Complexity Theory

Easter 2001
Suggested Exercises 4

1. Given a graph $G=(V, E)$, a set $U \subseteq V$ of vertices is called a vertex cover of G if, for each edge $(u, v) \in E$, either $u \in U$ or $v \in U$. That is, each edge has at least one end point in U. The decision problem V-COVER is defined as:
given a graph $G=(V, E)$, and an integer K, does G contain a vertex cover with K or fewer elements?
(a) Show a reduction from IND to V-COVER.
(b) Use (a) to argue that V-COVER is NP-complete.
2. The problem of four dimensional matching, 4DM, is defined analogously with 3DM:

Given four sets, W, X, Y and Z, each with n elements, and a set of quadruples $M \subseteq W \times X \times Y \times Z$, is there a subset $M^{\prime} \subseteq M$, such that each element of W, X, Y and Z appears in exactly one triple in M^{\prime}.

Show that 4DM is NP-complete.
3. Define a strong nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L, if for every $x \in L$, every computation path of M on x ends in either accept or maybe, with at least one accept and for not $\in L$, every computation path of M on x ends in reject or maybe, with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial time, then $L \in \mathrm{NP} \cap$ co-NP.
4. We use $x ; 0^{n}$ to denote the string that is obtained by concatenating the string x with a separator ; followed by n occurrences of 0 . If $[M]$ represents the string encoding of a non-deterministic Turing machine M, show that the following language is NP-complete:

$$
\left\{[M] ; x ; 0^{n} \mid M \text { accepts } x \text { within } n \text { steps }\right\} .
$$

Hint: rather than attempting a reduction from a particular NP-complete problem, it is easier to show this from first principles, i.e. construct a reduction for any NDTM M, and polynomial bound p.
Similarly, if $[M]$ represents the encoding of a deterministic Turing machine M, then

$$
\left\{[M] ; x ; 0^{n} \mid M \text { accepts } x \text { within } n \text { steps }\right\} .
$$

is P -complete.
5. Define a linear time reduction to be a reduction which can be computed in time $O(n)$.
(a) Show that there are no problems complete for P under linear time reductions (hint: use the Time Hierarchy Theorem).
(b) Show that for any fixed k, there is a polynomial time decidable language L, such that every language in $\operatorname{TIME}\left(n^{k}\right)$ is reducible to L (hint: construct a language similar to the one in (3) above).

