) and the vast
remainder are rods which do not discriminate in wavelength. The visible spectrum of light
consists of wavelengths in the range of 400nm - 700nm. Rods are specialised for much lower
light intensities than cones; they subserve our “night vision” (hence the absence of perceived
colour at night), and they pool together their responses (hence their much poorer spatial res-
olution). Cones exist primarily near the fovea, in about the central 20° (see diagram), where
their responses remain individual and thus they detect with high spatial resolution. But cone
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light sensitivity is much less than rods, functioning only at higher light levels, and so we really
have a dual system with two barely overlapping dynamic ranges. The total dynamic range of
human vision (range of light intensities that can be processed) is a staggering 10 to 1. At
the low end, we can reliably “see” individual photons (i.e. reliably have a visual sensation
when at most a few photons reach the retina in a burst).

Rods and cones are distributed across the retina in jointly embedded hexagonal lattices but
with varying relative densities, depending on eccentricity (distance from the fovea, measured
in degrees). The hexagonal lattices are imperfect (incoherent rather than crystalline), which
is believed to help prevent aliasing of high resolution information.
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The retina is a multi-layered structure, containing 3 nuclear layers (of neurons) plus 2 plexi-
form layers (for interconnections amongst the neurons). Paradoxically, the photoreceptors are
at the back, so light must first travel through all of the rest of the retina before being absorbed
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by the pigments in the rods and cones. There are basically two directions of signal flows in
the retina: longitudinal (photoreceptors — bipolar cells — ganglion cells); and lateral (via
horizontal cells in the outer plexiform layer, and amacrine cells in the inner plexiform layer).

Horizontal
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In only a very crude sense can one describe the retina as an “image capture” device like a
camera, having analogue input phototransducers that convert photons into voltage changes,
and discrete output devices that send pulses down the optic nerve. This simple view is quickly
discarded by recognising that there are 120 million “input channels” (the photoreceptors, sim-
ilar in a sense to pixels), but only 1 million “output channels” (the axons of the ganglion cells
which constitute the optic nerve). Clearly the retina is already doing a lot of processing of the
image, and it sends its coded results to the brain: not merely a raw converted image array.
The retina ¢s a part of the brain.

The nature of retinal signal processing might be summarised as:
e image sampling by photoreceptor transducers, with pooling of signals from rods

e spatial centre-surround comparisons implemented by bipolar cells (direct central input
from photoreceptors, minus surround inhibition via horizontal cells)

e temporal differentiation by amacrine cells, subserving motion sensitivity

e separate coding of “sustained” versus “transient” image information by different classes
of ganglion cells (large receptive fields < transient; small fields < sustained)

e initial colour separation by “opponent processing” channels (yellow vs blue; red vs green)
coupled sometimes with spatial opponency (on-centre, off-surround)

e generation of nerve impulse spikes in a parallel temporal modulation code on the 1 million
fibres of the optic nerve from each eye (= 2nd Cranial Nerve)

There is both convergence (fan-in) and divergence (fan-out) of signals through the retina:
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3.1 Receptive field structure in the retina

The spatial structuring of exhitatory and inhibitory influences amongst neurons in the retina
gives them their properties as image operators. Similarly for the temporal structure of their
interactions. In both space and time, retinal neurons can thus be described as filters; and
to the extent that they act as linear devices (having the properties of proportionality and
superposition of responses to components of stimuli), their behaviour can be fully understood
(and even predicted for arbitrary images) through Fourier analysis and the other tools of linear
systems analysis. An important aspect of retinal receptive fields — as distinct from those found
in most neurons of the visual cortex — is that their spatial structure is isotropic, or circularly
symmetric, rather than oriented.

e Photoreceptors respond to light by hyperpolarising (the voltage across the cell membrane
becomes more negative inside, for vertebrates; the opposite is true for invertebrates).
Their “receptive field” is just their own cross-section for absorbing light, a small disk
about 3 p in diameter on the human retina, about a minute of visual arc.

e Horizontal cells pool together the responses from large numbers of photoreceptors within
a local area. With these “surround” signals, they inhibit bipolar cells (hence the name).

e Bipolar cells are the first to have a “centre-surround” receptive field structure: their
response to light in a central disk is opposite from their response to light in the local
surrounding area. Field boundaries are circular and roughly concentric (i.e. annular).

e Amacrine cells are “on-off” in temporal, as opposed to spatial, terms.

e Ganglion cells combine these spatial and temporal response properties and thus serve
as integro-differential image operators with specific scales and time constants. Moreover
they convert their responses to impulses in a spike frequency code, traveling down their
axons which are the fibres of the optic nerve to the thalamus and thence on to the
primary visual cortex in the brain.

3.2 Visual cortical architecture and receptive field structure

The optic nerve from each eye splits into two halves at the optic chiasm, each portion con-
tinuing on to only one of the two cerebral hemispheres of the brain. The optic nerve portion
containing signals from the nasal half of each retina crosses over to project only to the con-
tralateral (opposite) brain hemisphere; whereas the optic nerve portion bearing signals from
the temporal half of each eye projects only to the ipsilateral (same side) brain hemisphere.
Since the optical image on each retina is inverted, this means that the left-half of the visual
world (relative to the point of gaze fixation) is directly “seen” only by the right brain; and
the right-half of the visual world only by the left brain. It is almost interesting to ask why we
don’t see some kind of seam going down the middle... (Ultimately the two brain hemispheres
share all of their information via a massive connecting bundle of 500 million commissural
fibres called the corpus callosum.)

The optic nerve projections to each visual cortex pass first to a 6-layered structure called
the lateral geniculate nucleus (LGN), in a polysensory organ of the midbrain called the tha-
lamus. It is an intriguing fact that this so-called “relay station” actually receives 3 times
more descending (efferent) fibres projecting back down from the cortex, as it does ascending
(afferent) fibres from the eyes. Could it be that this confluence compares cortical feedback
representing hypotheses about the visual scene, with the incoming retinal data in a kind of
predictive coding or hypothesis testing operation? Several scientists have proposed that “vi-
sion is graphics” (i.e. what we see is really our own internally generated 3D graphics, modelled
to fit the 2D retinal data, with the model testing and updating occuring here in the thalamus).
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Schematic of the contral visaal pathway in tie human. (from Popper and Eocles, 19773

The right-eye and left-eye innervations from each LGN to the primary visual cortex in the
occipital lobe of that hemisphere are inter-woven into “slabs,” or columns, in which neurons
receive input primarily from just one of the eyes. These ocular dominance columns have a
cycle of about 1 mm and resemble fingerprints, as seen in the following figures. Clearly each
hemisphere is trying to integrate together the signals from the two eyes in a way suitable for
stereoscopic vision, by computing the relative retinal disparities of corresponding points in
the two images. The disparities reflect the relative positions of the points in depth, as we will

study later with stereoscopic visual algorithms.
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Orthogonal to the ocular dominance columns in the cortical architecture, there runs a finer
scale sequence of orientation columns. Neurons in each such column respond only to image
structures that have a certain preferred orientation (such as bars or edges). The columns form
a regular sequence of systematically changing preferred orientations. This is one of the most
crystalline properties seen in visual cortical architecture:
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When individual neurons in the visual cortex are probed with microelectrodes during light
stimulation of the retina, their functional properties are revealed by demarcating the region
of visual space over which they respond (as indicated by a change in their firing rate). Areas
where they are excited by light are indicated by + marks; areas where light inhibits them
are indicated by — marks. Their plotted receptive fields then seem to reveal 5 main spatial

“degrees of freedom:”

. Position of their receptive field in visual space, both horizontally...

—_

2. ...and vertically;

3. Size of their receptive field;

4. Orientation of the boundaries between excitatory and inhibitory regions;
5

. Phase, or symmetry of the receptive field (bipartite or tripartite types).
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The phase variable is particularly revealing. By recording from adjacent pairs of neurons
simultaneously, with a kind of “double-barrelled” micro-electrode, it was found that neurons
having the same receptive field location, the same field size and the same orientation prefer-
ence, actually had a quadrature phase relationship. Adjacent neurons would form pairs whose
modulated receptive field structure showed a 90° spatial phase offset. Several examples of
such quadrature pairs of cortical visual neurons are shown in the following spike histograms
recorded in response to a drifting sinusoidal luminance grating.

Finally, by plotting the actual amount by which a neuron is excited or inhibited by light,
as a function of the coordinates of the stimulus within its receptive field, we obtain a 2D
function called its receptive field profile. These turn out, for about 97% of the neurons, to
be very closely described as 2D Gabor wavelets (or phasors). Some examples of empirically
measured profiles are shown in the top row of the lower figure; the ideal theoretical form of
such a wavelet (which we will define later) is shown in the middle row; and the difference
between these two functions in the bottom row; the differences are nearly nil and statistically
insignificant. So, it appears that the visual cortex of the brain evolved a knowledge of the
valuable properties of such wavelets for purposes of image coding and analysis!
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4 Mathematical operations for extracting structure from images.

Nearly all image processing and feature encoding operations are based to some
extent on the theory of Fourier Analysis.

Even if the operations never actually require computing a Fourier transform,
their underlying principles and concepts (such as scale; edge or motion energy;
filtering; directional derivative; textural signature; statistical structure; etc.)
must be understood at least partially in “spectral” (i.e. Fourier) terms.

In addition to this explanatory role, Fourier analysis can be used directly
to construct useful visual representations that are invariant under translation
(change in position), rotation, and dilation (change in size). This is therefore
the representation underlying many pattern classification and recognition ap-
plications, such as optical character recognition (OCR).

Finally, even many operations in pattern recognition that might not seem
related in any way to Fourier analysis, such as computing correlations, convo-
lutions, derivatives, differential equations, and diffusions, are much more easily
implemented in the Fourier domain. (Powerful algorithms like the FFT make
it easy to go back and forth rapidly between the image and Fourier domains).

For all of these reasons, we will review some principles and techniques of
Fourier analysis with a view to understanding some of the basic operations
in computer vision. Applications include edge detection operators, analysis of
motion, texture descriptors, and wavelet-based feature detectors.

Consider an image as a black & white luminance distribution over the (z,y)
plane: a real-valued (indeed, a positive-valued) two-dimensional function f(z,y).

Any image can be represented by a linear combination of basis functions:
f.y) =2 arVi(z,y) (1)
k

where many possible choices are available for the expansion basis functions
Uy (x,y). In the case of Fourier expansions in two dimensions, the basis func-
tions are the bivariate complex exponentials:

Uy (z,y) = exp(i(urx + 14y)) (2)

where the complex constant ¢ = v/—1. A complex exponential contains both
a real part and an imaginary part, both of which are simple (real-valued)
harmonic functions:

exp(i6) = cos(0) + isin(0) (3)
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which you can easily confirm by the power-series that define the transcendental
functions such as exp, cos, and sin:

o 0> 6 0"
exp(f) = 1+ orFg+ot o+, (4)
0> 0 0°
coslf) =1 g et ©)
: 6 6 6
sin(f) = 9_§+5_ﬁ+“" (6)

(It has been said that the most remarkable and far-reaching relationship in
all of mathematics is the simple yet counterintuitive “Euler Relation” implied
by Eqt (3) above: e + 1 = 0, which also contains the five most important
mathematical constants, and symbolizes the subject of harmonic analysis.)

Fourier Analysis computes the coefficients a; that yield an expansion of the
image f(z,y) in terms of complex exponentials:

flz,y) = % ar, exp(i(purr + iy)) (7)

where the parameters u; and v define the coordinates of the 2D Fourier do-
main. These (ux,vy) coordinates are called vector spatial frequencies, and the
array of them must span the (i, v) Fourier plane in a uniform cartesian lattice.

It is often useful to think of the (u, ) Fourier plane as resolved into polar coor-
dinates, where w = /% + 12 is (scalar) spatial frequency and ¢ = tan=!(v/pu)
is (scalar) orientation.

Each Fourier coefficient a; is computed as the orthonormal projection of the
entire image f(x,y) onto the conjugate Fourier component exp(—i(urz + vry))
associated with that coefficient:

ar = [ | exp(=i(ux + 15y)) f (x, y)dady (8)

Note that these computed Fourier coefficients a; are complex-valued. To get

a complete representation in the 2D Fourier domain for an image with n x n
pixels, the number of (ug,vy) vector frequency components whose associated
coefficients a; must be computed is also n x n.

4.1 Useful Theorems of 2D Fourier Analysis

Many important steps in computer vision such as feature extraction and in-
variant pattern recognition depend at least partly on a small set of Fourier
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theorems. We will review some main ones here, together with their direct con-
sequences for practical computer vision applications. In every case, the input
image is denoted f(x,y), and its 2D Fourier transform (given by the set of
computed coefficients a; spanning the Fourier plane) is denoted by F'(ju, ).

|Shift Theorem | Shifting the original pattern in (z,) by some 2D displace-
ment («, 3) merely multiplies its 2DFT by exp(—i(au + Sv)). Thus the
2DFT of the shifted pattern f(z —«,y— () is: F(u,v)exp(—i(ap+ (v)).

Practical Application: The power spectrum of any isolated pattern is thus
translation-invariant: it does not depend on where the pattern is located
within the image, and so you don’t have to find it first. The power spec-
trum is defined as the product of the pattern’s 2DFT, F(u,v), times its
complex conjugate, F*(u,v), which just requires that the sign () of the
imaginary part of F'(u, ) gets reversed. You can easily see that the power
spectrum of the shifted pattern f(z — «,y — (), namely:

exp(—i(ap + Bv))F(p, v) exp(i(ap + Bv)) F*(u, v)
is equal to the power spectrum of the original unshifted pattern, namely:
F(u,v)F*(u,v). Thus the power spectrum is translation-invariant.

Similarity Theorem . If the size of the original pattern f(z,y) changes
(shrinks/expands), say by a factor « in the z-direction, and by a factor
f in the y-direction, becoming f(«ax, By), then the 2DFT of the pattern,
F(u,v), also changes (expands/shrinks) by the reciprocal of those factors

and with similarly scaled amplitude. It becomes: |a—15\F (£, %)

Rotation Theorem | If the original pattern f (z,y) rotates through some
angle 6, becoming f(z cos(0)+ysin(@), —x sin(f)+y cos()), then its 2DFT
F(p,v) also just rotates through the same angle. It becomes: F'(ucos(0)+
vsin(0), —psin(f) + v cos(0)).

Practical Application: Size- and orientation-invariant pattern represen-
tations can be constructed by these relationships. Specifically, if the
Fourier domain (u,v) is now mapped into log-polar coordinates (r,6)
where 7 = log(v/u2+ v2) and § = tan~'(v/u), then any dilation (size
change) in the original pattern becomes simply a translation along the
r-coordinate; and any rotation of the original pattern becomes simply a
translation along the orthogonal #-coordinate in this log-polar Fourier do-
main. But we saw earlier that translations are made immaterial by taking
a power spectrum, and so these effects of dilation and rotation of the pat-
tern are eliminated in such a representation.
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Combined with the translation-invariant property of the power spectrum,
we now see how it becomes possible to represent patterns in a manner
that is independent of their position in the image, their orientation, and
their size (i.e. the Poincaré group of transformations) These principles are
routinely exploited in machine optical character recognition; in military
recognition of aircraft profiles; and in “optical computing” generally.

|Convolution Theorem|: Let function f(z,y) have 2DFT F(u,v), and let
function g(z,y) have 2DFT G(u,v). The convolution of f(z,y) with
g(x,y), which is denoted f % g, combines these two functions to gener-
ate a third function h(x,y), whose value at location (x,y) is equal to
the integral of the product of functions f and g after one is flipped and
undergoes a relative shift by amount (z,y):

W) = [ [ (e, B)a(x — a,y — B)dads (9)

Thus, convolution is a way of combining two functions, in a sense using
each one to blur the other, making all possible relative shifts between the
two functions when computing the integral of their product to obtain the
output as a 2D function of these amounts of shift.

Convolution is extremely important in vision because it is the basis for
filtering. It is also the essential neural operation in the brain’s visual
cortex, where each neurone’s receptive field profile is convolved with the
retinal image. In the above integral definition, if the minus (-) signs
were simply replaced with (+) signs, the new expression would be the
correlation integral.

The Convolution Theorem states that convolving two functions f(x,y)
and g(z,y) together in the image domain, simply multiplies their two
2DFT’s together in the 2D Fourier domain:

H(p,v) = F(p,v)G(p,v) (10)
where H(u,v) is the 2DFT of the desired result h(x,y).

This is extremely useful as it is much easier just to multiply two func-
tions F'(u,v) and G(u,v) together, to obtain H(u,v), than to have to
convolve f(x,y) and g(z,y) together (if the kernel is larger than tiny,
say larger than about 5 x 5) to obtain h(x,y). Of course, exploiting the
Convolution Theorem means going into the 2D Fourier Domain and com-
puting the 2DFT’s of f(x,y) and g(x,y), and then performing yet another
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(inverse) FFT in order to recover h(z,y) from the resulting H(u,v). But
with available powerful and fast 2D-FFT algorithms, this is very efficient.

Practical Application: Filtering. The starting-point of all feature extrac-
tion and image understanding operations is the filtering of an image f(x, y)
with some set of filters gx(z, y). Filtering is a linear operation implemented
by the convolution of an image f(x,y) with filter kernel(s) gi(z,y). The
resulting output “image” hy(z,y) then normally undergoes non-linear op-
erations of various kinds for image segmentation, motion detection, tex-
ture analysis, pattern recognition, and object classification.

The 2D discrete convolution of an image array with a 2D filter kernel
can be represented algebraically in the following form, where the earlier
continuous integrals have been replaced by discrete summations:

result(z,j) = > kernel(m,n)- image(i — m,j —n)

Simple C program for performing image convolutions

In the following simple example, the array image is being convolved with
the (typically much smaller) array kernel, in order to generate a new im-
age array result as the output of the convolution. (Problems with array
boundaries have been ignored here for simplicity.) Discrete convolution
such as illustrated here is the key operation for all image processing and
front-end stages of computer vision.

int i, j, m, n, sum, imageliend] [jend],
kernel [mend] [nend], result [iend] [jend];

for (i = mend; i < iend; i++) {
for (j = nend; j < jend; j++) {
sum = 0;
for (m = 0; m < mend; m++) {
for (n =0; n < nend; n++ ) {
sum += kernel[m] [n] * imagel[i-m] [j-n];

+

result[i] [j] = sum/(mend*nend);

by

If we chose to perform the convolution in the Fourier domain because the
kernel array is large, then of the four nested for loops in the C code

26



above, the inner two loops would be entirely eliminated. The innermost
executable line inside the ¢ and j for loops would simply be:

Result[i] [j] = Kernell[i] [j] * Imagelil [j];

but the program would have to be preceded by FFTs of kernel[i] [j]
(trivial) and of image[i] [j], and followed by an FFT of Result[i] [j].
Since the complexity of a 2D FFT is on the order of n?log,(n) where n?
is the number of pixels, plus n? multiplications in the innermost loop,
the total complexity of the Fourier approach is n*(2logy(n) + 1). In con-
trast, the number of multiplications in the explicit convolution above (not
including all the array-addressing) is iend*jend*mend*nend (note that
iend*jend= n?). Hence you can calculate that the trade-off point occurs
when the convolution kernel size mend*nend is about ~ 2(log,(n) + 1): a
very small convolution kernel indeed, roughly 5 x 5 for a 512 x 512 image.
For convolutions larger than this tiny one, the Fourier approach is faster.

|Differentiation Theorem|: Computing the derivatives of an image f(z,y)
is equivalent to multiplying its 2DFT, F'(u,v), by the corresponding fre-
quency coordinate raised to a power equal to the order of differentiation:

V(LY pa, ) 2B ey (iv) () (11)
(dx> (dy

A particularly useful implication of this theorem is that isotropic differen-
tiation, which treats all directions equally (for which the lowest possible
order of differentiation is 2nd-order, known as the Laplacian operator V?)
is equivalent simply to multiplying the 2DF'T of the image by a paraboloid:

d? d?

2 = | —— R
V f(x7y) - (dxz +dy2

) £ 2 G+ ARGy (2
Practical Application: Multi-Resolution Edge Detection.

5 Edge detection operators; the information revealed by edges.

Computer vision applications invariably begin with edge detection, be the edges
straight, curvilinear, or closed boundary contours. There are several reasons
why edges are important, and why detecting the edges in a scene can be
regarded as an elementary form of constructing a signal-to-symbol converter:

e Edges demarcate the boundaries of objects, or of material properties.

e Objects have parts, and these are typically joined with edges.
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e The three-dimensional distribution of objects in a scene usually generates
occlusions of some objects by other objects, and these form occlusion edges
which reveal the geometry of the scene.

e Edges can be generated in more abstract domains than luminance. For
example, if some image property such as colour, or a textural signature,
or stereoscopic depth, suddenly changes, it forms a highly informative
“edge” in that domain.

e Velocity fields, containing information about the trajectories of objects,
can be organized and understood by the movements of edges. (The mo-
tions of objects in space generates velocity discontinuities at their edges.)

e The central problem of stereoscopic 3D depth vision is the “correspon-
dence problem:” matching up corresponding regions of two images from
spatially displaced cameras. Aligning edges is a very effective way to
solve the correspondence problem. The same principle applies to measur-
ing velocities (for image frames displaced in time, rather than displaced in
space) by tracking edges to align corresponding regions and infer velocity
(ratio of object displacement to temporal interval).

In summary, DISCONTINUITIES = INFORMATION.

/J\

Original profile

Mask = [-1 1]

Mask = [1 -2 1]

An intuitive way to find edges is to compute the derivative of a (1D) signal, as
this will be large where the luminance is changing rapidly. Since image arrays
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are discrete, we must use the finite difference representation of a derivative,
and this is implemented by a convolution: If our (1D) luminance array is L[n]
(sequence of pixels, index n), then the first-order finite difference operator
(h[0],h[1])=(-1, 1) when convolved with L[n] would generate an output which
is large in amplitude only where L[n] has edges (see previous figure).

However, note an important disadvantage of this approach: “rightward edges”
(say, from dark to bright) generate the opposite sign from “leftward edges”
(say, from bright to dark). We would prefer to generate the same detection
signal regardless of the polarity of the edge.

A solution is to convolve the discrete luminance data L[n| instead with the
second finite difference operator, defined as (h[-1],h[0],h[1])=(1,-2, 1) and look
for the zero-crossings of this operator. These correspond to peaks or troughs
of the first finite difference operator that we considered above, and thus they
reveal the edges, regardless of their polarity. Similarly for (-1,2,-1).

In the two-dimensional case, we have the choice of using directional derivative
operators, or non-directional ones. An example of a directional operator is one
which integrates (sums) pixels in one direction, but differentiates (differences)
them in the perpendicular direction. Clearly, such an operator will detect
edges only in a specific orientation; - namely the orientation along which the
integration was done. A example of such a directional edge detector is the
following 3 x 3 array:

-112-1
-112-1
-112-1

In comparison, an isotropic operator such as the Laplacian (sum of second
derivatives in two perpendicular orientations) has no preferred direction; that
is the meaning of isotropy. It will detect edges in all orientations. The next
picture illustrates such an effect. A discrete approximation to the Laplacian
operator V2 in just a 3 x 3 array is:

-1]-2-1
-2 112 -2
-11-2 -1

Notice how each of these simple 3 x 3 operators sums to zero when all of their
elements are combined together. These types of operators (of which there
are obviously numerous other examples, differing in array sizes as well as el-
ement composition) are called filters, because of their spectral consequences
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for favouring some spatial frequency bands and orientations at the expense of
others. Their zero-sum property means that they are insensitive to the overall
brightness value of a scene, as we would desire: they have “no DC term.”
(Their Fourier transform is equal to zero at the origin.) They also may, or
may not, have a certain preferred, or characteristic direction; a certain phase
or symmetry (even or odd); and a certain scale, defined by the spacing between
changes of sign in the elements in (larger) arrays.
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Figure: Illustration of edge-detection by convolution with an isotropic Laplacian operator,

and marking the zero-crossings of the result of the convolution.

Edges in images are defined at different scales: some transitions in bright-
ness are gradual, others very crisp. More importantly, at different scales of
analysis, different edge structure emerges.

Example: an image of a leopard that has been low-pass filtered (or analyzed at
a coarse scale) has edge outlines corresponding to the overall form of its body.
At a somewhat finer scale of analysis, image structure may be dominated by
the contours of its “spots.” At a still finer scale, the relevant edge structure
arises from the texture of its fur.

In summary, non-redundant structure exists in images at different scales of

analysis (or if you prefer, in different frequency bands).

The basic recipe for extracting edge information from images is to use a multi-
scale family of image filters (convolution kernels). A wide variety of these are
in standard use, differing in terms such as:
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isotropic (circularly symmetric), or anisotropic (directional)

self-similar (dilates of each other), or not self-similar

separable (expressible as product of two 1D functions), or not

degree of conjoint uncertainty in the information resolved

size of support (number of “taps,” or pixels, in the kernel)

e preferred non-linear outputs (zero-crossings; phasor moduli; energy)

e theoretical foundations (e.g. Logan’s Theorem)

5.1 The Laplacian V2G,(z,y) * I(x,y) and its zero-crossings. Logan’s Theorem.

One highly influential idea due to Marr (1981), that is frequently exploited
for edge detection in machine vision systems, is to convolve the image with a
multi-scale family of isotropic (non-directional) blurred 2nd-derivative filters,
and to retain only their output zero-crossings. These correspond well to the
edges in the image, at each chosen scale.

One primary motivation for doing this comes from Logan’s Theorem (1977)
concerning the “richness” of Laplacian zero-crossings for band-limited signals.
What Logan proved (albeit only in the 1D case) is that subject to two con-
straints, the zero-crossings alone suffice to represent the signal completely (i.e.
it could be perfectly recovered from just its zeros, up to a scale factor).

This is a truly remarkable result. Consider the fact that a signal is continuous
and dense, but in any finite interval it will have only a finite (countable) num-
ber of zero-crossings (e.g., 7). How can those 7 points completely determine
what the signal does everywhere else within this finite interval??

The two constraints are:

1. The signal must be strictly bandlimited to one octave, or less. This means

that its highest frequency component must be no more than twice its
lowest frequency component.
(This constraint is much more powerful than it may appear.)

2. The signal must have no complex zeros in common with its Hilbert Trans-
form. This effectively excludes purely amplitude-modulated signals. For
example, a pure sinewave whose amplitude is merely modulated will have
exactly the same zero-crossings as the unmodulated sinusoid, so their zero-
crossings would not distinguish between them. Thus AM signals cannot
be represented by zero-crossings.
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The V2G,(x,y) filter kernel that is convolved with the image serves to bandpass-

filter it. In the 2D Fourier domain, as we have seen, the spectral consequence
d2
dy?
by a paraboloid: (u? + v?). Clearly this emphasizes the high frequencies at

of the Laplacian operator V? = (j—;g + ) is to multiply the image spectrum
the expense of the low frequencies, and eliminates the DC component entirely
(hence the output is centered around a mean of zero).

Blurring the Laplacian by a Gaussian G,(x,y) of scale o, simply limits the
high-frequency components. The 2DFT of a Gaussian is also a Gaussian, with
reciprocal dimension (by the Similarity Theorem discussed earlier). The scale
parameter o determines where the high-frequency cut-off occurs.

The resulting bandwidth of a V2G,(x,y) filter is about 1.3 octaves, regardless
of what value for scale parameter o is used. Note that this doesn’t quite satisfy
the first constraint of Logan’s Theorem.

Note also that by commutativity of linear operators, the order in which these
steps are applied to the image I(x,y) doesn’t matter. First computing the
Laplacian of the image, and then blurring the result with the Gaussian, is
equivalent to first convolving the image with the Gaussian and then comput-
ing the Laplacian of the result:

V2 [Gy(z,y) * I(x,y)] = Gz, y) * VA (2,y) (13)

Moreover, both of these sequences are equivalent to just convolving the image
with a single filter kernel, namely the Laplacian of a Gaussian: [V2Ga(:ﬁ, y)} *

I(x,y). Clearly this is the preferred implementation, since it just involves a
single convolution.

Some open theoretical issues in this approach are:

1. It is not clear how to generalize the constraint of one-octave bandlimiting
to the case of 2D signals (images). E.g. should their 2DFT be confined
to an annulus in the Fourier plane, whose outer radius is twice its inner
radius?; or to four squares in the four quadrants of the Fourier plane that
satisfy the one-octave constraint on each frequency axis? The first method
doesn’t work, and clearly the second filter is no longer isotropic!

2. Whereas the zeros of a 1D signal (soundwave) are denumerable [count-
able], those of a 2D signal (image) are not. Rather, they form “snakes”
that are continuous contours in the plane.

3. As a practical matter, the V2G, (z,y)*I(z,y) approach to edge extraction
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tends to be very noise-sensitive. Many spurious edge contours appear
that shouldn’t be there. This defect inspired the development of more
sophisticated non-linear edge detectors, such as Canny’s, which estimates
the local image signal-to-noise ratio (SNR) to adaptively optimize its local
bandwidth. This, however, is very computationally expensive.

4. Finally, strong claims were originally made that V2G,(z,y)*I(z,y) edge-
detecting filters describe how human vision works. In particular, the re-
ceptive field profiles of retinal ganglion cells were said to have this form.
However, counterexamples reveal several visual tasks that humans are able
to perform, effortlessly and pre-attentively, which we could not perform if
our visual systems functioned in this way.

6 Scale-space; multi-resolution. Wavelets as visual primitives.

Images contain information at multiple scales of analysis, so detecting visual
features (such as edges) must be done across a range of different scales.

e An interesting property of edges as defined by the zero-crossings of multi-
scale operators whose scale is determined by convolution with a Gaussian,
is that as the Gaussian is made coarser (larger), new edges (new zero-
crossings) can never appear. They can only merge and thus become fewer
in number. This property is called causality. It is also sometimes called
‘monotonicity,” or ‘the evolution property,” or ‘nice scaling behaviour.’

e One reason why causality is important is that it ensures that features
detected at a coarse scale of analysis were not spuriously created by the
blurring process (convolution with a low-pass filter) which is the normal
way to create a multi-scale image pyramid using a hierarchy of increasing
kernel sizes. One would like to know that image features detected at a
certain scale are “grounded” in image detail at the finest resolution.

e For purposes of edge detection at multiple scales, a plot showing the evolu-
tion of zero-crossings in the image after convolution with a linear operator,
as a function of the scale of the operator which sets the scale (i.e. the
width of the Gaussian), is called scale-space.

e Scale-space has a dimensionality that is one greater than the dimension-
ality of the signal. Thus a 1D waveform projects into a 2D scale-space.
An image projects into a 3D scale space, with its zero-crossings (edges)
forming surfaces that evolve as the scale of the Gaussian changes. The
scale of the Gaussian, usually denoted by o, creates the added dimension.

e A mapping of the edges in an image (its zero-crossings after such filtering
operations, evolving with operator scale) is called a scale-space fingerprint.
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Several theorems exist called “fingerprint theorems” showing that the
Gaussian blurring operator uniquely possesses the property of causality.
In this respect, it is a preferred edge detector when combined with a
bandpass or differentiating kernel such as the Laplacian.

e However, other non-linear operators have advantageous properties, such
as reduced noise-sensitivity and greater application for extracting features
that are more complicated (and more useful) than mere edges.

6.1 2D Gabor “Logons;” Quadrature Pair Wavelets

The family of filters which uniquely achieve the lowest possible conjoint uncer-
tainty (i.e. minimal dispersion, or variance) in both the space domain and the
Fourier domain are the complex exponentials multiplied by Gaussians. These
are sometimes known as Gabor wavelets, or “logons.” In one dimension:

f(@) = exp(—ipo(x — o)) exp(—(z — z0)*/a?)

This is a Gaussian localized at position xy, complex modulated at frequency
1o, and with size or spread constant «. It is noteworthy that such wavelets
have Fourier Transforms F'(u) with exactly the same functional form, but with
their parameters merely interchanged or inverted:
F(p) = exp(—izo(p — po)) exp(—(p — po)*a®)

Note that for the case of a wavelet f(x) centered on the origin so xy = 0, its
Fourier Transform F'(u) is simply a Gaussian centered on the modulation fre-
quency g = i, and whose width is 1/a;, the reciprocal of the wavelet’s space
constant. This shows that it acts as a bandpass filter, passing only those fre-
quencies that are within about :l:é of the wavelet’s modulation frequency .

Dennis Gabor (1946) named these wavelets “logons” from the Greek word
for information, or order: logos. Because of the optimality of such wavelets
under the Uncertainty Principle, Gabor proposed using them as an expansion
basis to represent signals. In particular, he wanted them to be used in broad-
cast telecommunications for encoding continuous-time information. He called
them the “elementary functions” for a signal. Unfortunately, because such
functions are mutually non-orthogonal, it is very difficult to obtain the actual
coefficients to be used with the elementary functions in order to expand a given
signal in this basis. (Gabor himself could not solve this problem, although he
went on to invent holography and to win the Nobel Prize in Physics in 1974.)

When a family of such Gabor functions are parameterized to be self-similar,
i.e. they are dilates and translates of each other so that they all have a common
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template (“mother” and “daughter”), then they constitute a (non-orthogonal)
wavelet basis. Today it is known that infinite classes of wavelets exist which
can be used as the expansion basis for signals. Because of the self-similarity
property, this amounts to representing or analyzing a signal at different scales.
This general field of investigation is called multi-resolution analysis, and we
have already encountered its importance for extracting edge features.

6.2 Generalization of Wavelet Logons to 2D for Image Analysis

20 Gabor Wavelet: Real Part 20 Fourier Transform
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An effective method for extracting, representing, and analyzing image struc-
ture is the computation of the 2D Gabor wavelet coefficients for the image.
This family of 2D filters were originally proposed as a framework for un-
derstanding the orientation-selective and spatial-frequency-selective receptive
field properties of neurones in the brain’s visual cortex, as well as being useful
operators for practical image analysis problems. These 2D filters are con-
jointly optimal in extracting the maximum possible information both about
the orientation and modulation of image structure (“what”), simultaneously
with information about 2D position (“where”). The 2D Gabor filter family
uniquely achieves the theoretical lower bound on joint uncertainty over these
four variables in the Uncertainty Principle when it is suitably generalized.

These properties are particularly useful for texture analysis because of the
2D spectral specificity of texture as well as its variation with 2D spatial po-
sition. These wavelets are also used for motion detection, stereoscopic vision,
and many sorts of visual pattern recognition such as face recognition. A large
and growing literature now exists on the efficient use of this non-orthogonal
expansion basis and its applications.
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Two-dimensional Gabor wavelets have the functional form:
f(x7 y) — e_[(w—wo)2/a2+(y_y0)2/ﬁ2]e—i[uo(x—xo)+v0(y—yo)]

where (¢, yo) specify position in the image, («, ) specify effective width and
length, and (ug,vy) specify modulation, which has spatial frequency wy =
Jud + v¢ and direction 6y = arctan(vy/ug). (A further degree-of-freedom not
included above is the relative orientation of the elliptic Gaussian envelope,
which creates cross-terms in xy.) The 2D Fourier transform F'(u,v) of a 2D
Gabor wavelet has exactly the same functional form, with parameters just
interchanged or inverted:

F(u, U) = @_[(U—UO)QC!Q-F(W—WO)QBQ]6—i[xo(u—uo)+yo(v—vo)]

The real part of one member of the 2D Gabor filter family, centered at the
origin (zg,yo) = (0,0) and with unity aspect ratio §/a = 1 is shown in the
Figure, together with its 2D Fourier transform F'(u,v).

By appropriately parameterizing them for dilation, rotation, and translation,
2D Gabor wavelets can form a complete self-similar (but non-orthogonal) ex-
pansion basis for images. If we take W(x,y) to be some chosen generic 2D
Gabor wavelet, then we can generate from this one member a complete self-
similar family of 2D wavelets through the generating function

\Ijmpqﬂ (xa y) - 272m\1}('x/7 y/)
where the substituted variables (x',y’) incorporate dilations in size by 2™,
translations in position (p, q), and rotations through orientation 6:

x' = 27" [xcos(f) + ysin(h)] — p

y = 27"~z sin(f) + ycos(F)] — q
It is noteworthy that as consequences of the similarity theorem, shift theorem,
and modulation theorem of 2D Fourier analysis, together with the rotation
isomorphism of the 2D Fourier transform, all of these effects of the generating
function applied to a 2D Gabor mother wavelet V(z,y) = f(x,y) have cor-
responding identical or reciprocal effects on its 2D Fourier transform F'(u,v).

These properties of self-similarity can be exploited when constructing efficient,
compact, multi-scale codes for image structure.

The completeness of 2D Gabor wavelets as an expansion basis for any im-
age can be illustrated by reconstruction of a facial image, in stages. Note how
efficiently the facial features, such as the eyes and mouth, are represented us-
ing only a handful of the wavelets. Later we will see how this can be exploited
both for automatic feature localization, and for face recognition.

36



Reconstructlonof Lena: 25, 100, 500, and 10,000 Two-Dimenslonal Gabor Wavelets

6.3 Unification of Domains

Until now we have viewed “the image domain” and “the Fourier domain” as
very different domains of visual representation. But now we can see that the
“Gabor domain” of representation actually embraces and unifies both of these
other two domains. How?

In the wavelet equations above, the scale constant o (and § in the 2D case)
actually builds a continuous bridge between the two domains. If the scale
constant is set very large, then the Gaussian term becomes just 1 and so the
expansion basis reduces to the familiar Fourier basis. If instead the scale con-
stant is made very small, then the Gaussian term shrinks to a discrete delta
function (1 only at the location x = z(, and 0 elsewhere), so the expansion
basis implements pure space-domain sampling: a pixel-by-pixel image domain
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representation. This allows us to build a continuous deformation between the
two domains when representing, analyzing, and recognizing image structure,
merely by changing a single scaling parameter in this remarkable, unifying,
expansion basis.

A “philosophical” comment about 2D Gabor wavelets.

Aristotle defined vision as “knowing what is where.” We have noted the opti-
mality (conjoint uncertainty minimization) property of 2D Gabor wavelets in
the two domains for extracting structural (“what”) and positional (“where”)
information. Thus if we share Aristotle’s goal for vision, then we cannot do
better than to base computer vision representations upon these wavelets. Per-
haps this is why mammalian visual systems appear to have evolved their use;
the receptive field profiles of isolated neurones in the brain’s visual cortex, as
determined by the spatial distribution of excitatory and inhibitory inputs to
each so-called “simple cell,” can be well-described as quadrature-paired 2D
Gabor wavelets. At the present time, this is basically the standard model for
how the brain’s visual cortex represents the information in the retinal image.
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6.4 Detection of Facial Features by Quadrature Gabor Wavelet Energy

One illustration of a practical application of such image operators is in the
automatic localization of facial features. Interestingly, most facial features
themselves can be described by only a handful of wavelets, since such features
are after all just localized undulations having certain positions, orientations,
spatial frequencies, and phases. By taking the modulus (sum of the squares
of the real and imaginary parts) of a facial image after convolving it with
complex-valued 2D Gabor wavelets, key facial features (eyes and mouth) are
readily detected; we may call this a Quadrature Demodulator Neural Neural.
This capability is illustrated in the next two Figures.
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Quadrature Demodulator Network
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Neural Network for Image Analysis. The above neurobiologically-inspired network performs
image demodulation using 2D Gabor wavelets, in order to find salient features in the image that
have a characteristic orientation and scale or frequency composition. The operation of the biphasic
receptive fields (representing even- and odd-symmetric visual cortical neurons) is described by:

o(r.y) = [ [ e 07N cosfio(e — a) I, 9) dar d

h(z,y) = /a /@ e~ (@ +w=07)/7 Gin (o (z — o)) I(a, B) der df

and the demodulated output at the top of the network resembles that of the brain’s “complex cells”
which combine inputs from the quadrature simple cells as:

A*(z,y) = g*(z,y) + h*(z,y)
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Illustration of Facial Feature Detection by Quadrature Filter Energy. Left panel: original image.
Right panel (clockwise from top left): the real part after 2D Gabor wavelet convolution; the imag-
inary part; the modulus energy; and this energy superimposed on the original (faint) image, illus-

trating successful feature localization.

These operations can be performed by the Quadrature Demodulator Network shown in the

previous Figure.
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7 Higher brain visual mechanisms; streaming; reciprocal feedback

Besides the primary visual cortex in the occipital lobe, there are at least 30
further visual areas distributed across the parietal and temporal cortices of the
brain. Many of these are specialised for particular kinds of visual processing,
including colour (V4), motion (MT), stereo (Area 18), and facial and other
form processing areas. There is a pronounced functional streaming, or division
of labour, for form, colour, and motion processing; some neuroscientists have
proposed a fundamental division into “two visual systems” along lines such as
magno and parvo (fast/slow) or even conscious and unconscious vision.
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The existence of so many distinct visual areas in the brain almost begs the
question of “how the visual world gets put back together again.” An intriguing
aspect of this architecture is the pattern of reciprocating feedback connections.
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In general there are pairwise reciprocating connections between visual areas
from the deep layers in one area to superficial layers in another area, whose
deep layers in turn project back to the superficial layers of the first. Just as
noted earlier with the massive feedback projections from primary visual cor-
tex back down to the LGN (where it meets afferent signals ascending from
the eyes), these reciprocating projection pathways are perhaps suggestive of a
kind of “hypothesis generation and testing” iterative strategy for understand-
ing the visual environment and the objects that populate it.

The fovea tends to be represented in all visual areas, and the mapping from
the retina is retinotopic (meaning that adjacent points in the retinal image
usually project to adjacent points in a given cortical map); but typically there
is a highly pronounced geometrical distortion. In part this reflects a great
over-representation of the fovea, which is called cortical magnification factor.

In the foveal projection to primary visual cortex, about 6mm of neural tissue
is devoted to 1 degree of visual angle, whereas in the periphery, Imm of neural
tissue handles about 6 degrees. It has been proposed that the geometrical
distortion in visual mapping actually serves a specific mathematical role, that
of achieving pattern representations that are invariant to rotation and dilation
because of log-polar projection. Crudely speaking, this converts a polar grid
(whose concentric circles have geometrically-increasing radii) into a cartesian
grid with a nearly uniform lattice. Thus changes in object distance (hence
image size) become just translations along one axis, while rotations become
just translations along the other axis, thereby facilitating pattern recognition.
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8 Texture, colour, stereo, and motion descriptors. Disambiguation.

Many seemingly disparate tasks in computer vision actually share a common
formal structure: to convert ill-posed, insoluble problems of inference from
raw data, into well-posed problems in which we can compute object properties
disambiguated from the image-formation processes which confound the raw
luminance data itself.

One obvious aspect of this issue is the fact that images are 2D projections
of 3D data which could, in principle, arise equally well from many different
constellations of worlds and objects. A more subtle aspect is the fact that the
information received as an image is the compound product of several factors
that are difficult to disambiguate: (1) the nature, geometry, and wavelength
composition of the illuminant(s); (2) properties of the objects imaged, such as:
spectral reflectances; surface shape; surface albedo; surface texture; geometry,
motion, and rotation angle; and (3) properties of the camera (or viewer), such
as (i) geometry and viewing angle; (ii) spectral sensitivity; (iii) prior knowl-
edge, assumptions, and expectations. The aim of this lecture is to study how
these many factors can be disambiguated and even exploited, in order to try
to make objective inferences about object and world properties from these
ambiguous and confounded image properties.

8.1 Texture information.

Most surfaces are covered with texture of one sort or another. Texture can
serve not only as a helpful identifying feature, but more importantly as a cue
to surface shape because of the foreshortening it undergoes as it follows the
shape of the object if one can assume that it has some uniform statistics along
the surface itself. The following patterns illustrate the inference of surface
slant and of 3D surface shape from texture cues when they are combined with
the assumption of texture uniformity on the surface itself:
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Texture is also a useful cue to image segmentation by parsing the image into
local regions which are relatively homogeneous in their textural properties.
Here are some illustrations:
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How can one measure something as ill-defined as a “textural signature?” What
is texture, anyway?

As implied by the root of the word, which links it to textiles, texture is defined
by the existence of certain statistical correlations across the image. These can
be almost anything, from quasi-periodic undulations as one might see in water
ripples or in woven fabrics, to repetitive but highly punctate features. Many
natural scenes, such as woodlands, grasslands, mountain ranges and other ter-
rains, have such properties which give them a distinctive identifying visual
signature. The unifying notion in all of these examples is quasi-periodicity, or
repetitiveness, of some features.

The detection of quasi-periodicity is best done by Fourier methods. There
are deep and multi-faceted links between many topics in statistics (such as
time-series analysis, correlation, moments) and Fourier analysis. These links
arise from the fact that the eigenfunctions of the Fourier transform, complex
exponentials (sinusoids in quadrature), are of course periodic but also have a
specific scale (frequency) and direction (wavefront). Thus they excel in de-
tecting the existence of a correlation distance and direction, and in estimating
the relative “power” represented in various components of quasi-periodic cor-
related structures.

Unfortunately, these eigenfunctions are globally defined, but we wish to use
local regional information as a basis for texture-based image segmentation.
Hence the ideal solution is to “window” the sinusoids so that they analyze the
image characteristics only within a local region and thus extract the spectral
statistics as a function that varies with location. The optimal set of windowing
functions are bivariate Gaussians, since their joint spatial /spectral localization
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is greater than that of any other function. The product of complex exponen-
tials times bivariate Gaussians are called 2D Gabor wavelets, and these form a
complete basis for image analysis and representation. The pictures below illus-
trate successful segmentation of collages of textured natural scenes, as well as
of textured artificial objects, using such 2D wavelets for local spectral analysis
to infer and measure their textural discriminators.

8.2 Colour information.

Colour is a nearly ubiquitous property of surfaces. Just like texture, it can
serve both in object identification and in scene segmentation. But the fun-
damental difficulty in using the wavelength composition of images to infer
the colour properties (“spectral reflectances”) of objects, is the fact that the

wavelengths received depend as much upon the #lluminant as upon the spec-
tral reflectances of the surface that is scattering back the light. When a yellow
banana is illuminated in bluish light, the image that it forms obviously has a
very different wavelength composition than when it is illuminated in reddish
light. The central mystery of human colour perception is the fact that the ba-
nana still appears yellow (“colour constancy”). In computer vision, how can
we possibly achieve this same vital capability of inferring an inherent underly-

ing object property from a confounded (i.e., illuminant-wavelength dependent)
set of tmage properties?

To give the problem a slightly more formal presentation:
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e Let I()) represent the wavelength composition of the illuminant (i.e. the
amount of energy it contains as a function of wavelength A, across the
visible spectrum from about 400 nanometers to 700 nm).

e Let O()\) represent the inherent spectral reflectance of the object at a
particular point: the fraction of incident light that is scattered back from
its surface there, as a function of the incident light’s wavelength .

e Let R(\) represent the actual wavelength mixture received by the camera
at the corresponding point in the image of the scene.

Clearly, R(A) = I(A)O(A). The problem is that we wish to infer the “object
colour” (its spectral reflectance as a function of wavelength, O()\)), but we
only know R()), the actual wavelength mixture received by our sensor. So

unless we can measure I(\) directly, how could this problem of inferring O(\)
from R(A) possibly be solved?
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One simple idea that has been proposed is to try actually to measure I(\)
directly, by searching for highly specular (shiny, metallic, glassy) regions in an
image where the reflected light might be a fairly faithful copy of I(\). This
might be a glint from someone’s glasses or from a shiny doorknob. Then at
all other points in the image we need only to divide the R(\) we receive there
by our other specular “measurement” of I(\), and we can then compute the
desired O(\) across the image.

Clearly, this method has several weakness: (1) there may be no specular sur-
faces in the image; (2) those that there are may themselves affect somewhat
the wavelength composition that they reflect (e.g. metals which have a brassy
colour); and (3) the method is neither robust nor stable, since global inferences
about scene interpretation depend critically upon uncertain measurements at
(what may be just) a single tiny point in the image.

A more stable and interesting approach was developed by Dr E Land, founder
of Polaroid, and is called the Retinex because he regarded it as modelled after
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biological visual systems (RETINa + cortEX). Land’s critical observation was
that (contrary to almost universal popular belief), the colour perceived in an
area of a scene is not determined by the wavelength composition of light re-
ceived from that area (!). A simple experiment proves this: illuminate a scene,
such as a bowl of fruit containing (say) a yellow banana, a red tomato and
a green pepper, with three different narrowband light sources, each of which
contains a different wavelength (say red, green, or blue) and with adjustable
intensities. (No other light sources are present.)

The first observation is that even under drastic changes in the intensities
of each of the three illuminators, the objects maintain exactly their normal
colours. Obviously the wavelength mixture reaching the eye from each object
is drastically changing, in proportion to the illuminators, but there are no
changes in perceived colours. The phenomenon does not depend upon know-
ing the natural colours for objects identifiable by (say) their shape; a collage
of patches of coloured paper cut into random shapes, forming a mondrian,
produces exactly the same effect.

The second observation is that even when the wavelength composition of light
reflected from each object is exactly the same (i.e. the three light sources are
adjusted separately for each object to ensure that the light reflected in the
three wavebands as measured by a spectral photometer is exactly the same for
each of the objects individually), they still retain their natural colours. The
banana still looks yellow, the tomato still looks red, and the pepper still looks
green, even when each one is sending identical wavelength “messages” to your
eyes. This is rather miraculous.

The Retinex algorithm attempts to account for this remarkable biological phe-
nomenon, and to provide a means to achieve similar colour constancy in com-
puter vision systems so that they may “discount the illuminant” and infer the
spectral reflectance properties of objects, independent of the composition of
their illumination. Only a cursory description of Retinex will be given here.

The key idea is that the colours of objects or areas in a scene are determined
by their surrounding spatial context. A complex sequence of ratios computed
across all the boundaries of objects (or areas) enables the illuminant to be
algebraically discounted in the sense shown in the previous Figure, so that
object spectral reflectances O(A) which is what we perceive as their colour,
can be infered from the available retinal measurements R(\) without explic-
itly knowing ().
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8.3 Stereo information

Important information about depth can be obtained from the use of two (or
more) cameras, in the same way that humans achieve stereoscopic depth vision
by virtue of having two eyes. Objects in front or behind of the point in space at
which the two optical axes intersect (as determined by the angle between them,
which is controlled by camera movements or eye movements), will project into
different relative parts of the two images. This is called stereoscopic disparity.

This “error signal” becomes greater in proportion to the distance of the object
in front or behind the point of fixation, and so it can be calibrated to obtain
a depth cue. It also becomes greater with increased spacing between the two
eyes or cameras, since that is the “base of triangulation.” (That is why the
German Army in WWI introduced V-shaped binocular “trench periscopes” to
increase stereoscopic visual acuity, for breaking camouflage by increasing the
effective spacing between the viewer’s two eyes to almost a meter.)

The essence of making use of such stereoscopic disparity cues is the need to
solve the Correspondence Problem. In order to infer that the cylinder is in a

different position relative to the background objects in the two frames shown,
it is first necessary to detect the correspondence of the background objects
in the two frames, or at least of their edges. This puts the two frames “into
registration,” so that the disparity of the foreground object can be detected.

Unfortunately, current algorithms for solving the Correspondence Problem
tend to require very large searches for matching features under a large number
of possible permutations. It is difficult to know which set of features in the two
frames to select for comparison in evaluating the degree of alignment, when
trying to find that relative registration which generates maximum correlation
between the two background scenes.
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One helpful approach here is to use a “multi-scale image pyramid,” which
steers the search in a coarse-to-fine fashion to maximize its efficiency. In
initially sparsely sampled (coarsely blurred and under-sampled) images, the
permutation-matching space of possible corresponding points is greatly atten-
uated compared with full-resolution images.

After an adequate alignment match is found for low-resolution (blurred) copies
of the image pair, the process repeats on somewhat higher resolution (less
blurred) copies of the image pair but over a search space that has been greatly
curtailed by having first found the coarse-scale solution. Such “pyramid” pro-
cesses usually increment in one-octave steps (factors of two in improved res-
olution), from coarse to fine, spanning a total of perhaps four or five levels
before the final solution is determined to within single-pixel precision.

\ f {focal {engih)
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Once the Correspondence Problem has thereby been solved, the inference of
depth from object disparity in the two image frames is then just a matter of tri-
angulation and “look-up” from a calibration table which includes information
about the spacing between the two cameras (or eyes) and their focal lengths.
(See the above simplifying diagram, for the case that the two cameras’ opti-
cal axes are parallel and hence converged at infinity.) Specifically, if the two
cameras have focal length f and the optical centres of their lenses (remember
the trench periscopes!) are separated by a distance b, and the disparity in the
projections of some object point onto the two images (in opposite directions
relative to their optical axis) is « in one image and 3 in the other image, then
the distance d to the object in front of the two lenses is simply:

d=fb/(+ )
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8.4

Motion information

Only a few vision applications actually involve just static image frames. That
is basically vision “off-line;”— but the essence of an effective visual capability
must be for real-time use in a dynamic environment. This requires the abil-
ity to detect and measure motion, and to be able thereby to draw inferences

quickly (such as time-to-collision).

In a formal sense, the problem of computing motion information from an
image sequence is very similar to that of computing stereo information.

e For stereo vision, we need to solve the Correspondence Problem for two

images simultaneous in time but acquired with a spatial displacement.

e For motion vision, we need to solve the Correspondence Problem for two

images coincident in space but acquired with a temporal displacement.

e The object’s spatial “disparity” that can be measured in the two image

frames once their backgrounds have been aligned, can be calibrated to
reveal motion information when compared with the time interval, or depth
information when compared with the binocular spatial interval.

Among the challenging requirements of motion detection and inference are:

1.
2.

Need to infer 3D object trajectories from 2D image motion information.

Need to make local measurements of velocity, which may differ in different
image regions in complex scenes with many moving objects. Thus, a
velocity vector field needs to be assigned over an image.

Need to disambiguate object motion from contour motion, so that we can
measure the velocity of an object regardless of its form.

Need to measure velocities regardless of the size of the viewing aperture
in space and in time (the spatial and temporal integration windows).

It may be necessary to assign more than one velocity vector to any given
local image region (as occurs in “motion transparency” )

. We may need to detect a coherent overall motion pattern across many

small objects or regions separated from each other in space.

The major classes of models and approaches to motion detection are largely
inspired by detailed neurobiological studies of motion processing both in the

invertebrate eye and in mammalian retina and cortex. Diverse mathematical
frameworks have been proposed, but the main classes of models are:
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INTENSITY GRADIENT MODELS .
Assume that the local time-derivative in image intensities at a point,
across many image frames, is related to the local spatial gradient in image
intensities because of object velocity v:
ol (z,y,t)
ot
Then the ratio of the local image time-derivative to the spatial gradient is
an estimate of the local image velocity (in the direction of the gradient).

=7 VI(z,y,t)

DYNAMIC ZERO-CROSSING MODELS .
Measure image velocity by first finding the edges and contours of objects
(using the zero-crossings of a blurred Laplacian operator!), and then take
the time-derivative of the Laplacian-Gaussian-convolved image:
0
ot
in the vicinity of a Laplacian zero-crossing. The amplitude of the result
is an estimate of speed, and the sign of this quantity determines the di-
rection of motion relative to the normal to the contour.

VPG (x,y) * I(x,y,1)]
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SPATIO-TEMPORAL CORRELATION MODELS .
Image motion is detected by observing a correlation of the local image
signal I(x,y,t) across an interval of space and and after an interval of
time 7. Finding the pair of these intervals which maximizes the correla-
tion between I(z,y,t) and I(x — v,7,y — v,7,t — 7) determines the two
components of image velocity v, and v, that we desire to know.

Retina

Laming

Medulle \ k

Eodruka

H3 Cai

Detailed studies of fly neural mechanisms (above) for motion detection
and visual tracking led to elaborated correlation-based motion models:
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SPATIO-TEMPORAL SPECTRAL MODELS .
It is possible to detect and measure image motion purely by Fourier
means. This approach exploits the fact that motion creates a covariance
in the spatial and temporal spectra of the time-varying image I(z,y,1),
whose three-dimensional (spatio-temporal) Fourier transform is defined:

Flomwyw) = [ [ [ I(zy, e ramddgdyd
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In other words, rigid image motion has a 3-D spectral consequence: the lo-
cal 3-D spatio-temporal spectrum, rather than filling up 3-space (w,, wy, wy),
collapses onto a 2-D inclined plane which includes the origin. Motion de-
tection then occurs just by filtering the image sequence in space and in
time, and observing that tuned spatio-temporal filters whose center fre-

quencies are co-planar in this 3-space are activated together. This is a
consequence of the SPECTRAL CO-PLANARITY THEOREM:

Theorem: Translational image motion of velocity v has a 3-D spatio-
temporal Fourier spectrum that is non-zero only on an inclined plane through
the origin of frequency-space. Spherical coordinates of the unit normal to this
spectral plane correspond to the speed and direction of motion.

Let I(z,y,t) be a continuous image in space and time.

Let F(w,,wy,w;) be its 3-D spatio-temporal Fourier transform:

F(ws, wy,wt) :/ / / I(z,y, t)e” @amteovytet) qodydt.
xJyJr
Let v = (v,,v,) be the local image velocity.

Uniform motion v implies that for all time shifts ¢,,
](x7 y’ t) == I(.I - vajt07 y - Uyto,t — tO)

Taking the 3-D spatio-temporal Fourier transform of both sides, and
applying the shift theorem, gives

i(wyUgty + wyvyt, + wtto)F(

Fwy,wy,w) =€ Wy, Wy, Wt)-

The above equation can only be true if F(w,,w,,w;) = 0 everywhere
the exponential term doesn’t equal 1.

This means F(w,,w,,w;) is non-zero only on the 3-D spectral
plane

’wxvx + wyvy + wy = 0‘ Q.E.D.

The spherical coordinates (6, ¢, 1)

¢ =tan! (wt/\/w% + wg)

0 =tan™" (w,/w,)

of the inclined spectral plane’s unit normal are determined by v and
correspond to the speed (¢) and direction (f) of motion:

6=t

0 = tan"" (v,/v,)

(Notes TO BE CONTINUED)

53



