Logic and Proof

Computer Science Tripos Part IB Michaelmas Term

Lawrence C Paulson

Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

Contents

1 Introduction 1
2 Propositional Logic 6
3 Gentzen's Logical Calculi 11
4 Ordered Binary Decision Diagrams 16
5 First-Order Logic 21
6 Formal Reasoning in First-Order Logic 26
7 Davis-Putnam \& Propositional Resolution 31
8 Skolem Functions and Herbrand's Theorem 36
9 Unification 41
10 Resolution and Prolog 46
11 Modal Logics 51
12 Tableaux-Based Methods 56

Introduction to Logic

Slide 101
Logic concerns statements in some language
The language can be informal (e.g. English) or formal
Some statements are true, others false or perhaps meaningless, . . .
Logic concerns relationships between statements: consistency, entailment, . . .

Logical proofs model human reasoning

Statements

Black is the colour of my true love's hair.
They are not greetings, questions, commands, . . . :
What is the colour of my true love's hair?
I wish my true love had hair.
Get a haircut!

Schematic Statements

The meta-variables $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots$ range over 'real' objects
Black is the colour of X 's hair.
Black is the colour of Y .
Z is the colour of Y .
Schematic statements can express general statements, or questions:
What things are black?

Interpretations and Validity

Slide $104 \quad$ The interpretation $Y \mapsto$ coal satisfies the statement
Black is the colour of Y .
but the interpretation $\mathrm{Y} \mapsto$ strawberries does not!
A statement A is valid if all interpretations satisfy A.

Consistency, or Satisfiability

Slide 105

Examples of inconsistent sets:

$$
\{X \text { part of } Y, Y \text { part of } Z, X \text { NOT part of } Z\}
$$

$\{n$ is a positive integer, $n \neq 1, n \neq 2, \ldots\}$
satisfiable/unsatisfiable = consistent/inconsistent

Entailment, or Logical Consequence

 Entailment, or Logical Consequence

 Entailment, or Logical Consequence}Slide 106
A set S of statements is consistent if some interpretation satisfies all elements of S at the same time. Otherwise S is inconsistent.

A set S of statements entails A if every interpretation that satisfies all elements of S, also satisfies A. We write $S \models A$.

$$
\{X \text { part of } Y, Y \text { part of } Z\} \models X \text { part of } Z
$$

$\{n \neq 1, n \neq 2, \ldots\} \models n$ is NOT a positive integer
$S \models A$ if and only if $\{\neg A\} \cup S$ is inconsistent
$\models A$ if and only if A is valid

Inference

Slide 107
Want to check A is valid
Checking all interpretations can be effective - but if there are infinitely many?

Let $\left\{A_{1}, \ldots, A_{n}\right\} \models B$. If A_{1}, \ldots, A_{n} are true then B must be true. Write this as the inference

Use inferences to construct finite proofs!

Schematic Inference Rules

$$
\frac{X \text { part of } Y \quad Y \text { part of } Z}{X \text { part of } Z}
$$

A valid inference:

$$
\frac{\text { spoke part of wheel wheel part of bike }}{\text { spoke part of bike }}
$$

An inference may be valid even if the premises are false!

$$
\frac{\text { cow part of chair chair part of ant }}{\text { cow part of ant }}
$$

Survey of Formal Logics

first-order logic can say for all and there exists.
higher-order logic reasons about sets and functions. It has been applied to hardware verification.
modal/temporal logics reason about what must, or may, happen.
type theories support constructive mathematics.

Syntax of Propositional Logic

Slide 201

$$
\begin{array}{rl}
P, Q, R, \ldots & \text { propositional letter } \\
\mathbf{t} & \text { true } \\
\mathbf{f} & \text { false } \\
\neg A & \text { not } A \\
A \wedge B & A \text { and } B \\
A \vee B & A \text { or } B \\
A \rightarrow B & \text { if } A \text { then } B \\
A \leftrightarrow B & A \text { if and only if } B
\end{array}
$$

Semantics of Propositional Logic

Slide 202
$\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow are truth-functional: functions of their operands

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}

Interpretations of Propositional Logic

Slide 203
An interpretation is a function from the propositional letters to $\{\mathbf{t}, \mathbf{f}\}$.
Interpretation I satisfies a formula A if the formula evaluates to \mathbf{t}.

$$
\text { Write } \models_{\mathrm{I}} A
$$

A is valid (a tautology) if every interpretation satisfies A

$$
\text { Write } \models A
$$

S is satisfiable if some interpretation satisfies every formula in S

Implication, Entailment, Equivalence

Slide 204
$A \rightarrow B$ means simply $\neg A \vee B$
$A \models \mathrm{~B}$ means if $\models_{\mathrm{I}} A$ then $\models_{\mathrm{I}} B$ for every interpretation I
$A \models B$ if and only if $\models A \rightarrow B$

Equivalence

$A \simeq B$ means $A \models B$ and $B \models A$
$A \simeq B$ if and only if $\models A \leftrightarrow B$

Equivalences

Slide 205

$$
\begin{aligned}
& A \wedge A \simeq A \\
& A \wedge B \simeq B \wedge A \\
& (A \wedge B) \wedge C \simeq A \wedge(B \wedge C) \\
& A \vee(B \wedge C) \simeq(A \vee B) \wedge(A \vee C) \\
& A \wedge f \simeq f \\
& A \wedge t \simeq A \\
& A \wedge \neg A \simeq f
\end{aligned}
$$

Dual versions: exchange \wedge, \vee and \mathbf{t}, \mathbf{f} in any equivalence

Negation Normal Form

$$
\begin{aligned}
& A \leftrightarrow B \simeq(A \rightarrow B) \wedge(B \rightarrow A) \\
& A \rightarrow B \simeq \neg A \vee B
\end{aligned}
$$

2. Push negations in, using de Morgan's laws:

$$
\begin{aligned}
\neg \neg A & \simeq A \\
\neg(A \wedge B) & \simeq \neg A \vee \neg B \\
\neg(A \vee B) & \simeq \neg A \wedge \neg B
\end{aligned}
$$

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

$$
\begin{aligned}
& A \vee(B \wedge C) \simeq(A \vee B) \wedge(A \vee C) \\
& (B \wedge C) \vee A \simeq(B \vee A) \wedge(C \vee A)
\end{aligned}
$$

4. Simplify:

- Delete any disjunction containing P and $\neg P$
- Delete any disjunction that includes another
- Replace $(P \vee A) \wedge(\neg P \vee A)$ by A

Converting a Non-Tautology to CNF

Slide 208

1. Elim $\rightarrow: \quad \neg(\mathrm{P} \vee \mathrm{Q}) \vee(\mathrm{Q} \vee \mathrm{R})$
2. Push $\neg \mathrm{in}: \quad(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \vee(\mathrm{Q} \vee \mathrm{R})$
3. Push \vee in: $\quad(\neg \mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}) \wedge(\neg \mathrm{Q} \vee \mathrm{Q} \vee \mathrm{R})$
4. Simplify: $\quad \neg P \vee Q \vee R$

Not a tautology: try $\mathrm{P} \mapsto \mathbf{t}, \mathrm{Q} \mapsto \mathbf{f}, \mathrm{R} \mapsto \mathbf{f}$

Tautology checking using CNF

$$
((P \rightarrow Q) \rightarrow P) \rightarrow P
$$

1. $\operatorname{Elim} \rightarrow: \quad \neg[\neg(\neg P \vee Q) \vee P] \vee P$
2. Push \neg in: $\quad[\neg \neg(\neg P \vee Q) \wedge \neg P] \vee P$
$[(\neg P \vee Q) \wedge \neg P] \vee P$
3. Push \vee in: $\quad(\neg P \vee Q \vee P) \wedge(\neg P \vee P)$
4. Simplify: $\quad \mathbf{t} \wedge \mathbf{t}$
t It's a tautology!

A Simple Proof System

Axiom Schemes

$K \quad A \rightarrow(B \rightarrow A)$
s $\quad(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$
DN $\quad \neg \neg A \rightarrow A$
Inference Rule: Modus Ponens

$$
\frac{A \rightarrow B \quad A}{B}
$$

A Simple (?) Proof of $A \rightarrow A$

Slide 302

$$
\left.\begin{array}{rl}
(A \rightarrow((D \rightarrow A) \rightarrow A)) \rightarrow & \\
((A \rightarrow(D \rightarrow A)) \rightarrow(A \rightarrow A)) & \text { by } \mathrm{S} \\
A \rightarrow((D \rightarrow A) \rightarrow A) & \text { by } \mathrm{K} \\
(A \rightarrow(D \rightarrow A)) & \rightarrow(A \rightarrow A)
\end{array}\right) \text { by MP, (1),(2) } \quad \begin{aligned}
A \rightarrow(D \rightarrow A) & \text { by } \mathrm{D} \\
A \rightarrow A & \text { by MP, (3),(4) }
\end{aligned}
$$

Some Facts about Deducibility

Slide 303
A is deducible from the set S of if there is a finite proof of A starting from elements of S. Write $S \vdash A$.

Soundness Theorem. If $S \vdash A$ then $S \models A$.

Completeness Theorem. If $S \models A$ then $S \vdash A$.

Deduction Theorem. If $S \cup\{A\} \vdash B$ then $S \vdash A \rightarrow B$.

Gentzen's Natural Deduction Systems

A varying context of assumptions
Each logical connective defined independently
Slide $304 \quad$ Introduction rule for \wedge : how to deduce $A \wedge B$

$$
\frac{A \quad B}{A \wedge B}
$$

Elimination rules for \wedge : what to deduce from $A \wedge B$

$$
\frac{A \wedge B}{A} \quad \frac{A \wedge B}{B}
$$

The Sequent Calculus

Slide 305
Sequent $A_{1}, \ldots, A_{m} \Rightarrow B_{1}, \ldots, B_{n}$ means,
if $A_{1} \wedge \ldots \wedge A_{m}$ then $B_{1} \vee \ldots \vee B_{n}$
A_{1}, \ldots, A_{m} are assumptions; B_{1}, \ldots, B_{n} are goals
Γ and Δ are sets in $\Gamma \Rightarrow \Delta$
$A, \Gamma \Rightarrow A, \Delta$ is trivially true (basic sequent)

Sequent Calculus Rules

$$
\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(\mathrm{cut})
$$

Slide 306

$$
\begin{array}{ll}
\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta}(\neg \mathrm{l}) & \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A}(\neg \mathrm{r}) \\
\frac{A, B, \Gamma \Rightarrow \Delta}{A \wedge B, \Gamma \Rightarrow \Delta}(\wedge \mathrm{l}) & \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, \mathrm{~B}}{\Gamma \Rightarrow \Delta, A \wedge \mathrm{~B}}(\wedge \mathrm{r})
\end{array}
$$

More Sequent Calculus Rules

Slide 307

Easy Sequent Calculus Proofs

$$
\frac{\frac{\overline{A, B \Rightarrow A}}{A \wedge B \Rightarrow A}}{\Rightarrow A \wedge B \rightarrow A}(\rightarrow r)
$$

Slide 308

$$
\begin{aligned}
& \frac{\overline{A, B \Rightarrow B, A}}{A \Rightarrow B, B \rightarrow A} \\
& \frac{\Rightarrow A \rightarrow B, B \rightarrow A}{\Rightarrow_{\text {A }}(A \rightarrow B) \vee(B \rightarrow A)}
\end{aligned}{ }^{(\rightarrow r)}
$$

Part of a Distributive Law

Second subtree proves $A \vee(B \wedge C) \Rightarrow A \vee C$ similarly

Slide 310

A Failed Proof

$$
\frac{\frac{A \Rightarrow B, C \quad \overline{B \Rightarrow B, C}}{\frac{A \vee B \Rightarrow B, C}{A \vee B \Rightarrow B \vee C}}(\vee \imath)}{\Rightarrow A \vee B \rightarrow B \vee C}(\rightarrow r)
$$

$A \mapsto \mathbf{t}, \mathrm{~B} \mapsto \mathbf{f}, \mathrm{C} \mapsto \mathbf{f}$ falsifies unproved sequent!

Ordered Binary Decision Diagrams

Slide 401
Canonical form: essentially decision trees with sharing

- ordered propositional symbols ('variables')
- sharing of identical subtrees
- hashing and other optimisations

Detects if a formula is tautologous (\mathbf{t}) or inconsistent (\mathbf{f})
A FAST way of verifying digital circuits, . . .

Slide 402

Decision Diagram for $(P \vee Q) \wedge R$

Converting a Decision Diagram to an OBDD

Slide 403

No duplicates

No redundant tests

Building OBDDs Efficiently

Slide 404
Do not expand $\rightarrow, \leftrightarrow, \oplus$ (exclusive OR) to other connectives
Treat $\neg Z$ as $Z \rightarrow \mathbf{f}$ or $Z \oplus \mathbf{t}$
Recursively convert operands
Combine operand OBDDs — respecting ordering and sharing
Delete test if it proves to be redundant

Canonical Form Algorithm

Slide 405
To do $Z \wedge Z^{\prime}$, where Z and Z^{\prime} are already canonical:
Trivial if either is \mathbf{t} or \mathbf{f}. Treat $\vee, \rightarrow, \leftrightarrow$ similarly!
Let $Z=\mathbf{i f}(P, X, Y)$ and $Z^{\prime}=\mathbf{i f}\left(P^{\prime}, X^{\prime}, Y^{\prime}\right)$
If $P=P^{\prime}$ then recursively do $\mathbf{i f}\left(P, X \wedge X^{\prime}, Y \wedge Y^{\prime}\right)$
If $P<P^{\prime}$ then recursively do $\operatorname{if}\left(P, X \wedge Z^{\prime}, Y \wedge Z^{\prime}\right)$
If $P>P^{\prime}$ then recursively do $\operatorname{if}\left(P^{\prime}, Z \wedge X^{\prime}, Z \wedge Y^{\prime}\right)$

Canonical Form of $P \vee Q$

Slide 406

Optimisations Based On Hash Tables

Slide 408

- Pointer identity: $\mathrm{X}=\mathrm{Y}$ whenever $\mathrm{X} \leftrightarrow \mathrm{Y}$
- Fast removal of redundant tests by $\operatorname{if}(P, X, X) \simeq X$
- Fast processing of $X \wedge X, X \vee X, X \rightarrow X, \ldots$

Never process $X \wedge Y$ twice; keep table of canonical forms

Final Observations

A good ordering is $\mathrm{P}_{1}<\mathrm{Q}_{1}<\cdots<\mathrm{P}_{\mathrm{n}}<\mathrm{Q}_{\mathrm{n}}$
A dreadful ordering is $\mathrm{P}_{1}<\cdots<\mathrm{P}_{\mathrm{n}}<\mathrm{Q}_{1}<\cdots<\mathrm{Q}_{\mathrm{n}}$
Many digital circuits have small OBDDs (not multiplication!)
OBDDs can solve problems in hundreds of variables
General case remains intractable!

Outline of First-Order Logic

Reasons about functions and relations over a set of individuals

$$
\frac{\text { father }(\text { father }(x))=\text { father }(\text { father }(y))}{\operatorname{cousin}(x, y)}
$$

Reasons about all and some individuals:

$$
\frac{\text { All men are mortal } \quad \text { Socrates is a man }}{\text { Socrates is mortal }}
$$

Does not reason about all functions or all relations, . . .

Function Symbols; Terms

Slide 502
A variable ranges over all individuals
A term is a variable, constant or has the form

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

where f is an n-place function symbol and t_{1}, \ldots, t_{n} are terms
We choose the language, adopting any desired function symbols

Relation Symbols; Formulae

Slide 503
Each relation symbol stands for an n-place relation
Equality is the 2-place relation symbol $=$
An atomic formula has the form

$$
R\left(t_{1}, \ldots, t_{n}\right)
$$

where R is an n-place relation symbol and t_{1}, \ldots, t_{n} are terms
A formula is built up from atomic formulæ using $\neg, \wedge, \vee, \ldots$
(Later we add quantifiers)

Power of Quantifier-Free FOL

Very expressive, given strong induction rules
Prove equivalence of mathematical functions:

$$
\begin{array}{rlrl}
p(z, 0) & =1 & q(z, 1) & =z \\
p(z, n+1) & =p(z, n) \times z & q(z, 2 \times n) & =q(z \times z, n) \\
q(z, 2 \times n+1) & =q(z \times z, n) \times z
\end{array}
$$

Boyer/Moore Theorem Prover: checked Gödel's Theorem, . . .
Many systems based on equational reasoning

Universal and Existential Quantifiers

$\forall x A$ for all x, A holds
$\exists x A$ there exists x such that A holds
Slide 505
Syntactic variations:

$$
\begin{array}{cl}
\forall x y z A & \text { abbreviates } \forall x \forall y \forall z A \\
\forall z . A \wedge B & \text { is an alternative to } \forall z(A \wedge B)
\end{array}
$$

The variable x is bound in $\forall x A$; compare with $\int f(x) d x$

Expressiveness of Quantifiers

All men are mortal:

$$
\forall x(\operatorname{man}(x) \rightarrow \operatorname{mortal}(x))
$$

Slide 506
All mothers are female:

$$
\forall x \text { female(mother }(x))
$$

There exists a unique x such that A, written $\exists!\times A$

$$
\exists x[A(x) \wedge \forall y(A(y) \rightarrow y=x)]
$$

How do we interpret mortal(Socrates)?

Slide 507
Interpretation $\mathcal{I}=(\mathrm{D}, \mathrm{I})$ of our first-order language
D is a non-empty universe
I maps symbols to 'real' functions, relations
c a constant symbol
$I[c] \in D$
f an n-place function symbol $I[f] \in D^{n} \rightarrow D$
P an n-place relation symbol $I[P] \subseteq D^{n}$

How do we interpret cousin(Charles, y)?

A valuation supplies the values of free variables
It is a function $\mathrm{V}:$ variables $\rightarrow \mathrm{D}$
Slide 508
$\mathcal{I}_{\mathrm{V}}[\mathrm{t}]$ extends V to a term t by the obvious recursion:

$$
\begin{gathered}
\mathcal{I}_{\mathrm{V}}[\mathrm{x}] \stackrel{\text { def }}{=} \mathrm{V}(\mathrm{x}) \quad \text { if } \mathrm{x} \text { is a variable } \\
\mathcal{I}_{\mathrm{V}}[\mathrm{c}] \stackrel{\text { def }}{=} \mathrm{I}[\mathrm{c}] \\
\mathcal{I}_{\mathrm{V}}\left[\mathrm{f}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)\right] \stackrel{\text { def }}{=} \mathrm{I}[\mathrm{f}]\left(\mathcal{I}_{\mathrm{V}}\left[\mathrm{t}_{1}\right], \ldots, \mathcal{I}_{\mathrm{V}}\left[\mathrm{t}_{\mathrm{n}}\right]\right)
\end{gathered}
$$

Free v Bound Variables

Slide 601
All occurrences of x in $\forall x A$ and $\exists x A$ are bound
An occurrence of x is free if it is not bound:

May rename bound variables:

$$
\forall w \exists y^{\prime} R\left(w, y^{\prime}, f(w, z)\right)
$$

Slide 602

$$
\forall x \exists y R(x, y, f(x, z))
$$

$A[t / x]$ means 'substitute t for x in A ':

$$
\begin{aligned}
& (B \wedge C)[t / x] \text { is } B[t / x] \wedge C[t / x] \\
& (\forall x B)[t / x] \text { is } \forall x B \\
& (\forall y B)[t / x] \text { is } \forall y B[t / x] \quad(x \neq y) \\
& (P(u))[t / x] \text { is } P(u[t / x])
\end{aligned}
$$

No variable in t may be bound in A !
$(\forall y x=y)[y / x]$ is not $\forall y y=y!$

Some Equivalences for Quantifiers

Slide 603

$$
\begin{aligned}
\neg(\forall x A) & \simeq \exists x \neg A \\
(\forall x A) \wedge B & \simeq \forall x(A \wedge B) \\
(\forall x A) \vee B & \simeq \forall x(A \vee B) \\
(\forall x A) \wedge(\forall x B) & \simeq \forall x(A \wedge B) \\
(\forall x A) \rightarrow B & \simeq \exists x(A \rightarrow B) \\
\forall x A & \simeq \forall x A \wedge A[t / x]
\end{aligned}
$$

Dual versions: exchange \forall, \exists and \wedge, \vee

Reasoning by Equivalences

Slide 604

$$
\begin{aligned}
\exists x(x=a \wedge P(x)) & \simeq \exists x(x=a \wedge P(a)) \\
& \simeq \exists x(x=a) \wedge P(a) \\
& \simeq P(a) \\
\exists z(P(z) \rightarrow P(a) \wedge P(b)) &
\end{aligned}
$$

$$
\simeq \forall z \mathrm{P}(z) \rightarrow \mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(\mathrm{~b})
$$

$$
\simeq \forall z P(z) \wedge P(a) \wedge P(b) \rightarrow P(a) \wedge P(b)
$$

$$
\simeq \mathbf{t}
$$

Sequent Calculus Rules for \forall

$$
\frac{A[t / x], \Gamma \Rightarrow \Delta}{\forall x A, \Gamma \Rightarrow \Delta}(\forall l) \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \forall x A}(\forall r)
$$

Slide 605
Rule ($\forall \mathrm{l}$) can create many instances of $\forall x A$
Rule ($\forall \mathrm{r}$) holds provided x is not free in the conclusion!
Not allowed to prove

$$
\frac{\overline{P(y) \Rightarrow P(y)}}{P(y) \Rightarrow \forall y P(y)}(\forall r)
$$

Examples of the \forall Rules

Slide 606

Sequent Calculus Rules for \exists

Slide 607

$$
\frac{A, \Gamma \Rightarrow \Delta}{\exists x A, \Gamma \Rightarrow \Delta}(\exists \mathrm{\imath}) \quad \frac{\Gamma \Rightarrow \Delta, A[\mathrm{t} / \mathrm{x}]}{\Gamma \Rightarrow \Delta, \exists \mathrm{xA}}(\exists \mathrm{r})
$$

Rule ($\exists \mathrm{l}$) holds provided x is not free in the conclusion!
Rule ($\exists \mathrm{r}$) can create many instances of $\exists x A$
Say, to prove

$$
\exists z(\mathrm{P}(z) \rightarrow \mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(\mathrm{~b}))
$$

Part of the \exists Distributive Law

Slide 608

$$
\frac{\frac{\overline{A \Rightarrow A, B}}{A \Rightarrow A \vee B}(\vee r)}{\frac{\bar{A}^{A \Rightarrow \exists x(A \vee B)}}{(\exists r)}(\exists \imath) \quad \frac{\text { similar }}{\exists x B \Rightarrow \exists x(A \vee B)}}(\exists x)
$$

Second subtree proves $\exists x B \Rightarrow \exists x(A \vee B)$ similarly

Cannot use ($\exists l$) twice with the same χ
We can easily falsify the topmost sequent

Clause Form

Clause: a disjunction of literals

$$
\neg K_{1} \vee \cdots \vee \neg K_{m} \vee L_{1} \vee \cdots \vee L_{n}
$$

Slide 701
Set notation: $\quad\left\{\neg \mathrm{K}_{1}, \ldots, \neg \mathrm{~K}_{\mathrm{m}}, \mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}}\right\}$
Kowalski notation: $\quad \mathrm{K}_{1}, \cdots, \mathrm{~K}_{\mathrm{m}} \rightarrow \mathrm{L}_{1}, \cdots, \mathrm{~L}_{\mathrm{n}}$ $\mathrm{L}_{1}, \cdots, \mathrm{~L}_{n} \leftarrow \mathrm{~K}_{1}, \cdots, \mathrm{~K}_{m}$

Empty clause
Empty clause means contradiction!

Outline of Clause Form Methods

Slide 702
To prove A, obtain a contradiction from $\neg A$:

1. Translate $\neg \mathcal{A}$ into CNF as $A_{1} \wedge \cdots \wedge A_{m}$
2. This is the set of clauses A_{1}, \ldots, A_{m}
3. Transform the clause set, preserving consistency

Empty clause refutes $\neg A$
Empty clause set means $\neg A$ is satisfiable

The Davis-Putnam Decision Procedure

Slide 703

1. Delete tautological clauses: $\{P, \neg P, \ldots\}$
2. For each unit clause $\{\mathrm{L}\}$,

- delete all clauses containing L
- delete $\neg \mathrm{L}$ from all clauses

3. Delete all clauses containing pure literals
4. Perform a case split on some literal

Davis-Putnam on a Non-Tautology

Consider $\mathrm{P} \vee \mathrm{Q} \rightarrow \mathrm{Q} \vee \mathrm{R}$
Clauses are $\{\mathrm{P}, \mathrm{Q}\} \quad\{\neg \mathrm{Q}\} \quad\{\neg \mathrm{R}\}$
Slide 704

$$
\begin{array}{cll}
\{P, Q\} & \{\neg \mathrm{Q}\} & \{\neg R\} \\
\{P\} & & \{\neg R\} \\
& & \text { unitial clauses } \\
& \{\neg \mathrm{Q}\} \\
& & \\
& & \text { unit } P \text { (also pure) } \\
& & \text { unit } \neg R \text { (also pure) }
\end{array}
$$

Clauses satisfiable by $\mathrm{P} \mapsto \mathbf{t}, \mathrm{Q} \mapsto \mathbf{f}, \mathrm{R} \mapsto \mathbf{f}$

Example of a Case Split on P

Slide 705

$$
\begin{array}{ccccl}
\{\neg \mathrm{Q}, \mathrm{R}\} & \{\neg \mathrm{R}, \mathrm{P}\} & \{\neg \mathrm{R}, \mathrm{Q}\} & \{\neg \mathrm{P}, \mathrm{Q}, \mathrm{R}\} & \{\mathrm{P}, \mathrm{Q}\} \\
\{\neg \mathrm{P}, \neg \mathrm{P}, & \\
\{\neg \mathrm{Q}, \mathrm{R}\} & \{\neg \mathrm{R}, \mathrm{Q}\} & \{\mathrm{Q}, \mathrm{R}\} & \{\neg \mathrm{Q}\} & \text { if } \mathrm{P} \text { is true } \\
& \{\neg \mathrm{R}\} & \{R\} & & \text { unit } \neg \mathrm{Q} \\
& \square & & & \text { unit } \mathrm{R} \\
\hline\{\neg \mathrm{Q}, \mathrm{R}\} & \{\neg \mathrm{R}\} & \{\neg \mathrm{R}, \mathrm{Q}\} & \{\mathrm{Q}\} & \text { if } P \text { is false } \\
\{\neg \mathrm{Q}\} & & & \{Q\} & \text { unit } \neg \mathrm{R} \\
& & & \square & \text { unit } \neg \mathrm{Q}
\end{array}
$$

The Resolution Rule

From $B \vee A$ and $\neg B \vee C$ infer $A \vee C$
In set notation,
Slide 706

$$
\frac{\left\{B, A_{1}, \ldots, A_{m}\right\} \quad\left\{\neg B, C_{1}, \ldots, C_{n}\right\}}{\left\{A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\}}
$$

Some special cases:

$$
\frac{\{B\} \quad\left\{\neg B, C_{1}, \ldots, C_{n}\right\}}{\left\{C_{1}, \ldots, C_{n}\right\}}
$$

Simple Example: Proving $P \wedge Q \rightarrow Q \wedge P$

Slide 707
Hint: use $\neg(A \rightarrow B) \simeq A \wedge \neg B$

1. Negate! $\quad \neg[P \wedge Q \rightarrow Q \wedge P]$
2. Push \neg in: $(P \wedge Q) \wedge \neg(Q \wedge P)$
$(P \wedge Q) \wedge(\neg Q \vee \neg P)$
Clauses: $\quad\{\mathrm{P}\} \quad\{\mathrm{Q}\} \quad\{\neg \mathrm{Q}, \neg \mathrm{P}\}$
Resolve $\{\mathrm{P}\}$ and $\{\neg \mathrm{Q}, \neg \mathrm{P}\}$ getting $\{\neg \mathrm{Q}\}$
Resolve $\{\mathrm{Q}\}$ and $\{\neg \mathrm{Q}\}$ getting \square

Another Example

Slide 708
From $\neg[P \vee(Q \wedge R)]$ get clauses $\{\neg P\}$ and $\{\neg Q, \neg R\}$

Resolve $\{\neg P\}$ and $\{P, Q\}$ getting $\{Q\}$
Resolve $\{\neg P\}$ and $\{P, R\}$ getting $\{R\}$
Resolve $\{Q\}$ and $\{\neg \mathrm{Q}, \neg \mathrm{R}\}$ getting $\{\neg \mathrm{R}\}$
Resolve $\{R\}$ and $\{\neg R\}$ getting

Refinements of Resolution

Preprocessing: removing tautologies, symmetries . . .
Set of Support: working from the goal
Weighting: priority to the smallest clauses
Subsumption: deleting redundant clauses
Hyper-resolution: avoiding intermediate clauses
Indexing: data structures for speed

Reducing FOL to Propositional Logic

Slide 801
Prenex: Move quantifiers to the front
Skolemize: Remove quantifiers, preserving consistency
Herbrand models: Reduce the class of interpretations
Herbrand's Thm: Contradictions have finite, ground proofs
Unification: Automatically find the right instantiations
Finally, combine unification with resolution

Prenex Normal Form

$$
\begin{aligned}
& \neg(\forall x A) \simeq \exists x \neg A \\
& \neg(\exists x A) \simeq \forall x \neg A
\end{aligned}
$$

Then move quantifiers to the front using

$$
\begin{aligned}
& (\forall x A) \wedge B \simeq \forall x(A \wedge B) \\
& (\forall x A) \vee B \simeq \forall x(A \vee B)
\end{aligned}
$$

and the similar rules for \exists

Skolemization

Slide 803
Choose a new k-place function symbol, say f
Delete $\exists y$ and replace y by $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. We get

$$
\forall x_{1} \forall x_{2} \cdots \forall x_{k} A\left[f\left(x_{1}, x_{2}, \ldots, x_{k}\right) / y\right]
$$

Repeat until no \exists quantifiers remain

Example of Conversion to Clauses

For proving $\exists x[P(x) \rightarrow \forall y P(y)]$

Slide 804
$\neg[\exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \rightarrow \forall \mathrm{y} P(\mathrm{y})]] \quad$ negated goal
$\forall x[P(x) \wedge \exists y \neg P(y)] \quad$ conversion to NNF
$\forall \mathrm{x} \exists \mathrm{y}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{y})] \quad$ pulling \exists out
$\forall x[P(x) \wedge \neg P(f(x))] \quad$ Skolem term $f(x)$
$\{P(x)\} \quad\{\neg P(f(x))\} \quad$ Final clauses

Correctness of Skolemization

Slide 805
The formula $\forall x \exists y \mathcal{A}$ is consistent
\Longleftrightarrow it holds in some interpretation $\mathcal{I}=(\mathrm{D}, \mathrm{I})$
\Longleftrightarrow for all $x \in D$ there is some $y \in D$ such that A holds
\Longleftrightarrow some function \hat{f} in $\mathrm{D} \rightarrow \mathrm{D}$ yields suitable values of y
$\Longleftrightarrow \mathcal{A}[\mathrm{f}(\mathrm{x}) / \mathrm{y}]$ holds in some \mathcal{I}^{\prime} extending \mathcal{I} so that f denotes \hat{f} \Longleftrightarrow the formula $\forall x A[f(x) / y]$ is consistent.

Herbrand Interpretations for a set of clauses S

$H_{0} \stackrel{\text { def }}{=}$ the set of constants in S

$$
H_{i+1} \stackrel{\text { def }}{=} H_{i} \cup\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in H_{i}\right.
$$

and f is an n -place function symbol in S$\}$
$H \stackrel{\text { def }}{=} \bigcup_{i \geq 0} H_{i} \quad$ Herbrand Universe
$H B \stackrel{\text { def }}{=}\left\{P\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in H\right.$
and P is an n -place predicate symbol in S$\}$

Example of an Herbrand Model

Slide 807

A Key Fact about Herbrand Interpretations

Slide 808
S is unsatisfiable \Longleftrightarrow no Herbrand interpretation satisfies S

- Holds because some Herbrand model mimicks every 'real' model
- We must consider only a small class of models
- Herbrand models are syntactic, easily processed by computer

Herbrand's Theorem

Slide 809
S is unsatisfiable \Longleftrightarrow there is a finite unsatisfiable set S^{\prime} of ground instances of clauses of S.

- Finite: we can compute it
- Instance: result of substituting for variables
- Ground: and no variables remain: it's propositional!

Unification

Slide 901
Finding a common instance of two terms

- Logic programming (Prolog)
- Polymorphic type-checking (ML)
- Constraint satisfaction problems
- Resolution theorem proving for FOL
- Many other theorem proving methods

Substitutions

$$
\theta=\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]
$$

where x_{1}, \ldots, x_{k} are distinct variables and $t_{i} \neq x_{i}$

$$
\begin{aligned}
\mathrm{f}(\mathrm{t}, \mathrm{u}) \theta & =\mathrm{f}(\mathrm{t} \theta, \mathrm{u} \theta) \\
\mathrm{P}(\mathrm{t}, \mathrm{u}) \theta & =\mathrm{P}(\mathrm{t} \theta, \mathrm{u} \theta) \\
\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{m}}\right\} \theta & =\left\{\mathrm{L}_{1} \theta, \ldots, \mathrm{~L}_{\mathrm{m}} \theta\right\}
\end{aligned}
$$

Composing Substitutions

Composition of ϕ and θ, written $\phi \circ \theta$, satisfies for all terms t

$$
t(\phi \circ \theta)=(\mathrm{t} \phi) \theta
$$

Slide 903
It is defined by (for all relevant χ)

$$
\phi \circ \theta \stackrel{\text { def }}{=}[(x \phi) \theta / x, \ldots]
$$

Consequences include $\theta \circ \square=\theta$, and associativity:

$$
(\phi \circ \theta) \circ \sigma=\phi \circ(\theta \circ \sigma)
$$

Most General Unifiers

Slide 904
θ is most general if it is more general than every other unifier
If θ unifies t and u then so does $\theta \circ \sigma$:

$$
\mathrm{t}(\theta \circ \sigma)=\mathrm{t} \theta \sigma=u \theta \sigma=u(\theta \circ \sigma)
$$

A most general unifier of $f(a, x)$ and $f(y, g(z))$ is $[a / y, g(z) / x]$
The common instance is $f(a, g(z))$

Algorithm for Unifying Two Terms

Represent terms by binary trees
Each term is a Variable $x, y \ldots$, Constant $\mathrm{a}, \mathrm{b} \ldots$, or Pair $\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$
Slide 905

Constants do not unify with different Constants
Constants do not unify with Pairs
Variable x and term t : unifier is $[t / x]$ - unless x occurs in t
Cannot unify $f(x)$ with x !

Unifying Two Pairs

Slide 906

$$
\begin{aligned}
\left(t, t^{\prime}\right)\left(\theta \circ \theta^{\prime}\right) & =\left(t, t^{\prime}\right) \theta \theta^{\prime} \\
& =\left(t \theta \theta^{\prime}, t^{\prime} \theta \theta^{\prime}\right) \\
& =\left(u \theta \theta^{\prime}, u^{\prime} \theta \theta^{\prime}\right) \\
& =\left(u, u^{\prime}\right) \theta \theta^{\prime} \\
& =\left(u, u^{\prime}\right)\left(\theta \circ \theta^{\prime}\right)
\end{aligned}
$$

Examples of Unification

Slide 907

$f(x, b)$	Examples of Unification		
	$f(x, x)$	$f(x, x)$	$\mathfrak{j}(x, x, z)$
$f(a, y)$	$f(a, b)$	$f(y, g(y))$	$\mathfrak{j}(w, a, h(w))$
$f(a, b)$?	?	j(a,a,h(a))
[a/x, b/y]	FAIL	FAIL	$[\mathrm{a} / w, \mathrm{a} / \mathrm{x}, \mathrm{h}(\mathrm{a}) / \mathrm{z}]$

We always get a most general unifier

Theorem-Proving Examples

$(\exists y \forall x R(x, y)) \rightarrow(\forall x \exists y R(x, y))$
Clauses after negation are $\{R(x, a)\}$ and $\{\neg R(b, y)\}$
$R(x, a)$ and $R(b, y)$ have unifier $[b / x, a / y]$: contradiction!

$$
(\forall x \exists y R(x, y)) \rightarrow(\exists y \forall x R(x, y))
$$

Clauses after negation are $\{R(x, f(x))\}$ and $\{\neg R(g(y), y)\}$ $R(x, f(x))$ and $R(g(y), y)$ are not unifiable: occurs check

Formula is not a theorem!

Variations on Unification

Slide 909
Indexing \& Discrimination networks: fast retrieval of a unifiable term
Order-sorted unification: type-checking in Haskell
Associative/commutative operators: problems in group theory
Higher-order unification: support λ-calculus
Boolean unification: reasoning about sets

Binary Resolution

Slide 1001
$\frac{\left\{B, A_{1}, \ldots, A_{m}\right\} \quad\left\{\neg D, C_{1}, \ldots, C_{n}\right\}}{\left\{A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\} \sigma} \quad$ provided $B \sigma=D \sigma$
First rename variables apart in the clauses! - say, to resolve

$$
\{\mathrm{P}(\mathrm{x})\} \quad \text { and } \quad\{\neg \mathrm{P}(\mathrm{~g}(\mathrm{x}))\}
$$

Always use a most general unifier (MGU)
Soundness? Same argument as for the propositional version

Factorisation

Collapsing similar literals in one clause:

$$
\frac{\left\{\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\}}{\left\{\mathrm{B}_{1}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{m}\right\} \sigma} \quad \text { provided } \mathrm{B}_{1} \sigma=\cdots=\mathrm{B}_{\mathrm{k}} \sigma
$$

Normally combined with resolution
Prove $\forall x \exists y \neg(\mathrm{P}(\mathrm{y}, \mathrm{x}) \leftrightarrow \neg \mathrm{P}(\mathrm{y}, \mathrm{y}))$
The clauses are $\quad\{\neg P(y, a), \neg P(y, y)\} \quad\{P(y, y), P(y, a)\}$
Factoring yields $\quad\{\neg \mathrm{P}(\mathrm{a}, \mathrm{a})\} \quad\{\mathrm{P}(\mathrm{a}, \mathrm{a})\}$
Resolution yields the empty clause!

A Non-Trivial Example

Slide 1003

Implicit factoring: $\{\mathrm{P}, \mathrm{P}\} \mapsto\{\mathrm{P}\}$ Many other proofs!

Prolog Clauses and Their Execution

At most one positive literal per clause!
Definite clause $\left\{\neg A_{1}, \ldots, \neg A_{m}, B\right\}$ or $B \leftarrow A_{1}, \ldots, A_{m}$.
Goal clause $\left\{\neg A_{1}, \ldots, \neg A_{m}\right\} \quad$ or $\leftarrow A_{1}, \ldots, A_{m}$.
Linear resolution: a program clause with last goal clause
Left-to-right through program clauses
Left-to-right through goal clause's literals
Depth-first search: backtracks, but still incomplete
Unification without occurs check: fast, but unsound!

A (Pure) Prolog Program

Slide 1005

```
parent(elizabeth,charles).
parent(elizabeth,andrew).
parent(charles,william).
parent(charles,henry).
parent(andrew,beatrice).
parent(andrew, eugenia).
grand(X,Z) :- parent(X,Y), parent(Y,Z).
cousin(X,Y) :- grand(Z,X), grand(Z,Y).
```


Prolog Execution

* = backtracking choice point

16 solutions including cousin(william,william)
and cousin(william, henry)

The Method of Model Elimination

A Prolog-like method; complete for First-Order Logic
Contrapositives: treat clause $\left\{A_{1}, \ldots, A_{m}\right\}$ as m clauses
$A_{1} \leftarrow \neg A_{2}, \ldots, \neg A_{m}$
$A_{2} \leftarrow \neg A_{3}, \ldots, \neg A_{m}, \neg A_{1}$

Extension rule: when proving goal P , may assume $\neg \mathrm{P}$
A brute force method: efficient but no refinements such as subsumption

A Survey of Automatic Theorem Provers

Slide 1008
Hyper-resolution: Otter, Gandalf, SPASS, Vampire, . . .
Model Elimination: Prolog Technology Theorem Prover, SETHEO
Parallel ME: PARTHENON, PARTHEO
Higher-Order Logic: TPS, LEO
Tableau (sequent) based: LeanTAP, 3TAP, . . .

Approaches to Equality Reasoning

Slide 1009

- Use specialized prover: Knuth-Bendix, . . .
- Assert axioms directly
- Paramodulation rule

$$
\frac{\left\{B[t], A_{1}, \ldots, A_{m}\right\} \quad\left\{t=u, C_{1}, \ldots, C_{n}\right\}}{\left\{B[u], A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\}}
$$

Modal Operators

W: set of possible worlds (machine states, future times, . . .)
R : accessibility relation between worlds
(W, R) is called a modal frame
$\square A$ means A is necessarily true
$\diamond A$ means A is possibly true
$\neg \forall A \simeq \square \neg A \quad A$ cannot be true \Longleftrightarrow A must be false

Semantics of Propositional Modal Logic

$$
\begin{aligned}
& w \Vdash \mathrm{P} \quad \Longleftrightarrow w \in \mathrm{I}(\mathrm{P}) \\
& w \Vdash A \wedge \mathrm{~B} \Longleftrightarrow w \Vdash A \text { and } w \Vdash \mathrm{~B} \\
& w \Vdash \square A \quad \Longleftrightarrow v \Vdash A \text { for all } v \text { such that } \mathrm{R}(w, v) \\
& w \Vdash \diamond A \quad \Longleftrightarrow v \Vdash A \text { for some } v \text { such that } \mathrm{R}(w, v)
\end{aligned}
$$

Truth and Validity in Modal Logic

Slide 1103
For a particular frame (W, R), and interpretation I
$\mathcal{w} \Vdash A \quad$ means A is true in world w $\models_{W, R, I} A \quad$ means $\mathcal{w} \Vdash A$ for all \mathcal{w} in W $\models W, R A \quad$ means $\mathcal{w} \Vdash A$ for all \mathcal{w} and all I
$\models A$ means $\models_{W, R} A$ for all frames; \mathcal{A} is universally valid
... but typically we constrain R to be, say, transitive
All tautologies are universally valid

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

$$
\text { Dist } \quad \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)
$$

Inference Rule: Necessitation

$$
\frac{A}{\square A}
$$

Treat \diamond as a definition

$$
\diamond A \stackrel{\text { def }}{=} \neg \square \neg A
$$

Variant Modal Logics

Start with pure modal logic, K
Add axioms to constrain the accessibility relation:
Slide 1105

T	$\square A \rightarrow A$	(reflexive)	logic T
4	$\square A \rightarrow \square \square A$	(transitive)	logic $S 4$
B	$A \rightarrow \square \diamond A$	(symmetric)	logic $S 5$

And countless others!
We shall mainly look at S4

Extra Sequent Calculus Rules for S4

$$
\frac{A, \Gamma \Rightarrow \Delta}{\square A, \Gamma \Rightarrow \Delta}(\square \mathrm{l}) \quad \frac{\Gamma^{*} \Rightarrow \Delta^{*}, \mathcal{A}}{\Gamma \Rightarrow \Delta, \square A}(\square \mathrm{r})
$$

Slide 1106

$$
\begin{array}{cl}
\frac{A, \Gamma^{*} \Rightarrow \Delta^{*}}{\diamond A, \Gamma \Rightarrow \Delta}(\diamond l) & \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \diamond A}(\diamond r) \\
\Gamma^{*} \stackrel{\text { def }}{=}\{\square B \mid \square B \in \Gamma\} & \text { Erase non- } \square \text { assumptions } \\
\Delta^{*} \stackrel{\text { def }}{=}\{\diamond B \mid \diamond B \in \Delta\} & \text { Erase non- } \diamond \text { goals }
\end{array}
$$

A Proof of the Distribution Axiom

Slide 1107

$$
\begin{aligned}
& \frac{\overline{A \Rightarrow B, A} \quad \overline{B, A \Rightarrow B}}{A \rightarrow B, A \Rightarrow B} \\
& \frac{(\square l)}{A \rightarrow B, \square A \Rightarrow B} \\
& \frac{\square(A \rightarrow B), \square A \Rightarrow B}{\square(A \rightarrow B), \square A \Rightarrow \square B}
\end{aligned}{ }^{(\square r)},
$$

And thus $\square(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow(\square \mathrm{A} \rightarrow \square \mathrm{B})$
Must apply ($\square \mathrm{r}$) first!

Part of an Operator String Equivalence

Slide 1108

In fact, $\square \diamond \square \diamond A \simeq \square \diamond A \quad$ also $\square \square A \simeq \square A$

The S4 operator strings are
 $\diamond \square \diamond$ $\diamond \square \quad \square \diamond \square$ $\diamond \square \diamond$

Two Failed Proofs

$$
\frac{\Rightarrow A}{\frac{\Rightarrow \diamond A}{A \Rightarrow \square \diamond A}}(\nabla r)
$$

Slide 1109

$$
\frac{B \Rightarrow A \wedge B}{\frac{B \Rightarrow \Delta(A \wedge B)}{\diamond A, \diamond B \Rightarrow \diamond(A \wedge B)}}(\stackrel{\rightharpoonup}{ }(\diamond l)
$$

Can extract a countermodel from the proof attempt

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):
$\neg \wedge \vee \rightarrow \leftrightarrow \quad \forall \quad(\square)$
Slide 1201
Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form
Fewer connectives: $\wedge \vee \forall \exists(\square \diamond)$
Sequents need one side only!

Simplified Calculus: Left-Only

$$
\overline{\neg A, A, \Gamma \Rightarrow}(\text { basic }) \quad \frac{\neg A, \Gamma \Rightarrow \quad A, \Gamma \Rightarrow}{\Gamma \Rightarrow}(\mathrm{cut})
$$

Slide 1202

$$
\begin{array}{cc}
\frac{A, B, \Gamma \Rightarrow}{A \wedge B, \Gamma \Rightarrow}(\wedge l) & \frac{A, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \\
\frac{A[t / x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}(\forall l) & \frac{A, \Gamma \Rightarrow}{\exists x A, \Gamma \Rightarrow}(\exists l)
\end{array}
$$

Rule (\exists l) holds provided x is not free in the conclusion!

Left-Only Sequent Rules for S4

$$
\frac{A, \Gamma \Rightarrow}{\square A, \Gamma \Rightarrow}(\square \mathfrak{l}) \quad \frac{A, \Gamma^{*} \Rightarrow}{\diamond A, \Gamma \Rightarrow}
$$

Slide 1203

$$
\Gamma^{*} \stackrel{\text { def }}{=}\{\square \mathrm{B} \mid \square \mathrm{B} \in \Gamma\} \quad \text { Erase non- } \square \text { assumptions }
$$

From 14 (or 18) rules to 4 (or 6)
Left-only system uses proof by contradiction
Right-only system is precisely dual

$$
\text { Proving } \forall x(A \rightarrow B) \Rightarrow A \rightarrow \forall x B
$$

Left-only, NNF version: $A \wedge \exists x \neg B, \forall x(\neg A \vee B) \Rightarrow$ (x not free in A)
Slide 1204

$$
\begin{array}{r}
\frac{\overline{A, \neg B, \neg A \Rightarrow} \quad \overline{A, \neg B, B \Rightarrow}}{\frac{A, \neg B, \neg A \vee B \Rightarrow}{A, \neg B, \forall x(\neg A \vee B) \Rightarrow}}(\forall \mathrm{l}) \\
\frac{\operatorname{A}, \exists x \neg B, \forall x(\neg A \vee B) \Rightarrow}{A \wedge \exists x \neg B, \forall x(\neg A \vee B) \Rightarrow}
\end{array}(\neg l)
$$

Adding Unification

Rule ($\forall \mathrm{l})$ now inserts a new free variable:

$$
\frac{A[z / x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}(\forall l)
$$

Let unification instantiate any free variable
In $\neg A, B, \Gamma \Rightarrow$ try unifying A with B to make basic sequent
Updating a variable affects entire proof tree
What about rule ($\exists \mathrm{l}$)? Skolemize!

Skolemization from NNF

Better to push quantifiers in (miniscope)
Proving $\exists \mathrm{x} \forall \mathrm{y}[\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y})]$
Negate; convert to NNF: $\quad \forall x \exists y[P(x) \wedge \neg P(y)]$
Push in the $\exists \mathrm{y}: \quad \forall x[P(x) \wedge \exists y \neg P(y)]$
Push in the $\forall x: \quad \forall x P(x) \wedge \exists y \neg P(y)$
Skolemize: $\quad \forall x P(x) \wedge \neg P(a)]$

A Proof of $\exists x \forall y[P(x) \rightarrow P(y)]$

Slide 1207

$$
\begin{gathered}
\frac{\mathrm{y} \mapsto \mathrm{f}(\mathrm{z})}{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \mathrm{P}(\mathrm{z}), \neg \mathrm{P}(\mathrm{f}(\mathrm{z})) \Rightarrow} \\
\frac{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \mathrm{P}(\mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{z})) \Rightarrow}{(\wedge \mathrm{l})} \\
\frac{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow}{\mathrm{P}(\mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow} \\
\frac{\forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow}{(\wedge \mathrm{l})} \\
(\forall \mathrm{l})
\end{gathered}
$$

Unification chooses the term for $(\forall \mathrm{l})$

A Failed Proof

Try to prove $\forall x[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow \forall \mathrm{x} \mathrm{P}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})$
NNF: $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \wedge \exists \mathrm{x} \neg \mathrm{Q}(\mathrm{x}), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow$
Skolemize: $\neg \mathrm{P}(\mathrm{a}) \wedge \neg \mathrm{Q}(\mathrm{b}), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow$

$$
\begin{align*}
& \frac{\mathrm{y} \mapsto \mathrm{a}}{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \mathrm{P}(\mathrm{y}) \Rightarrow} \quad \stackrel{\mathrm{y} \mapsto \mathrm{~b} ? ? ?}{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \mathrm{Q}(\mathrm{y}) \Rightarrow} \\
& \begin{array}{l}
\frac{\neg P(a), \neg Q(b), P(y) \vee Q(y) \Rightarrow}{\neg P(a), \neg Q(b), \forall x[P(x) \vee Q(x)] \Rightarrow}(\forall l) \\
\frac{\neg P(a) \wedge \neg Q(b), \forall x[P(x) \vee Q(x)] \Rightarrow}{\neg}(\wedge)
\end{array}
\end{align*}
$$

The World's Smallest Theorem Prover?

```
prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
    prove(A, [B|UnExp], Lits,FreeV,VarLim).
prove((A; B) ,UnExp,Lits,FreeV,VarLim) :- !,
    prove(A, UnExp,Lits,FreeV,VarLim),
    prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
        \+ length(FreeV,VarLim),
        copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
        append(UnExp,[all(X,Fml)],UnExp1),
        prove(Fml1,UnExp1,Lits, [X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_,_) :-
        (Lit = -Neg; -Lit = Neg) ->
        (unify(Neg,L); prove(Lit, [],Lits,_r_)).
prove(Lit, [Next|UnExp],Lits,FreeV,VarLim) :-
        prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
```

