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Introduction to Logic

Logic concerns statements in some language

The language can be informal (e.g. English) or formal

Some statements are true, others false or perhaps meaningless, . . .

Logic concerns relationships between statements: consistency,

entailment, . . .

Logical proofs model human reasoning
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Statements

Statements are declarative assertions:

Black is the colour of my true love’s hair.

They are not greetings, questions, commands, . . . :

What is the colour of my true love’s hair?

I wish my true love had hair.

Get a haircut!
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Schematic Statements

The meta-variables X, Y, Z, . . . range over ‘real’ objects

Black is the colour of X’s hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?
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Interpretations and Validity

An interpretation maps meta-variables to real objects

The interpretation Y 7→ coal satisfies the statement

Black is the colour of Y.

but the interpretation Y 7→ strawberries does not!

A statementA is valid if all interpretations satisfyA.
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Consistency, or Satisfiability

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Examples of inconsistent sets:

{X part of Y, Y part of Z, X NOT part of Z}

{n is a positive integer, n 6= 1, n 6= 2, . . . }

satisfiable/unsatisfiable = consistent/inconsistent
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Entailment, or Logical Consequence

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfiesA. We write S |= A.

{X part of Y, Y part of Z} |= X part of Z

{n 6= 1, n 6= 2, . . . } |= n is NOT a positive integer

S |= A if and only if {¬A} ∪ S is inconsistent

|= A if and only ifA is valid
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Inference

Want to checkA is valid

Checking all interpretations can be effective — but if there are

infinitely many?

Let {A1, . . . , An} |= B. IfA1, . . . ,An are true then B must be

true. Write this as the inference

A1 . . . An
B

Use inferences to construct finite proofs!
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Schematic Inference Rules

X part of Y Y part of Z

X part of Z

A valid inference:

spoke part of wheel wheel part of bike

spoke part of bike

An inference may be valid even if the premises are false!

cow part of chair chair part of ant
cow part of ant
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Survey of Formal Logics

propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions. It has been

applied to hardware verification.

modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.
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Syntax of Propositional Logic

P,Q, R, . . . propositional letter

t true

f false

¬A notA

A ∧ B A and B

A ∨ B A or B

A→ B ifA then B

A↔ B A if and only if B
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Semantics of Propositional Logic

¬, ∧, ∨,→ and↔ are truth-functional: functions of their operands

A B ¬A A ∧ B A ∨ B A→ B A↔ B

t t f t t t t

t f f f t f f

f t t f t t f

f f t f f t t
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Interpretations of Propositional Logic

An interpretation is a function from the propositional letters to {t, f }.

Interpretation I satisfies a formulaA if the formula evaluates to t.

Write |=I A

A is valid (a tautology) if every interpretation satisfiesA

Write |= A

S is satisfiable if some interpretation satisfies every formula in S
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Implication, Entailment, Equivalence

A→ B means simply ¬A ∨ B
A |= B means if |=I A then |=I B for every interpretation I

A |= B if and only if |= A→ B

Equivalence

A ' B meansA |= B and B |= A

A ' B if and only if |= A↔ B
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Equivalences

A ∧A ' A
A ∧ B ' B ∧A

(A ∧ B) ∧ C ' A ∧ (B ∧ C)

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)

A ∧ f ' f

A ∧ t ' A
A ∧ ¬A ' f

Dual versions: exchange ∧, ∨ and t, f in any equivalence
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Negation Normal Form

1. Get rid of↔ and→, leaving just ∧, ∨, ¬:

A↔ B ' (A→ B) ∧ (B→ A)

A→ B ' ¬A ∨ B

2. Push negations in, using de Morgan’s laws:

¬¬A ' A
¬(A ∧ B) ' ¬A ∨ ¬B

¬(A ∨ B) ' ¬A ∧ ¬B
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From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

A ∨ (B ∧ C) ' (A ∨ B) ∧ (A ∨ C)

(B ∧ C) ∨A ' (B ∨A) ∧ (C ∨A)

4. Simplify:

• Delete any disjunction containing P and ¬P

• Delete any disjunction that includes another

• Replace (P ∨A) ∧ (¬P ∨A) byA
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Converting a Non-Tautology to CNF

P ∨Q→ Q ∨ R

1. Elim→: ¬(P ∨Q) ∨ (Q ∨ R)

2. Push ¬ in: (¬P ∧ ¬Q) ∨ (Q ∨ R)

3. Push ∨ in: (¬P ∨Q ∨ R) ∧ (¬Q ∨Q ∨ R)

4. Simplify: ¬P ∨Q ∨ R

Not a tautology: try P 7→ t, Q 7→ f , R 7→ f
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Tautology checking using CNF

((P → Q)→ P)→ P

1. Elim→: ¬[¬(¬P ∨Q) ∨ P] ∨ P
2. Push ¬ in: [¬¬(¬P ∨Q) ∧ ¬P] ∨ P

[(¬P ∨Q) ∧ ¬P] ∨ P
3. Push ∨ in: (¬P ∨Q ∨ P) ∧ (¬P ∨ P)
4. Simplify: t ∧ t

t It’s a tautology!
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A Simple Proof System

Axiom Schemes

K A→ (B→ A)

S (A→ (B→ C))→ ((A→ B)→ (A→ C))

DN ¬¬A→ A

Inference Rule: Modus Ponens

A→ B A
B
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A Simple (?) Proof of A→ A

(A→ ((D→ A)→ A))→ (1)

((A→ (D→ A))→ (A→ A)) by S

A→ ((D→ A)→ A) by K (2)

(A→ (D→ A))→ (A→ A) by MP, (1), (2) (3)

A→ (D→ A) by K (4)

A→ A by MP, (3), (4) (5)
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Some Facts about Deducibility

A is deducible from the set S of if there is a finite proof ofA starting

from elements of S. Write S ` A.

Soundness Theorem . If S ` A then S |= A.

Completeness Theorem . If S |= A then S ` A.

Deduction Theorem . If S ∪ {A} ` B then S ` A→ B.
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Gentzen’s Natural Deduction Systems

A varying context of assumptions

Each logical connective defined independently

Introduction rule for ∧: how to deduceA ∧ B
A B
A ∧ B

Elimination rules for ∧: what to deduce from A ∧ B
A ∧ B
A

A ∧ B
B
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The Sequent Calculus

SequentA1, . . . , Am⇒B1, . . . , Bn means,

ifA1 ∧ . . . ∧Am then B1 ∨ . . . ∨ Bn
A1, . . . ,Am are assumptions; B1, . . . , Bn are goals

Γ and ∆ are sets in Γ⇒∆
A, Γ⇒A,∆ is trivially true (basic sequent)
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Sequent Calculus Rules

Γ⇒∆,A A, Γ⇒∆
Γ⇒∆ (cut)

Γ⇒∆,A
¬A, Γ⇒∆ (¬l)

A, Γ⇒∆
Γ⇒∆,¬A (¬r)

A,B, Γ⇒∆
A ∧ B, Γ⇒∆ (∧l)

Γ⇒∆,A Γ⇒∆,B
Γ⇒∆,A ∧ B (∧r)
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More Sequent Calculus Rules

A, Γ⇒∆ B, Γ⇒∆
A ∨ B, Γ⇒∆ (∨l)

Γ⇒∆,A, B
Γ⇒∆,A ∨ B (∨r)

Γ⇒∆,A B, Γ⇒∆
A→ B, Γ⇒∆ (→l)

A, Γ⇒∆,B
Γ⇒∆,A→ B

(→r)
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Easy Sequent Calculus Proofs

A,B⇒A
A ∧ B⇒A (∧l)

⇒A ∧ B→ A
(→r)

A,B⇒B,A
A⇒B,B→ A

(→r)

⇒A→ B, B→ A
(→r)

⇒ (A→ B) ∨ (B→ A)
(∨r)
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Part of a Distributive Law

A⇒A,B B,C⇒A,B
B ∧ C⇒A,B (∧l)

A ∨ (B ∧ C)⇒A,B (∨l)

A ∨ (B ∧ C)⇒A ∨ B (∨r)
similar

A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)
(∧r)

Second subtree provesA ∨ (B ∧ C)⇒A ∨ C similarly
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A Failed Proof

A⇒B,C B⇒B,C
A ∨ B⇒B,C (∨l)

A ∨ B⇒B ∨ C (∨r)

⇒A ∨ B→ B ∨ C
(→r)

A 7→ t, B 7→ f , C 7→ f falsifies unproved sequent!
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Ordered Binary Decision Diagrams

Canonical form: essentially decision trees with sharing

• ordered propositional symbols (‘variables’)

• sharing of identical subtrees

• hashing and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f )

A FAST way of verifying digital circuits, . . .
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Decision Diagram for (P ∨Q) ∧ R

P

Q

R R

1000 0 01 1

Q

R R
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Converting a Decision Diagram to an OBDD

P

Q

R

Q

R

0 1

P

Q

R

0 1

No duplicates No redundant tests
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Building OBDDs Efficiently

Do not construct full tree! (see Bryant, §3.1)

Do not expand→,↔,⊕ (exclusive OR) to other connectives

Treat ¬Z as Z→ f or Z⊕ t

Recursively convert operands

Combine operand OBDDs — respecting ordering and sharing

Delete test if it proves to be redundant
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Canonical Form Algorithm

To do Z ∧ Z ′, where Z and Z ′ are already canonical:

Trivial if either is t or f . Treat ∨,→,↔ similarly!

Let Z = if(P, X, Y) and Z ′ = if(P ′, X ′, Y ′)

If P = P ′ then recursively do if(P, X ∧ X ′, Y ∧ Y ′)
If P < P ′ then recursively do if(P, X ∧ Z ′, Y ∧ Z ′)
If P > P ′ then recursively do if(P ′, Z ∧ X ′, Z ∧ Y ′)
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Canonical Form of P ∨Q

P

0 1

Q

0 1

P

∨
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Canonical Form of P ∨Q→ Q ∨ R

Q

0 1

P →

R

0 1

Q

Q

P

R

0 1

Q

P
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Optimisations Based On Hash Tables

Never build the same OBDD twice: share pointers

• Pointer identity: X = Y whenever X↔ Y

• Fast removal of redundant tests by if(P, X, X) ' X

• Fast processing of X ∧ X, X ∨ X, X→ X, . . .

Never process X ∧ Y twice; keep table of canonical forms
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Final Observations

The variable ordering is crucial. Consider

(P1 ∧Q1) ∨ · · · ∨ (Pn ∧Qn)

A good ordering is P1 < Q1 < · · · < Pn < Qn
A dreadful ordering is P1 < · · · < Pn < Q1 < · · · < Qn
Many digital circuits have small OBDDs (not multiplication!)

OBDDs can solve problems in hundreds of variables

General case remains intractable!
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Outline of First-Order Logic

Reasons about functions and relations over a set of individuals

father(father(x)) = father(father(y))

cousin(x, y)

Reasons about all and some individuals:

All men are mortal Socrates is a man
Socrates is mortal

Does not reason about all functions or all relations, . . .
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Function Symbols; Terms

Each function symbol stands for an n-place function

A constant symbol is a 0-place function symbol

A variable ranges over all individuals

A term is a variable, constant or has the form

f(t1, . . . , tn)

where f is an n-place function symbol and t1, . . . , tn are terms

We choose the language, adopting any desired function symbols
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Relation Symbols; Formulae

Each relation symbol stands for an n-place relation

Equality is the 2-place relation symbol =

An atomic formula has the form

R(t1, . . . , tn)

where R is an n-place relation symbol and t1, . . . , tn are terms

A formula is built up from atomic formulæ using ¬, ∧, ∨, . . .

(Later we add quantifiers)
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Power of Quantifier-Free FOL

Very expressive, given strong induction rules

Prove equivalence of mathematical functions:

p(z, 0) = 1

p(z, n+ 1) = p(z, n)× z
q(z, 1) = z

q(z, 2× n) = q(z× z, n)

q(z, 2× n+ 1) = q(z× z, n)× z

Boyer/Moore Theorem Prover : checked Gödel’s Theorem, . . .

Many systems based on equational reasoning
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Universal and Existential Quantifiers

∀xA for all x, A holds

∃xA there exists x such thatA holds

Syntactic variations:

∀xyzA abbreviates ∀x∀y∀zA
∀z .A ∧ B is an alternative to ∀z (A ∧ B)

The variable x is bound in ∀xA; compare with
∫
f(x)dx
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Expressiveness of Quantifiers

All men are mortal:

∀x (man(x)→ mortal(x))

All mothers are female:

∀x female(mother(x))

There exists a unique x such thatA, written ∃!xA

∃x [A(x) ∧ ∀y (A(y)→ y = x)]
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How do we interpret mortal(Socrates)?

Interpretation I = (D, I) of our first-order language

D is a non-empty universe

I maps symbols to ‘real’ functions, relations

c a constant symbol I[c] ∈ D
f an n-place function symbol I[f] ∈ Dn → D

P an n-place relation symbol I[P] ⊆ Dn
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How do we interpret cousin(Charles, y)?

A valuation supplies the values of free variables

It is a function V : variables→ D

IV [t] extends V to a term t by the obvious recursion:

IV [x]
def
= V(x) if x is a variable

IV [c]
def
= I[c]

IV [f(t1, . . . , tn)]
def
= I[f](IV [t1], . . . , IV [tn])
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The Meaning of Truth — in FOL

For interpretation I and valuation V

|=I,V P(t) if I[P](IV [t]) holds

|=I,V t = u if IV [t] equals IV [u]

|=I,V A ∧ B if |=I,V A and |=I,V B

|=I,V ∃xA if |=I,V{m/x} A holds for somem ∈ D

|=I A if |=I,V A holds for all V

A is satisfiable if |=I A for some I
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Free v Bound Variables

All occurrences of x in ∀xA and ∃xA are bound

An occurrence of x is free if it is not bound:

∀x∃yR(x, y, f(x, z))

May rename bound variables:

∀w∃y ′ R(w,y ′, f(w, z))
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Substitution for Free Variables

A[t/x] means ‘substitute t for x inA’:

(B ∧ C)[t/x] is B[t/x] ∧ C[t/x]

(∀xB)[t/x] is ∀xB
(∀yB)[t/x] is ∀yB[t/x] (x 6= y)

(P(u))[t/x] is P(u[t/x])

No variable in t may be bound inA!

(∀yx = y)[y/x] is not ∀yy = y!
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Some Equivalences for Quantifiers

¬(∀xA) ' ∃x¬A

(∀xA) ∧ B ' ∀x (A ∧ B)

(∀xA) ∨ B ' ∀x (A ∨ B)

(∀xA) ∧ (∀xB) ' ∀x (A ∧ B)

(∀xA)→ B ' ∃x (A→ B)

∀xA ' ∀xA ∧A[t/x]

Dual versions: exchange ∀, ∃ and ∧, ∨
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Reasoning by Equivalences

∃x (x = a ∧ P(x)) ' ∃x (x = a ∧ P(a))

' ∃x (x = a) ∧ P(a)

' P(a)

∃z (P(z)→ P(a) ∧ P(b))
' ∀z P(z)→ P(a) ∧ P(b)
' ∀z P(z) ∧ P(a) ∧ P(b)→ P(a) ∧ P(b)
' t
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Sequent Calculus Rules for ∀

A[t/x], Γ⇒∆
∀xA, Γ⇒∆ (∀l)

Γ⇒∆,A
Γ⇒∆,∀xA (∀r)

Rule (∀l) can create many instances of ∀xA
Rule (∀r) holds provided x is not free in the conclusion!

Not allowed to prove

P(y)⇒P(y)
P(y)⇒∀yP(y) (∀r)
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Examples of the ∀ Rules

A⇒B,A A,B⇒B
A, A→ B⇒B (→l)

A, ∀x (A→ B)⇒B (∀l)

A, ∀x (A→ B)⇒∀xB (∀r)

∀x (A→ B)⇒A→ ∀xB (→r)

P(f(y))⇒P(f(y))
∀x P(x)⇒P(f(y)) (∀l)

∀x P(x)⇒∀yP(f(y)) (∀r)

x must not be free inA !
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Sequent Calculus Rules for ∃

A, Γ⇒∆
∃xA, Γ⇒∆ (∃l)

Γ⇒∆,A[t/x]

Γ⇒∆,∃xA (∃r)

Rule (∃l) holds provided x is not free in the conclusion!

Rule (∃r) can create many instances of ∃xA
Say, to prove

∃z (P(z)→ P(a) ∧ P(b))
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Part of the ∃ Distributive Law

A⇒A,B
A⇒A ∨ B (∨r)

A⇒∃x (A ∨ B)
(∃r)

∃xA⇒∃x (A ∨ B)
(∃l) similar

∃xB⇒∃x (A ∨ B)
(∃l)

∃xA ∨ ∃xB⇒∃x (A ∨ B)
(∨l)

Second subtree proves ∃xB⇒∃x (A ∨ B) similarly
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A Failed Proof

A,B[y/x]⇒A ∧ B
A,B[y/x]⇒∃x (A ∧ B)

(∃r)

A,∃xB⇒∃x (A ∧ B)
(∃l)

∃xA,∃xB⇒∃x (A ∧ B)
(∃l)

∃xA ∧ ∃xB⇒∃x (A ∧ B)
(∧l)

Cannot use (∃l) twice with the same x

We can easily falsify the topmost sequent
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Clause Form

Clause: a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln

Set notation: {¬K1, . . . ,¬Km, L1, . . . , Ln}

Kowalski notation: K1, · · · , Km → L1, · · · , Ln
L1, · · · , Ln ← K1, · · · , Km

Empty clause ¤
Empty clause means contradiction!
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Outline of Clause Form Methods

To proveA, obtain a contradiction from ¬A:

1. Translate ¬A into CNF asA1 ∧ · · · ∧Am
2. This is the set of clausesA1, . . . ,Am

3. Transform the clause set, preserving consistency

Empty clause refutes ¬A

Empty clause set means ¬A is satisfiable
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The Davis-Putnam Decision Procedure

1. Delete tautological clauses: {P,¬P, . . . }

2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals

4. Perform a case split on some literal
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Davis-Putnam on a Non-Tautology

Consider P ∨Q→ Q ∨ R
Clauses are {P,Q} {¬Q} {¬R}

{P,Q} {¬Q} {¬R} initial clauses

{P} {¬R} unit ¬Q

{¬R} unit P (also pure)

unit ¬R (also pure)

Clauses satisfiable by P 7→ t, Q 7→ f , R 7→ f
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Example of a Case Split on P

{¬Q,R} {¬R, P} {¬R,Q} {¬P,Q, R} {P,Q} {¬P,¬Q}

{¬Q,R} {¬R,Q} {Q,R} {¬Q} if P is true

{¬R} {R} unit ¬Q

¤ unit R

{¬Q,R} {¬R} {¬R,Q} {Q} if P is false

{¬Q} {Q} unit ¬R

¤ unit ¬Q
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The Resolution Rule

From B ∨A and ¬B ∨ C inferA ∨ C
In set notation,

{B,A1, . . . , Am} {¬B,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}

Some special cases:

{B} {¬B,C1, . . . , Cn}

{C1, . . . , Cn}

{B} {¬B}

¤
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Simple Example: Proving P ∧Q→ Q ∧ P

Hint: use ¬(A→ B) ' A ∧ ¬B

1. Negate! ¬[P ∧Q→ Q ∧ P]
2. Push ¬ in: (P ∧Q) ∧ ¬(Q ∧ P)

(P ∧Q) ∧ (¬Q ∨ ¬P)

Clauses: {P} {Q} {¬Q,¬P}

Resolve {P} and {¬Q,¬P} getting {¬Q}

Resolve {Q} and {¬Q} getting¤
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Another Example

Refute ¬[(P ∨Q) ∧ (P ∨ R)→ P ∨ (Q ∧ R)]

From (P ∨Q) ∧ (P ∨ R), get clauses {P,Q} and {P, R}

From ¬ [P ∨ (Q ∧ R)] get clauses {¬P} and {¬Q,¬R}

Resolve {¬P} and {P,Q} getting {Q}

Resolve {¬P} and {P, R} getting {R}

Resolve {Q} and {¬Q,¬R} getting {¬R}

Resolve {R} and {¬R} getting¤



VII Logic and Proof 35

Slide 709

Refinements of Resolution

Preprocessing: removing tautologies, symmetries . . .

Set of Support: working from the goal

Weighting: priority to the smallest clauses

Subsumption: deleting redundant clauses

Hyper-resolution: avoiding intermediate clauses

Indexing: data structures for speed



VIII Logic and Proof 36

Slide 801

Reducing FOL to Propositional Logic

Prenex: Move quantifiers to the front

Skolemize: Remove quantifiers, preserving consistency

Herbrand models: Reduce the class of interpretations

Herbrand’s Thm: Contradictions have finite, ground proofs

Unification: Automatically find the right instantiations

Finally, combine unification with resolution
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Prenex Normal Form

Convert to Negation Normal Form using additionally

¬(∀xA) ' ∃x¬A

¬(∃xA) ' ∀x¬A

Then move quantifiers to the front using

(∀xA) ∧ B ' ∀x (A ∧ B)

(∀xA) ∨ B ' ∀x (A ∨ B)

and the similar rules for ∃
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Skolemization

Take a formula of the form

∀x1 ∀x2 · · · ∀xk ∃yA

Choose a new k-place function symbol, say f

Delete ∃y and replace y by f(x1, x2, . . . , xk). We get

∀x1 ∀x2 · · · ∀xkA[f(x1, x2, . . . , xk)/y]

Repeat until no ∃ quantifiers remain
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Example of Conversion to Clauses

For proving ∃x [P(x)→ ∀yP(y)]

¬ [∃x [P(x)→ ∀yP(y)]] negated goal

∀x [P(x) ∧ ∃y¬P(y)] conversion to NNF

∀x∃y [P(x) ∧ ¬P(y)] pulling ∃ out

∀x [P(x) ∧ ¬P(f(x))] Skolem term f(x)

{P(x)} {¬P(f(x))} Final clauses
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Correctness of Skolemization

The formula ∀x∃yA is consistent⇐⇒ it holds in some interpretation I = (D, I)⇐⇒ for all x ∈ D there is some y ∈ D such thatA holds⇐⇒ some function f̂ inD→ D yields suitable values of y⇐⇒ A[f(x)/y] holds in some I ′ extending I so that f denotes f̂⇐⇒ the formula ∀xA[f(x)/y] is consistent.
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Herbrand Interpretations for a set of clauses S

H0
def
= the set of constants in S

Hi+1
def
= Hi ∪ {f(t1, . . . , tn) | t1, . . . , tn ∈ Hi

and f is an n-place function symbol in S}

H
def
=
⋃
i≥0

Hi Herbrand Universe

HB
def
= {P(t1, . . . , tn) | t1, . . . , tn ∈ H

and P is an n-place predicate symbol in S}
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Example of an Herbrand Model

¬even(1)

even(2)

even(X · Y)← even(X), even(Y)

 clauses

H = {1, 2, 1 · 1, 1 · 2, 2 · 1, 2 · 2, 1 · (1 · 1), . . . }
HB = {even(1), even(2), even(1 · 1), even(1 · 2), . . . }

I[even] = {even(2), even(1 · 2), even(2 · 1), even(2 · 2), . . . }

(for model where · means product; could instead use sum!)
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A Key Fact about Herbrand Interpretations

Let S be a set of clauses.

S is unsatisfiable ⇐⇒ no Herbrand interpretation satisfies S

• Holds because some Herbrand model mimicks every ‘real’ model

• We must consider only a small class of models

• Herbrand models are syntactic, easily processed by computer
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Herbrand’s Theorem

Let S be a set of clauses.

S is unsatisfiable ⇐⇒ there is a finite unsatisfiable set S ′ of ground

instances of clauses of S.

• Finite : we can compute it

• Instance : result of substituting for variables

• Ground : and no variables remain: it’s propositional!
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Unification

Finding a common instance of two terms

• Logic programming (Prolog)

• Polymorphic type-checking (ML)

• Constraint satisfaction problems

• Resolution theorem proving for FOL

• Many other theorem proving methods
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Substitutions

A finite set of replacements

θ = [t1/x1, . . . , tk/xk]

where x1, . . . , xk are distinct variables and ti 6= xi

f(t, u)θ = f(tθ, uθ) (terms)

P(t, u)θ = P(tθ, uθ) (literals)

{L1, . . . , Lm}θ = {L1θ, . . . , Lmθ} (clauses)
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Composing Substitutions

Composition of φ and θ, written φ ◦ θ, satisfies for all terms t

t(φ ◦ θ) = (tφ)θ

It is defined by (for all relevant x)

φ ◦ θ def
= [ (xφ)θ / x, . . . ]

Consequences include θ ◦ [] = θ, and associativity:

(φ ◦ θ) ◦ σ = φ ◦ (θ ◦ σ)
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Most General Unifiers

θ is a unifier of terms t and u if tθ = uθ

θ is more general than φ if φ = θ ◦ σ
θ is most general if it is more general than every other unifier

If θ unifies t and u then so does θ ◦ σ:

t(θ ◦ σ) = tθσ = uθσ = u(θ ◦ σ)

A most general unifier of f(a, x) and f(y, g(z)) is [a/y, g(z)/x]

The common instance is f(a, g(z))
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Algorithm for Unifying Two Terms

Represent terms by binary trees

Each term is a Variable x, y . . . , Constant a, b . . . , or Pair (t, t ′)

Constants do not unify with different Constants

Constants do not unify with Pairs

Variable x and term t: unifier is [t/x] — unless x occurs in t

Cannot unify f(x) with x!
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Unifying Two Pairs

θ ◦ θ ′ unifies (t, t ′) with (u, u ′)

if θ unifies t with u and θ ′ unifies t ′θ with u ′θ

(t, t ′)(θ ◦ θ ′) = (t, t ′)θθ ′

= (tθθ ′, t ′θθ ′)

= (uθθ ′, u ′θθ ′)

= (u, u ′)θθ ′

= (u, u ′)(θ ◦ θ ′)
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Examples of Unification

f(x, b) f(x, x) f(x, x) j(x, x, z)

f(a, y) f(a, b) f(y, g(y)) j(w,a, h(w))

f(a, b) ? ? j(a, a, h(a))

[a/x, b/y] FAIL FAIL [a/w, a/x, h(a)/z]

We always get a most general unifier
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Theorem-Proving Examples

(∃y∀xR(x, y))→ (∀x∃yR(x, y))

Clauses after negation are {R(x, a)} and {¬R(b, y)}

R(x, a) and R(b, y) have unifier [b/x, a/y]: contradiction!

(∀x∃yR(x, y))→ (∃y∀xR(x, y))

Clauses after negation are {R(x, f(x))} and {¬R(g(y), y)}

R(x, f(x)) and R(g(y), y) are not unifiable: occurs check

Formula is not a theorem!
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Variations on Unification

Efficient unification algorithms: near-linear time

Indexing & Discrimination networks: fast retrieval of a unifiable term

Order-sorted unification: type-checking in Haskell

Associative/commutative operators: problems in group theory

Higher-order unification: support λ-calculus

Boolean unification: reasoning about sets
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Binary Resolution

{B,A1, . . . , Am} {¬D,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}σ
provided Bσ = Dσ

First rename variables apart in the clauses! — say, to resolve

{P(x)} and {¬P(g(x))}

Always use a most general unifier (MGU)

Soundness? Same argument as for the propositional version
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Factorisation

Collapsing similar literals in one clause:

{B1, . . . , Bk, A1, . . . , Am}

{B1, A1, . . . , Am}σ
provided B1σ = · · · = Bkσ

Normally combined with resolution

Prove ∀x∃y¬(P(y, x)↔ ¬P(y, y))

The clauses are {¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

Factoring yields {¬P(a, a)} {P(a, a)}

Resolution yields the empty clause!
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A Non-Trivial Example

∃x [P → Q(x)] ∧ ∃x [Q(x)→ P]→ ∃x [P ↔ Q(x)]

Clauses are {P,¬Q(b)} {P,Q(x)} {¬P,¬Q(x)} {¬P,Q(a)}

Resolve {P,¬Q(b)} with {P,Q(x)} getting {P}

Resolve {¬P,¬Q(x)} with {¬P,Q(a)} getting {¬P}

Resolve {P} with {¬P} getting¤

Implicit factoring: {P, P} 7→ {P} Many other proofs!

Slide 1004

Prolog Clauses and Their Execution

At most one positive literal per clause!

Definite clause {¬A1, . . . ,¬Am, B} or B← A1, . . . , Am.

Goal clause {¬A1, . . . ,¬Am} or ← A1, . . . , Am.

Linear resolution: a program clause with last goal clause

Left-to-right through program clauses

Left-to-right through goal clause’s literals

Depth-first search: backtracks, but still incomplete

Unification without occurs check: fast, but unsound!
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A (Pure) Prolog Program

parent(elizabeth,charles).

parent(elizabeth,andrew).

parent(charles,william).

parent(charles,henry).

parent(andrew,beatrice).

parent(andrew,eugenia).

grand(X,Z) :- parent(X,Y), parent(Y,Z).

cousin(X,Y) :- grand(Z,X), grand(Z,Y).
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Prolog Execution

:- cousin(X,Y).

:- grand(Z1,X), grand(Z1,Y).

:- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).

* :- parent(charles,X), grand(elizabeth,Y).

X=william :- grand(elizabeth,Y).

:- parent(elizabeth,Y5), parent(Y5,Y).

* :- parent(andrew,Y).

Y=beatrice :- ¤.

* = backtracking choice point

16 solutions including cousin(william,william)

and cousin(william,henry)
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The Method of Model Elimination

A Prolog-like method; complete for First-Order Logic

Contrapositives: treat clause {A1, . . . , Am} asm clauses

A1 ← ¬A2, . . . ,¬Am

A2 ← ¬A3, . . . ,¬Am,¬A1

...

Extension rule: when proving goal P, may assume ¬P

A brute force method: efficient but no refinements such as

subsumption

Slide 1008

A Survey of Automatic Theorem Provers

Hyper-resolution : Otter, Gandalf, SPASS, Vampire, . . .

Model Elimination : Prolog Technology Theorem Prover, SETHEO

Parallel ME : PARTHENON, PARTHEO

Higher-Order Logic : TPS, LEO

Tableau (sequent) based : LeanTAP, 3TAP, . . .
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Approaches to Equality Reasoning

Equality is reflexive, symmetric, transitive

Equality is substitutive over functions, predicates

• Use specialized prover: Knuth-Bendix, . . .

• Assert axioms directly

• Paramodulation rule

{B[t], A1, . . . , Am} {t = u,C1, . . . , Cn}

{B[u], A1, . . . , Am, C1, . . . , Cn}
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Modal Operators

W: set of possible worlds (machine states, future times, . . . )

R: accessibility relation between worlds

(W,R) is called a modal frame

2A meansA is necessarily true

♦A meansA is possibly true

}
— in all accessible worlds

¬♦A ' 2¬A A cannot be true ⇐⇒ A must be false
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Semantics of Propositional Modal Logic

For a particular frame (W,R)

An interpretation I maps the propositional letters to subsets ofW

w ° A meansA is true in worldw (w ∈W)

w ° P ⇐⇒ w ∈ I(P)
w ° A ∧ B⇐⇒ w ° A andw ° B
w ° 2A ⇐⇒ v ° A for all v such that R(w, v)

w ° ♦A ⇐⇒ v ° A for some v such that R(w, v)
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Truth and Validity in Modal Logic

For a particular frame (W,R), and interpretation I

w ° A meansA is true in worldw

|=W,R,I A meansw ° A for allw inW

|=W,R A meansw ° A for allw and all I

|= A means |=W,R A for all frames;A is universally valid

. . . but typically we constrain R to be, say, transitive

All tautologies are universally valid
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A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

Dist 2(A→ B)→ (2A→ 2B)

Inference Rule: Necessitation

A
2A

Treat ♦ as a definition

♦A def
= ¬2¬A



XI Logic and Proof 53

Slide 1105

Variant Modal Logics

Start with pure modal logic, K

Add axioms to constrain the accessibility relation:

T 2A→ A (reflexive) logic T

4 2A→ 22A (transitive) logic S4

B A→ 2♦A (symmetric) logic S5

And countless others!

We shall mainly look at S4
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Extra Sequent Calculus Rules for S4

A, Γ⇒∆
2A, Γ⇒∆ (2l)

Γ∗⇒∆∗, A
Γ⇒∆,2A (2r)

A, Γ∗⇒∆∗
♦A, Γ⇒∆ (♦l)

Γ⇒∆,A
Γ⇒∆,♦A (♦r)

Γ∗
def
= {2B | 2B ∈ Γ } Erase non-2 assumptions

∆∗
def
= {♦B | ♦B ∈ ∆} Erase non-♦ goals
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A Proof of the Distribution Axiom

A⇒B,A B,A⇒B
A→ B,A⇒B (→l)

A→ B,2A⇒B (2l)

2(A→ B),2A⇒B (2l)

2(A→ B),2A⇒2B
(2r)

And thus 2(A→ B)→ (2A→ 2B)

Must apply (2r) first!
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Part of an Operator String Equivalence

♦A⇒♦A
2♦A⇒♦A (2l)

♦2♦A⇒♦A (♦l)

2♦2♦A⇒♦A (2l)

2♦2♦A⇒2♦A
(2r)

In fact, 2♦2♦A ' 2♦A also 22A ' 2A

The S4 operator strings are 2 ♦ 2♦ ♦2 2♦2 ♦2♦
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Two Failed Proofs

⇒A⇒♦A (♦r)

A⇒2♦A
(2r)

B⇒A ∧ B
B⇒♦(A ∧ B)

(♦r)

♦A,♦B⇒♦(A ∧ B)
(♦l)

Can extract a countermodel from the proof attempt
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Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):

¬ ∧ ∨ → ↔ ∀ ∃ (2 ♦)

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: ∧ ∨ ∀ ∃ (2 ♦)

Sequents need one side only!
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Simplified Calculus: Left-Only

¬A,A, Γ⇒ (basic) ¬A, Γ⇒ A, Γ⇒
Γ⇒ (cut)

A,B, Γ⇒
A ∧ B, Γ⇒ (∧l)

A, Γ⇒ B, Γ⇒
A ∨ B, Γ⇒ (∨l)

A[t/x], Γ⇒
∀xA, Γ⇒ (∀l)

A, Γ⇒
∃xA, Γ⇒ (∃l)

Rule (∃l) holds provided x is not free in the conclusion!
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Left-Only Sequent Rules for S4

A, Γ⇒
2A, Γ⇒ (2l)

A, Γ∗⇒
♦A, Γ⇒ (♦l)

Γ∗
def
= {2B | 2B ∈ Γ } Erase non-2 assumptions

From 14 (or 18) rules to 4 (or 6)

Left-only system uses proof by contradiction

Right-only system is precisely dual
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Proving ∀x (A→ B)⇒A→ ∀xB
Left-only, NNF version: A ∧ ∃x¬B, ∀x (¬A ∨ B)⇒
(x not free inA)

A, ¬B, ¬A⇒ A, ¬B, B⇒
A, ¬B, ¬A ∨ B⇒ (∨l)

A, ¬B, ∀x (¬A ∨ B)⇒ (∀l)

A, ∃x¬B, ∀x (¬A ∨ B)⇒ (∃l)

A ∧ ∃x¬B, ∀x (¬A ∨ B)⇒ (∧l)
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Adding Unification

Rule (∀l) now inserts a new free variable:

A[z/x], Γ⇒
∀xA, Γ⇒ (∀l)

Let unification instantiate any free variable

In ¬A,B, Γ⇒ try unifyingA with B to make basic sequent

Updating a variable affects entire proof tree

What about rule (∃l)? Skolemize!
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Skolemization from NNF

Follow tree structure; don’t pull out quantifiers!

[∀y∃zQ(y, z)] ∧ ∃x P(x) to [∀yQ(y, f(y))] ∧ P(a)

Better to push quantifiers in (miniscope)

Proving ∃x∀y [P(x)→ P(y)]

Negate; convert to NNF: ∀x∃y [P(x) ∧ ¬P(y)]

Push in the ∃y : ∀x [P(x) ∧ ∃y¬P(y)]

Push in the ∀x : ∀x P(x) ∧ ∃y¬P(y)

Skolemize: ∀x P(x) ∧ ¬P(a)]
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A Proof of ∃x∀y [P(x)→ P(y)]

y 7→ f(z)

P(y), ¬P(f(y)), P(z), ¬P(f(z))⇒ basic

P(y), ¬P(f(y)), P(z) ∧ ¬P(f(z))⇒ (∧l)

P(y), ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒ (∀l)

P(y) ∧ ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒ (∧l)

∀x [P(x) ∧ ¬P(f(x))]⇒ (∀l)

Unification chooses the term for (∀l)
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A Failed Proof

Try to prove ∀x [P(x) ∨Q(x)]⇒∀x P(x) ∨ ∀xQ(x)

NNF: ∃x¬P(x) ∧ ∃x¬Q(x), ∀x [P(x) ∨Q(x)]⇒
Skolemize: ¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨Q(x)]⇒

y 7→ a

¬P(a), ¬Q(b), P(y)⇒ y 7→ b???

¬P(a), ¬Q(b), Q(y)⇒
¬P(a), ¬Q(b), P(y) ∨Q(y)⇒ (∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨Q(x)]⇒ (∀l)

¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨Q(x)]⇒ (∧l)
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The World’s Smallest Theorem Prover?

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).


