Logic and Proof

Computer Science Tripos Part IB Michaelmas Term

Lawrence C Paulson Computer Laboratory University of Cambridge

lcp@cl.cam.ac.uk

Copyright © 2000 by Lawrence C. Paulson

Contents

1	Introduction	1
2	Propositional Logic	6
3	Gentzen's Logical Calculi	11
4	Ordered Binary Decision Diagrams	16
5	First-Order Logic	21
6	Formal Reasoning in First-Order Logic	26
7	Davis-Putnam & Propositional Resolution	31
8	Skolem Functions and Herbrand's Theorem	36
9	Unification	41
10	Resolution and Prolog	46
11	Modal Logics	51
12	Tableaux-Based Methods	56

Introduction to Logic

Logic concerns statements in some language

Slide 101

Ι

The language can be informal (e.g. English) or *formal*Some statements are *true*, others *false* or perhaps *meaningless*, ...
Logic concerns relationships between statements: consistency, entailment, ...
Logical *proofs* model human reasoning

Schematic Statements

The meta-variables X, Y, Z, ... range over 'real' objects

Black is the colour of X's hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?

Interpretations and Validity

An interpretation maps meta-variables to real objects

The interpretation $Y \mapsto \text{coal } \text{satisfies}$ the statement

Black is the colour of Y.

but the interpretation $Y\mapsto \text{strawberries}$ does not!

A statement A is *valid* if all interpretations satisfy A.

Entailment, or Logical Consequence

A set S of statements *entails* A if every interpretation that satisfies all elements of S, also satisfies A. We write $S \models A$.

Slide 106

{X part of Y, Y part of Z} \models X part of Z

 $\{n \neq 1, n \neq 2, \ldots\} \models n$ is NOT a positive integer

 $S\models A \text{ if and only if } \{\neg A\}\cup S \text{ is inconsistent}$

 $\models A$ if and only if A is valid

Ι

Ι

Interpretations of Propositional Logic

An *interpretation* is a function from the propositional letters to $\{t, f\}$.

Interpretation I satisfies a formula A if the formula evaluates to t. Write $\models_I A$

A is valid (a tautology) if every interpretation satisfies A

Write $\models A$

S is *satisfiable* if some interpretation satisfies every formula in S

Implication, Entailment, Equivalence

 $A \to B \text{ means simply } \neg A \lor B$

 $A \models B$ means if $\models_I A$ then $\models_I B$ for every interpretation I

$$A \models B \text{ if and only if } \models A \to B$$

Equivalence

 $A\simeq B \text{ means } A\models B \text{ and } B\models A$

 $A\simeq B \text{ if and only if } \models A \leftrightarrow B$

Slide 203

Π

Π

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

$$A \lor (B \land C) \simeq (A \lor B) \land (A \lor C)$$
$$(B \land C) \lor A \simeq (B \lor A) \land (C \lor A)$$

Slide 207

4. Simplify:

- Delete any disjunction containing P and $\neg P$
- Delete any disjunction that includes another
- Replace $(P \lor A) \land (\neg P \lor A)$ by A

Some Facts about Deducibility

A is *deducible from* the set S of if there is a finite proof of A starting from elements of S. Write $S \vdash A$.

Soundness Theorem. If $S \vdash A$ then $S \models A$.

Completeness Theorem. If $S \models A$ then $S \vdash A$.

Deduction Theorem. If $S \cup \{A\} \vdash B$ then $S \vdash A \rightarrow B$.

Gentzen's Natural Deduction Systems

A varying context of assumptions

Each logical connective defined independently

Slide 304 Introduction rule for \wedge : how to deduce $A \wedge B$

$$\frac{A \quad B}{A \wedge B}$$

Elimination rules for $\wedge:$ what to deduce from $A \wedge B$

$$\frac{A \wedge B}{A} \qquad \frac{A \wedge B}{B}$$

if $A_1 \wedge \ldots \wedge A_m$ then $B_1 \vee \ldots \vee B_n$

 A_1, \ldots, A_m are *assumptions*; B_1, \ldots, B_n are *goals* Γ and Δ are *sets* in $\Gamma \Rightarrow \Delta$ $A, \Gamma \Rightarrow A, \Delta$ is trivially true (*basic sequent*)

$$A, \Gamma \Rightarrow \Delta$$
 $B, \Gamma \Rightarrow \Delta$ $(\lor \iota)$ $\Gamma \Rightarrow \Delta, A, B$ $(\lor r)$ $A \lor B, \Gamma \Rightarrow \Delta$ $(\lor \iota)$ $\Gamma \Rightarrow \Delta, A \lor B$ $(\lor r)$ $\Gamma \Rightarrow \Delta, A$ $B, \Gamma \Rightarrow \Delta$ $(\rightarrow \iota)$ $A, \Gamma \Rightarrow \Delta, B$ $(\rightarrow r)$

Canonical form: essentially decision trees with sharing

- ordered propositional symbols ('variables')
- sharing of identical subtrees
- hashing and other optimisations

Detects if a formula is tautologous $\left(t\right)$ or inconsistent $\left(f\right)$

A FAST way of verifying digital circuits, ...

Canonical Form Algorithm

To do $Z \wedge Z'$, where Z and Z' are already canonical:

Trivial if either is t or f. Treat \lor , \rightarrow , \leftrightarrow similarly!

Let $Z = \mathbf{if}(P, X, Y)$ and $Z' = \mathbf{if}(P', X', Y')$

- If P = P' then recursively do $\mathbf{if}(P, X \wedge X', Y \wedge Y')$
- If P < P' then recursively do $\mathbf{if}(P,\,X \wedge Z',\,Y \wedge Z')$
- If $P > P^{\,\prime}$ then recursively do $if(P^{\,\prime},\,Z \wedge X^{\,\prime},\,Z \wedge Y^{\,\prime})$

Final Observations

The variable ordering is crucial. Consider

$$(\mathsf{P}_1 \land \mathsf{Q}_1) \lor \cdots \lor (\mathsf{P}_n \land \mathsf{Q}_n)$$

Slide 409

A good ordering is $P_1 < Q_1 < \cdots < P_n < Q_n$ A dreadful ordering is $P_1 < \cdots < P_n < Q_1 < \cdots < Q_n$ Many digital circuits have small OBDDs (not multiplication!) OBDDs can solve problems in hundreds of variables General case remains intractable!

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation

Equality is the 2-place relation symbol =

An atomic formula has the form

 $R(t_1,\ldots,t_n)$

where R is an $n\mbox{-place}$ relation symbol and $t_1,\,\ldots,\,t_n$ are terms

A *formula* is built up from atomic formulæ using \neg , \land , \lor , ...

(Later we add quantifiers)

Very expressive, given strong induction rules

Prove equivalence of mathematical functions:

Slide 504

$$\begin{array}{ll} p(z,0)=1 & q(z,1)=z \\ p(z,n+1)=p(z,n)\times z & q(z,2\times n)=q(z\times z,n) \\ & q(z,2\times n+1)=q(z\times z,n)\times z \end{array}$$

- $\forall x A$ for all x, A holds
- $\exists x A$ there exists x such that A holds

Syntactic variations:

 $\forall xyzA$ abbreviates $\forall x \forall y \forall zA$

 $\forall z \, . \, A \wedge B$ is an alternative to $\forall z \, (A \wedge B)$

The variable x is *bound* in $\forall x A$; compare with $\int f(x) dx$

For interpretation ${\mathcal I}$ and valuation V

All occurrences of x in $\forall x A$ and $\exists x A$ are bound

An occurrence of x is *free* if it is not bound:

 $\forall x \exists y R(x, y, f(x, z))$

May rename bound variables:

 $\forall w \exists y' R(w, y', f(w, z))$

Substitution for Free Variables

A[t/x] means 'substitute t for x in A':

Slide 602

 $\begin{array}{l} (B \wedge C)[t/x] \text{ is } B[t/x] \wedge C[t/x] \\ (\forall x B)[t/x] \text{ is } \forall x B \\ (\forall y B)[t/x] \text{ is } \forall y B[t/x] \quad (x \neq y) \\ (P(u))[t/x] \text{ is } P(u[t/x]) \end{array}$

No variable in t may be bound in A!

 $(\forall y \ x = y)[y/x]$ is not $\forall y \ y = y!$

Some Equivalences for Quantifiers

 $\neg(\forall x A) \simeq \exists x \neg A$ $(\forall x A) \land B \simeq \forall x (A \land B)$ $(\forall x A) \lor B \simeq \forall x (A \land B)$ $(\forall x A) \land (\forall x B) \simeq \forall x (A \lor B)$ $(\forall x A) \land (\forall x B) \simeq \forall x (A \land B)$ $(\forall x A) \rightarrow B \simeq \exists x (A \rightarrow B)$ $\forall x A \simeq \forall x A \land A[t/x]$ Dual versions: exchange \forall, \exists and \land, \lor

The Davis-Putnam Decision Procedure

1. Delete tautological clauses: $\{P, \neg P, \dots\}$

2. For each unit clause $\{L\}$,

Slide 703

Slide 704

- delete all clauses containing L
- delete ¬L from all clauses
- 3. Delete all clauses containing pure literals
- 4. Perform a case split on some literal

$$\label{eq:consider} \begin{split} & \textbf{Davis-Putnam on a Non-Tautology} \\ & \text{Consider P} \lor Q \to Q \lor R \\ & \text{Clauses are } \{P,Q\} \ \{\neg Q\} \ \{\neg R\} \\ & \quad \{P,Q\} \ \{\neg Q\} \ \{\neg R\} \ \text{initial clauses} \\ & \quad \{P,Q\} \ \{\neg Q\} \ \{\neg R\} \ \text{unit } \neg Q \\ & \quad \{\neg R\} \ \text{unit } \neg Q \\ & \quad (\neg R\} \ \text{unit } P \ (\text{also pure}) \\ & \quad \text{unit } \neg R \ (\text{also pure}) \end{split}$$

Simple Example: Proving $\mathsf{P} \land Q \to Q \land \mathsf{P}$

Hint: use $\neg(A \rightarrow B) \simeq A \land \neg B$

Refinements of Resolution

Preprocessing:removing tautologies, symmetries . . .Set of Support:working from the goalWeighting:priority to the smallest clausesSubsumption:deleting redundant clausesHyper-resolution:avoiding intermediate clausesIndexing:data structures for speed

Reducing FOL to Propositional Logic

Prenex:Move quantifiers to the frontSkolemize:Remove quantifiers, preserving consistencyHerbrand models:Reduce the class of interpretationsHerbrand's Thm:Contradictions have finite, ground proofsUnification:Automatically find the right instantiationsFinally, combine unification with resolution

Prenex Normal Form

Convert to Negation Normal Form using additionally

$$\neg(\forall x A) \simeq \exists x \neg A$$

 $\neg(\exists x A) \simeq \forall x \neg A$

Slide 802

Slide 801

Then move quantifiers to the front using

$$(\forall \mathbf{x} \mathbf{A}) \land \mathbf{B} \simeq \forall \mathbf{x} (\mathbf{A} \land \mathbf{B})$$

 $(\forall \mathbf{x} \mathbf{A}) \lor \mathbf{B} \simeq \forall \mathbf{x} (\mathbf{A} \lor \mathbf{B})$

and the similar rules for \exists

Skolemization

Take a formula of the form

 $\forall x_1 \forall x_2 \cdots \forall x_k \exists y A$

Slide 803

Choose a new $k\mbox{-place}$ function symbol, say f

Delete $\exists y$ and replace y by $f(x_1, x_2, \dots, x_k)$. We get

$$\forall x_1 \,\forall x_2 \,\cdots \,\forall x_k \, A[f(x_1, x_2, \ldots, x_k)/y]$$

Repeat until no \exists quantifiers remain

Correctness of Skolemization

The formula $\forall x \exists y A$ is consistent

Slide 805

- \iff some function $\hat{f} \text{ in } D \rightarrow D$ yields suitable values of y
- $\iff A[f(x)/y] \text{ holds in some } \mathcal{I}' \text{ extending } \mathcal{I} \text{ so that } f \text{ denotes } \hat{f}$
- $\iff \text{ the formula } \forall x \, A[f(x)/y] \text{ is consistent.}$

Composing Substitutions

Composition of ϕ and θ , written $\phi \circ \theta$, satisfies for all terms t

 $\mathsf{t}(\phi \circ \theta) = (\mathsf{t}\phi)\theta$

Slide 903 It is defined by (for all relevant x)

$$\phi \circ \theta \stackrel{\mathrm{def}}{=} [(x\phi)\theta / x, \ldots]$$

Consequences include $\theta \circ [] = \theta$, and *associativity*:

$$(\varphi\circ\theta)\circ\sigma=\varphi\circ(\theta\circ\sigma)$$

Most General Unifiers θ is a *unifier* of terms t and u if $t\theta = u\theta$ θ is more general than φ if $\varphi=\theta\circ\sigma$ θ is *most general* if it is more general than every other unifier If θ unifies t and u then so does $\theta \circ \sigma$: $t(\theta \circ \sigma) = t\theta\sigma = u\theta\sigma = u(\theta \circ \sigma)$

A most general unifier of f(a,x) and f(y,g(z)) is [a/y,g(z)/x]

The common instance is f(a, g(z))

Slide 904

IX

Theorem-Proving Examples

 $(\exists y \,\forall x \, R(x, y)) \rightarrow (\forall x \,\exists y \, R(x, y))$

Clauses after negation are $\{R(x, a)\}$ and $\{\neg R(b, y)\}$

R(x, a) and R(b, y) have unifier [b/x, a/y]: contradiction!

Slide 908

 $(\forall x \exists y R(x, y)) \rightarrow (\exists y \forall x R(x, y))$

Clauses after negation are $\{R(x, f(x))\}$ and $\{\neg R(g(y), y)\}$

R(x,f(x)) and R(g(y),y) are not unifiable: occurs check

Formula is not a theorem!

Variations on Unification

Efficient unification algorithms: near-linear time

Slide 909

Indexing & Discrimination networks: fast retrieval of a unifiable term

Order-sorted unification: type-checking in Haskell

Associative/commutative operators: problems in group theory

Higher-order unification: support λ -calculus

Boolean unification: reasoning about sets

A Non-Trivial Example

Truth and Validity in Modal Logic

For a particular frame (W, R), and interpretation I

 $w \Vdash A$ means A is true in world w

 $\models_{W,R} A$ means $w \Vdash A$ for all w and all I

 \models A means $\models_{W,R}$ A for all frames; A is *universally valid*

 \ldots but typically we constrain R to be, say, $\ensuremath{\textit{transitive}}$

All tautologies are universally valid

Simplified Calculus: Left-Only
$$\neg A, \Lambda, \Gamma \Rightarrow$$
 $(basic)$ $\frac{\neg A, \Gamma \Rightarrow}{\Gamma \Rightarrow}$ $A, \Gamma \Rightarrow$ $\neg A, \Lambda, \Gamma \Rightarrow$ $(basic)$ $\frac{\neg A, \Gamma \Rightarrow}{\Gamma \Rightarrow}$ (cut) $\frac{A, B, \Gamma \Rightarrow}{A \land B, \Gamma \Rightarrow}$ $(\land 1)$ $\frac{A, \Gamma \Rightarrow}{A \lor B, \Gamma \Rightarrow}$ $(\lor 1)$ $\frac{A[t/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}$ $(\lor 1)$ $\frac{A, \Gamma \Rightarrow}{\exists x A, \Gamma \Rightarrow}$ $(\exists 1)$ Rule (\exists 1) holds provided x is not free in the conclusion!

Adding Unification

Rule $(\forall \iota)$ now inserts a **new** free variable:

$$\frac{A[z/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow} \quad (\forall \iota)$$

Slide 1205

Let unification instantiate any free variable

In $\neg A, B, \Gamma \Rightarrow$ try unifying A with B to make basic sequent

Updating a variable affects *entire proof tree*

What about rule ($\exists \iota$)? *Skolemize*!

The World's Smallest Theorem Prover?