Specification and Verification II

- Topic of course is the Specification and Verification of Hardware
- Assumes familiarity with Specification and Verification I (which concerns software, particularly using Hoare logic)
- The two courses are really a single course

The notes contain general and background material for the course. Some of the material in them may not be covered in the lectures. Some details and examples are only presented in the lectures. The examinable material is what is actually covered in the lectures

Hoare Logic, Higher Order Logic and Temporal Logic

- Hoare logic can be used to verify programs in HDLs
- Hoare logic can be embedded in higher order logic
- see last part of Specification and Verification I
- Higher order logic will be used to represent hardware structures
- Temporal logic (see later):
- is used to specify properties
- can be embedded in higher order logic
- Hoare Logic is for data reasoning, temporal logic for time (control)
- Need to chose appropriate logic - all live inside higher order logic
- Goal: software and hardware modelled in same language
- programming languages get hardware features: SystemC
- hardware description languages get programming features: .. SystemVerilog

Starting today

- Hardware oriented Hoare logic examples
- apply Specification and Verification I ideas to hardware
- Modelling data
- words as numbers or as bit arrays
- Programs as hardware
- synthesis to state machines
- Compare program behaviour with hardware behaviour
- intermediate states visible
- Motivate temporal logic
- need to specify more than relationship between input and final result

Hardware Oriented Programs

- Hoare logic can be used to verify hardware algorithms
- can reason about programs to develop hardware
- not yet 'Industry Standard' practice
- interesting research direction: applications to hardware/software co-design?
- Hoare logic ideas appear in some industrial methods
- Intel's Symbolic Trajectory Evaluation (STE)
\{stimulus\} <hardware model> \{response\}
- Assertion Based Verification (ABV) for hardware annotates HDL source with assertions

Hoare Logic applied to hardware algorithms

- Examples: addition and multiplication
- Initially natural numbers will represent words
- leads to messy details
- later a type of words is introduced
- We will multiply natural numbers a and b
- assume they can be represented with n bits
- Write $a b$ to abbreviate $a \times b$
- a_{i} is i-th bit of the binary representation of a (a_{0} being the least significant bit)

$$
a=2^{n-1} a_{n-1}+2^{n-2} a_{n-2}+\cdots+2^{0} a_{0}
$$

hence

$$
\begin{aligned}
a b & =\left(2^{n-1} a_{n-1}+2^{n-2} a_{n-2}+\cdots+2^{0} a_{0}\right) b \\
& =2^{n-1} a_{n-1} b+2^{n-2} a_{n-2} b+\cdots+2^{0} a_{0} b \\
& =a_{n-1} 2^{n-1} b+a_{n-2} 2^{n-2} b+\cdots+a_{0} 2^{0} b
\end{aligned}
$$

Binary multiplication algorithm

- Multiplying by 2 corresponds to:
- shifting one place to the left
- adding a 0 as the least significant bit
- Denote this operation by $b \mapsto b-0$, then:

$$
\begin{aligned}
& 2^{0} b=b \\
& 2^{1} b=b-0 \\
& 2^{2} b=b-00 \\
& \vdots \\
& 2^{n} b=b-\underbrace{0 \cdots 0}_{n 0 s}
\end{aligned}
$$

- Recall: $a b=a_{n-1} 2^{n-1} b+a_{n-2} 2^{n-2} b+\cdots+a_{0} 2^{0} b$
- Thus product of a and b is given by the sum:

the th is ither all (if a_{i} is
- or b shifted i places to the left (if a_{i} is 1)
- a, b need n-bits \Rightarrow product needs $2 n$ bits

Extracting bits and subwords

- Let $\mathrm{A}[n]$ denote the n-th bit of the binary representation of A
- $A[n]$ is a number 1 or 0
- $A[0]$ is the least significant bit
- Thus:

$$
\mathrm{A}[n]=\left(\mathrm{A} \operatorname{div} 2^{n}\right) \bmod 2
$$

- Define $A[m: n]$ to be the numerical value of the word comprising bits n upto to m of A:

$$
\begin{cases}2^{m-n} \mathrm{~A}[m]+2^{m-n-1} \mathrm{~A}[m-1]+\cdots+2^{0} \mathrm{~A}[n] & \text { if } m>n \\ \mathrm{~A}[n] & \text { if } m=n \\ 0 & \text { if } m<n\end{cases}
$$

- Later we'll represent words as bit-strings instead of as numbers

Hoare logic verification of a multiplier

- Add-shift multiplication program:

I := 0; PROD := 0 ;
WHILE I < N DO
BEGIN PROD := PROD $+\mathrm{A}[\mathrm{I}] \times\left(2^{\mathrm{I}} \times \mathrm{B}\right)$; I := I + 1;
END

- Annotated Hoare specification:
$\left\{\mathrm{A}=a \wedge \mathrm{~B}=b \wedge a<2^{\mathrm{N}} \wedge b<2^{\mathrm{N}} \wedge \mathrm{N}>0\right\}$
I := 0; PROD := 0;
WHILE $\mathrm{I}<\mathrm{N}$ DO $\left\{\mathrm{I} \leq \mathrm{N} \wedge 2^{\mathrm{I}} \mathrm{A}[\mathrm{N}-1: \mathrm{I}] \mathrm{B}+\mathrm{PROD}=a b\right\}$
BEGIN PROD := PROD $+\mathrm{A}[\mathrm{I}] \times\left(2^{\mathrm{I}} \times \mathrm{B}\right)$;
I := I + 1;

END
$\{$ PROD $=a \times b\}$

- Routine (not trivial) to verify using Hoare Logic
- reasoning about div and mod is horrible

Using FOR-commands instead of WHILE

```
\vdash{A=a}\wedge \textrm{B}=b\wedgea<\mp@subsup{2}{}{\textrm{N}}\wedgeb<\mp@subsup{2}{}{\textrm{N}}\wedge\textrm{N}>0
    PROD := 0;
    FOR I := 0 UNTIL N-1 DO
        BEGIN PROD := PROD + A[I] }\times\textrm{B}
            B := 2\timesB;
        END
    {PROD =a\timesb}
```

- Program corresponds directly to hardware (i.e. more like HDL)
- three registers A, B and PROD
- initially PROD is set to 0
- A and B contain numbers to be multiplied
- I-th step of the multiplication:
- adding $A[I] \times B$ to PROD
- then shifting B one bit to the left (i.e. multiplying it by 2)

Textbook multiplier

- Simple textbook add-shift multiplier:

- Optimised version of naive algorithm
- Can apply Hoare logic methods to verify correctness
- see notes for (horrible) details of Hoare-style proof

Words as bit-strings (see notes for full details)

- Distinguish words from numbers - different type
- Advantages: corresponds more to intuition - words have a size
- Disadvantage: can't use off-the-shelf theory of arithmetic
- Size of a word is denoted by $|w|$
- $n^{\text {th }}$ bit of w denoted by $w[n]$
- $w[m: n]$ denotes bits m to n of w
- The word corresponding to a bit b is $\operatorname{Bw}(b)$
- $\operatorname{Bv}(b)$ is the number represented by bit b
- $\mathrm{V}(w)$ is the natural number represented by word w
- W n maps number m to the n-bit word representing it
- Concatenation of w_{1} with w_{2} denoted by $w_{1}-w_{2}$
- $w\{n \leftarrow b\}$ denotes a word such that $w[n]=b$ and is identical to w at all other bit positions ($\operatorname{pad} w$ with 0 s at left if $n \geq|w|$)
- The addition $w_{1} \uplus w_{2}$ of w_{1} and w_{2} is defined by: $w_{1} \uplus w_{2}=\mathrm{W}\left(\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)+1\right)\left(\mathrm{V}\left(w_{1}\right)+\mathrm{V}\left(w_{2}\right)\right)$
- b.w equals w if $b=\mathrm{T}$ and equals $\mathrm{W}|w| 0$ if $b=\mathrm{F}$

Words vs bits

- $w[n: n]$ is the 1 -bit word consisting of $w[n]$
- $w[n]$: bool
- $w[n: n]$: word
- Bits and 1-bit words are different types
- The word corresponding to a bit b is $\operatorname{Bw}(b)$
- Thus: $\operatorname{Bw}(b)[0]=b$

Representing Numbers

- Natural number: $b_{n-1} \cdots b_{0}$ represents

$$
2^{n-1} \times b_{n-1}+2^{n-2} \times b_{n-2}+\cdots+2^{0} \times b_{0}
$$

- Integer: $b_{n-1} \cdots b_{0}$ represents

$$
-2^{n-1} \times b_{n-1}+2^{n-2} \times b_{n-2}+\cdots+2^{0} \times b_{0}
$$

- this is the two's complement representation
- $\mathrm{V}(w)$ is the natural number represented by a w

$$
\mathrm{V}\left(b_{n-1} \cdots b_{0}\right)=2^{n-1} \times b_{n-1}+2^{n-2} \times b_{n-2}+\cdots+2^{0} \times b_{0}
$$

- Words can represent other values
- e.g. floating point numbers; opcodes
- $\operatorname{Bv}(b)$ is the number represented by b

$$
\operatorname{Bv}(\mathrm{T})=1 \quad \text { and } \quad \operatorname{Bv}(\mathrm{F})=0
$$

Arithmetic on bits and words

- The sum of bits a and b and a carry-in bit c
- is computed by $a \oplus b \oplus c$ (where \oplus is 'exclusive or')
- and the carry-out by $(a \wedge b) \vee(c \wedge(a \oplus b))$
- This is verified by:

$$
\begin{aligned}
& \operatorname{Bv}(a \oplus b \oplus c)=(\operatorname{Bv}(a)+\operatorname{Bv}(b)+\operatorname{Bv}(c)) \bmod 2 \\
& \operatorname{Bv}((a \wedge b) \vee(c \wedge(a \oplus b)))=(\operatorname{Bv}(a)+\operatorname{Bv}(b)+\operatorname{Bv}(c)) \operatorname{div} 2
\end{aligned}
$$

Verification by enumeration

- Sum:

Sum:
a b c $\operatorname{Bv}(a \oplus b \oplus c)$ $(\operatorname{Bv}(a)+\operatorname{Bv}(b)+\operatorname{Bv}(c)) \bmod 2$ 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0

- Carry:
Carry:

a	b	c	$\operatorname{Bv}((a \wedge b) \vee(c \wedge(a \oplus b)))$	$(\operatorname{Bv}(a)+\operatorname{Bv}(b)+\operatorname{Bv}(c)) \operatorname{div} 2$
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
0	1	1	1	1
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

Verification of a ripple-carry adder of any size

- Let R be:
$2^{\mathrm{I}} \mathrm{Bv}($ CARRY $)+\mathrm{V}($ SUM $[\mathrm{I}-1: 0])=\mathrm{V}(\mathrm{A}[\mathrm{I}-1: 0])+\mathrm{V}(\mathrm{B}[\mathrm{I}-1: 0]) \wedge$
$\mathrm{A}=w_{1} \wedge \mathrm{~B}=w_{2}$
- Consider the following annotated specification:
$\left\{\mathrm{A}=w_{1} \wedge \mathrm{~B}=w_{2} \wedge \mathrm{SUM}=\mathrm{W} N 0 \wedge \mathrm{CARRY}=\mathrm{F} \wedge\right.$
$\left.\left|w_{1}\right| \leq N \wedge\left|w_{2}\right| \leq N \wedge N>0\right\}$
FOR I := 0 UNTIL N-1 DO $\{R\}$ BEGIN
SUM[I]:=A[I] \oplus B[I] \oplus CARRY;
CARRY: $=(A[I] \wedge B[I]) \vee(\operatorname{CARRY} \wedge(A[I] \oplus B[I]))$; END
$\left\{2^{\mathrm{N}} \mathrm{Bv}(\right.$ CARRY $)+\mathrm{V}($ SUM $[\mathrm{N}-1: 0])=\mathrm{V}(\mathrm{A}[\mathrm{N}-1: 0])+\mathrm{V}(\mathrm{B}[\mathrm{N}-1: 0])$
$\left.\mathrm{A}=w_{1} \wedge \mathbf{B}=w_{2}\right\}$
- A, B are N-bit words, SUM, CARRY are truthvalues, I is an integer
- Proof horrible (omitted)

Word multiplication program

- Simple add-shift multiplication
- Annotated correctness specification:
$\{\mathrm{V}(\mathrm{A})=a \wedge \mathrm{~V}(\mathrm{~B})=b \wedge \mathrm{PROD}=\mathrm{W}(2 \mathrm{~N}) 0 \wedge$
$|\mathrm{A}| \leq \mathrm{N} \wedge|\mathrm{B}| \leq \mathrm{N} \wedge \mathrm{N}>0\}$
FOR I:=O UNTIL N-1 DO
$\left\{2^{\mathrm{I}} \mathrm{V}(\mathrm{A}[\mathrm{N}-1: \mathrm{I}]) b+\mathrm{V}(\right.$ PROD $\left.)=a b \wedge \mathrm{~V}(\mathrm{~B})=2^{\mathrm{I}} b\right\}$
BEGIN
PROD := PROD $\uplus \mathrm{A}[\mathrm{I}] . \mathrm{B}$;
B := B-0
END
$\{\mathrm{V}(\mathrm{PROD})=a b\}$
- Can generate VCs and prove them (horrible - omitted)

Topic shift: From programs to hardware (i.e. synthesis)

- Consider a ripple-carry adder

FOR I := 0 UNTIL N-1 DO BEGIN
SUM[I]:=A[I] \oplus B[I] \oplus CARRY;
CARRY:=(A[I] $\wedge B[I]) \vee(C A R R Y \wedge(A[I] \oplus B[I])) ;$ END

- If a particular value of N is fixed, then the program can be unrolled into the normal circuit for an adder.
- For example take $N=3$ to get:

FOR I := 0 UNTIL 2 DO
BEGIN
SUM[I]:=A[I] $\oplus \mathrm{B}[\mathrm{I}] \oplus \mathrm{CARRY}$;
CARRY: $=(A[I] \wedge B[I]) \vee(C A R R Y \wedge(A[I] \oplus B[I]))$; END

$\mathrm{N}=3$ adder

- 3-bit adder:

FOR I := 0 UNTIL 2 DO
BEGIN
SUM [I]:=A[I] \oplus B[I] \oplus CARRY;
CARRY: $=(\mathrm{A}[\mathrm{I}] \wedge \mathrm{B}[\mathrm{I}]) \vee(\operatorname{CARRY} \wedge(\mathrm{A}[\mathrm{I}] \oplus \mathrm{B}[\mathrm{I}]))$;
END

- Assuming initially CARRY = F; FOR-command unrolls to:

SUM $[0]:=A[0] \oplus B[0] \oplus F$;
CARRY: $=(A[0] \wedge B[0]) \vee(F \wedge(A[0] \oplus B[0]))$;
SUM[1] :=A[1] $\oplus \mathrm{B}[1] \oplus \mathrm{CARRY}$;
$\operatorname{CARRY}:=(A[1] \wedge B[1]) \vee(\operatorname{CARRY} \wedge(A[1] \oplus B[1])) ;$
SUM [2] :=A[2] $\oplus \mathrm{B}[2] \oplus$ CARRY;
CARRY:=(A[2] $\wedge B[2]) \vee(\operatorname{CARRY} \wedge(A[2] \oplus B[2]))$;

- Symbolically executing yields logic equations:

SUM [0]:=A [0] $\oplus \mathrm{B}[0]$;
$\operatorname{SUM}[1]:=A[1] \oplus B[1] \oplus(A[0] \wedge B[0])$;
$\operatorname{SUM}[2]:=A[2] \oplus B[2] \oplus$
$((A[1] \wedge B[1]) \vee((A[0] \wedge B[0]) \wedge(A[1] \oplus B[1])))$;
CARRY : $=(\mathrm{A}[2] \wedge \mathrm{B}[2]) \vee$
$(((A[1] \wedge B[1]) \vee((A[0] \wedge B[0]) \wedge(A[1] \oplus B[1]))) \wedge$ $(A[2] \oplus B[2]))$;

Combinational logic

- Derived program is combinational logic:

SUM $[0]:=A[0] \oplus B[0]$;
$\operatorname{SUM}[1]:=A[1] \oplus B[1] \oplus(A[0] \wedge B[0])$;
SUM [2]: $=\mathrm{A}[2] \oplus \mathrm{B}[2] \oplus$
$((A[1] \wedge B[1]) \vee$ $((A[0] \wedge B[0]) \wedge(A[1] \oplus B[1]))) ;$
CARRY: $=(A[2] \wedge B[2])$
\checkmark
$(((A[1] \wedge B[1]) \vee$
$((A[0] \wedge B[0]) \wedge(A[1] \oplus B[1]))) \wedge$
($\mathrm{A}[2] \oplus \mathrm{B}[2])$) ;

- These are independent assignments
- boolean expressions for computing the values of SUM and CARRY directly in terms of the $\mathrm{A}[0], \mathrm{A}[1], \mathrm{A}[2], \mathrm{B}[0], \mathrm{B}[1]$ and $\mathrm{B}[2]$
- This process yields logic for adders of arbitrary (fixed) bit-widths
- Hoare Logic verifies any adder generated this way

What about non-combinational logic?

- Unrolling commands to combinational logic is sensible for the adder
- Less so for multipliers
- straightforward to unroll a multiplier into combinational logic
- but resulting Boolean expressions will be huge
- evaluating in one clock cycle likely to make the cycle time too slow
- Usually multipliers are sequential machines
- compute the product over a number of cycles
- might do the add and shift in a single cycle which would take N cycles
- might do add and shift on separate cycles, taking 2 N shorter cycles
- Decision of whether to implement a particular function as combinational or sequential logic, and if sequential, how much to do each cycle, is a decision which depends on engineering issues

Specifying cycles

- Abstract view of multiplier:
- computes a single state change
- from initial values of the registers
- to final values
- Adequate for functional correctness
- i.e. it does multiplication
- Less abstract views needed for timing analysis

HDLs and events

- HDLs allow operations to be scheduled to clock cycles
- Statements can be prefixed by ©
- the symbol © introduces an event control
- Multiplier that takes N cycles:

$$
\mathrm{R}=\mathrm{CARRY} \cdot \mathrm{P}-\mathrm{A}
$$

FOR I := 0 UNTIL N-1 DO
©R := (R[0].B $\uplus R[2 N-1: N])-R[N-1: 1]$

- Multiplier that takes 2 N cycles:

$$
\begin{aligned}
& \text { FOR I }:=0 \text { UNTIL N-1 DO } \\
& \text { BEGIN } \\
& \text { ©SUM }:=\mathrm{R}[0] \cdot \mathrm{B} \uplus \mathrm{R}[2 \mathrm{~N}-1: \mathrm{N}] ; \\
& \text { ©R }:=\text { SUM-R }[\mathrm{N}-1: 1] \\
& \text { END }
\end{aligned}
$$

- In Verilog, event controls can be more detailed
- $₫($ posedge clk) or $@($ negedge $c 1 k)$

Need more than Hoare Logic

- Programs with added event controls can still be reasoned about using Floyd Hoare logic
- relation between initial and final state unchanged
- ©'s just determine intermediate states at clock ticks
- Consider this silly program:

FOR I := 0 UNTIL N-1 DO
BEGIN
©SUM := $\mathrm{R}[0] . \mathrm{B} \uplus \mathrm{R}[2 \mathrm{~N}-1: \mathrm{N}]$;
B $:=\neg \mathrm{B}$;
©R := SUM-R[N-1:1];
$\mathrm{B}:=\neg \mathrm{B}$;
END

- Same initial-final relation, but B oscillates
- Hoare specifications only deal with initial-final relation, not intermediate states
- Temporal logic enables properties of intermediate states to be specified - e.g. B stable (false for silly program above)

Division program from Specification and Verification I

- Division program:

$\mathrm{R}:=\mathrm{X}$;
 $\mathrm{Q}:=0$;
 WHILE $\mathrm{Y} \leq \mathrm{R}$ DO

BEGIN R:=R-Y; $\mathrm{Q}:=\mathrm{Q}+1$ END

- Implemented as a machine
- registers $\mathrm{X}, \mathrm{Y}, \mathrm{Q}$ and R
- a subtracter and incrementer
- on each cycle: subtract Y from R; add 1 to Q
- Specification and Verification I:
- program executes once and stops (maybe)
- Specification and Verification II:
- program executes continuously
- body of loop executed as combinational logic

Our toy language becomes an HDL

- To emphasize the continuously-running nature of hardware, recast division program as (where FOREVER is WHILE T DO):
FOREVER
IF Load=1
THEN $\mathrm{X}:=\mathrm{In} 1 ; \mathrm{Y}:=\operatorname{In} 2 ;$ DONE:=0; R:=X; Q:=0
ELSE IF $\mathrm{Y} \leq \mathrm{R}$ THEN $\mathrm{R}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1$
ELSE DONE:=1
- In1, In2 and Load are inputs
whose value is determined by the environment (e.g. the user)
- X, Y, Q, R and DONE are registers
whose value is set by the program
- Environment sets the input Load to 1 to initialise registers
- To perform a division:
- Load is set to 0
- and held at this value until DONE=1
- so the environment must ensure that DONE $=0 \Rightarrow$ Load $=0$

FOREVER C

- Each iteration step consists of
- Circuit C computes new values of registers from current values and inputs
- then updating the registers

Programs as temporal statements

- Would like a generalised Hoare Logic specification:
\vdash \{If environment ensures always that: DONE $=0 \Rightarrow$ Load $=0$
and if Load is set to 1 when: $\operatorname{In} 1=x \wedge \operatorname{In} 2=y\}$ FOREVER
IF Load=1
THEN $\mathrm{X}:=\operatorname{In} 1 ; \mathrm{Y}:=\operatorname{In} 2 ;$ DONE: $=0 ; \mathrm{R}:=\mathrm{X} ; \mathrm{Q}:=0$
ELSE IF $\mathrm{Y} \leq \mathrm{R}$ THEN $\mathrm{R}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1$
ELSE DONE: $=1$
$\{$ Then x and y will be stored into X and Y
and on the next cycle DONE will be set to 0
and sometime later DONE will be be set to 1
and X and Y won't change until DONE is set to 1
and when DONE goes to 1 we have: $x=\mathrm{R}+y \times \mathrm{Q}\}$
- Stuff in red needs Temporal Logic

Brief history of temporal logic

- 1950s: philosophers invent temporal logic (A.N. Prior of Oxford)
- 1970s: Burstall, Pnueli, Lamport use temporal logic for programs
- 1980s: Emerson, Clarke and other introduce model checking
- 1980s: hardware verification examples studied
- 1990s: model checking catches on:

Intel hires many logicians for P7 verification. Uses STE.
Currently developing higher order logic tools ($r e F L^{e c t}$).

- 1997: Amir Pnueli gets the Turing Award in recognition of his contribution to the applications of temporal logic
- 2004: temporal notation for properties debated and standardised - semantics: CTL versus LTL
- syntax: PSL and SVA 'aligned'
- 2005 onwards: Assertion Based Verification (ABV) grows - dynamic checking of properties by simulation (e.g. used at ARM) - static checking by model checking
- 2008: Clarke, Emerson \& Sifakis get Turing prize for model checking
- 2008: Clarke gets 2008 CADE Herbrand Award
- Note: work on formal methods leads to high prestige awards!

Rest of the course

- First look at 'raw' higher order logic for specification and verification
- temporal logic is a notation for specifying properties of traces
- first look at reasoning directly about traces in higher order logic
- Towards the end of the course we return to temporal logic
- look at its constructs
- semantics via a shallow embedding in higher order logic
- look at the 'Industry Standard' logic PSL
- overview some key ideas for model checking temporal logic properties

Limitations of the Method

- Formal proof can't guarantee actual chips will work:
- design models are not always accurate
- there may be fabrication defects
- Specifications may not capture requirements:
- large specifications may be unreadable
- some input conditions may be ignored

Modelling Hardware in Higher Order Logic

Original slides by Tom Melham and Michael Norrish (edited by Mike Gordon)

Why Formal Specification?

Consider this device (J. Herbert's example):

This can be specified informally by
The input line datain accepts a stream of bits, and the output line dataout emits the same stream delayed by four cycles. The bus out is four bits wide. If the input sample is false then the 4-bit word at out is the last four bits input at datain. Otherwise, the output word is all zeros.

Hardware Verification Method

- Classical method of hardware verification:

1. write a specification of intended behaviour Spec
2. write specifications of the design components Part-1, ... Part- n
3. define a formal model of the design \vdash Design $=$ Part- $1+\cdots+$ Part $-n$
4. formulate and prove correctness
\vdash Design satisfies Spec

- This general verification approach
- underlies various specific formal methods
- requires mechanized support for large designs
- is usually applied hierarchically

Specification Examples

- Simple combinational behaviour:

$\vdash \operatorname{Xor}\left(i_{1}, i_{2}, o\right)=\left(o=\neg\left(i_{1}=i_{2}\right)\right)$
- Bidirectional wires:

$\vdash \operatorname{Ntran}(g, s, d)=(g \Rightarrow(d=s))$

Why Formal Specification?

The informal specification is

- vague: does 'the last four bits input' include the current bit?
- incomplete: what is the value at dataout during the first three cycles?
- unusable: a natural language specification can't be simulated or compiled!

Specification Examples

Sequential (time-dependent) behaviour:

$\vdash \operatorname{Dtype}(c k, d, q)=\forall t . q(t+1)=($ if Rise $c k t$ then $d t$ else $q t)$
\vdash Rise $c k t=\neg c k(t) \wedge c k(t+1)$

Formal Specification in HOL

- Consider the following device:

This is specified by a boolean term $S[a, b, c, d]$ with free variables a, b, c, and d.

- The idea is that
- a, b, c, d model externally-observable values
- $\mathrm{S}[a, b, c, d]=\left\{\begin{array}{l}\mathrm{T} \quad \begin{array}{l}\text { if } a, b, c, \text { and } d \text { could occur } \\ \text { simultaneously on the } \\ \text { corresponding external wires of the } \\ \text { device Dev }\end{array} \\ \mathrm{F} \begin{array}{l}\text { otherwise }\end{array}\end{array}\right.$

Composing Behaviours

- Consider the following two devices:

Logical conjunction (\wedge) models the effect of connecting components together:

$$
\mathbf{S}_{1}[a, x] \wedge \mathbf{S}_{2}[x, b]
$$

Specification of the Sampler

- We can specify the sampler formally by

$\forall t: t i m e$.

$$
(\operatorname{dataout}(t)=\operatorname{datain}(t-4))
$$

$$
\wedge
$$

$$
(\text { out }(t)=\text { if sample }(t)
$$

$$
\text { then }[F ; F ; F ; F]
$$

$$
\text { else }[\operatorname{datain}(t-4) ; \operatorname{datain}(t-3) ;
$$

$$
\operatorname{datain}(t-2) ; \operatorname{datain}(t-1)])
$$

Specification of the Sampler

- We can specify the sampler formally by
- The formal specification is
- precise: 'last four bits input' doesn't include current bit
- complete: can infer that dataout equals datain (0) during the first three cycles.
- usable: logic notation can be processed by machine

$$
\begin{aligned}
& \forall t: t i m e . \\
& (\operatorname{dataout}(t)=\operatorname{datain}(t-4)) \\
& \wedge \\
& (\text { out }(t)=\text { if sample }(t) \\
& \text { then }[F ; F ; F ; F] \\
& \text { else [datain }(t-4) \text {; datain }(t-3) \text {; } \\
& \text { datain }(t-2) \text {; datain }(t-1)])
\end{aligned}
$$

- Existential quantification is called a hiding operator-it 'hides' internal wires.

Hiererchical Verification

The hierarchical verification method:

Shallow embedding of Verilog

- Some typical structural Verilog

```
module COMP (p1, ... ,pm);
    wire w1, ..., wn;
    COMP1 M1 (...);
    COMP2 M2 (...);
endmodule
```

- Assume formulas for COMP1, COMP2 already defined
- Logical representation:

```
COMP}(\textrm{p}1,\ldots,\textrm{pm})=\exists\textrm{w}1\ldots\textrm{wn}.\operatorname{COMP1}(\ldots) ^ COMP2(...
```


Hierarchical Design—Advantages

- Each type of module verified only once
- the statement of its correctness will be reused many times
- Controls complexity through abstraction
- each verification is done at the appropriate level of complexity

Formulating Correctness

- A key part of formal hardware verification is formalizing what 'correctness' means.
- The strongest formulation is equivalence:

$$
\vdash \forall v_{1} \ldots v_{n} . \mathbf{M}\left[v_{1}, \ldots, v_{n}\right]=\mathbf{S}\left[v_{1}, \ldots, v_{n}\right]
$$

- For partial specifications, use implication:

$$
\vdash \forall v_{1} \ldots v_{n} \cdot \mathbf{M}\left[v_{1}, \ldots, v_{n}\right] \Rightarrow \mathbf{S}\left[v_{1}, \ldots, v_{n}\right]
$$

- In general, the satisfaction relationship

$$
\vdash \mathbf{M}\left[v_{1}, \ldots, v_{n}\right] \underset{a b s}{\operatorname{sat}} \mathbf{S}\left[a b s\left(v_{1}\right), \ldots, a b s\left(v_{n}\right)\right]
$$

must be one of abstraction. The specification will be an abstraction of the design model. Various kinds of abstractions on signals (abs) will be discussed later.

Design Model and Correctness

- We define the design model using composition and hiding, as follows:

$$
\begin{aligned}
& \vdash \operatorname{Inv}(i, o)= \\
& \exists g p . \operatorname{Pwr} p \wedge \operatorname{Gnd} g \wedge \\
& \quad \operatorname{Ntran}(i, g, o) \wedge \operatorname{Ptran}(i, p, o)
\end{aligned}
$$

- Correctness is formulated by the equivalence:

$$
\vdash \forall i o . \operatorname{Inv}(i, o)=(o=\neg i)
$$

This follows by purely logical inference...

A Simple Correctness Proof

- Here is the design of a CMOS inverter:
- Suppose we wish to verify that $o=\neg i$.
- There are three steps:
- define a model of the circuit in logic
- formulate the correctness of the circuit
- prove the correctness of the circuit

The Correctness Proof

- Definition of Inv:

$$
\begin{aligned}
& \vdash \operatorname{Inv}(i, o)= \\
& \quad \exists g p . \operatorname{Pwr} p \wedge \text { Gnd } g \wedge \\
& \quad \operatorname{Ntran}(i, g, o) \wedge \operatorname{Ptran}(i, p, o)
\end{aligned}
$$

- Expanding with definitions:

$$
\begin{aligned}
& \vdash \operatorname{Inv}(i, o)= \\
& \quad \exists g p . \quad(p=\mathbf{T}) \wedge(g=\mathbf{F}) \wedge \\
& \quad(i \Rightarrow(o=g)) \wedge(\neg i \Rightarrow(o=p))
\end{aligned}
$$

- By simple logical reasoning:

$$
\vdash \operatorname{Inv}(i, o)=(i \Rightarrow(o=\mathrm{F})) \wedge(\neg i \Rightarrow(o=\mathrm{T}))
$$

CMOS Primitives

- Formal specifications of primitives:

$$
\begin{aligned}
& g \\
& \stackrel{\perp}{\underline{L}}
\end{aligned} \vdash \text { Gnd } g=(g=\mathbf{F})
$$

- This is the so-called switch model of CMOS.

Another Example

- An ($n+1$)-bit ripple-carry adder:

- We wish to prove that:

$$
\left(2^{n+1} \times \text { cout }\right)+s=a+b+\text { cin }
$$

- There are, as usual, three steps:
- define a model of the circuit in logic
- formulate the correctness of the circuit
- prove the correctness of the circuit

The Correctness Proof continued

- Simplifying gives:

$$
\vdash \operatorname{Inv}(i, o)=(i \Rightarrow \neg o) \wedge(\neg i \Rightarrow o)
$$

- By the law of the contrapositive:

$$
\vdash \operatorname{Inv}(i, o)=(o \Rightarrow \neg i) \wedge(\neg i \Rightarrow o)
$$

- By the definition of boolean equality:

$$
\vdash \operatorname{lnv}(i, o)=(o=\neg i)
$$

- Generalizing the free variables gives:

$$
\vdash \forall i o . \operatorname{Inv}(i, o)=(o=\neg i)
$$

Defining the Model: types

- Specification uses numbers, i.e. values of type num
- Implementation uses words - values of type word
- $n^{\text {th }}$ bit of w denoted by $w[n]$
- $w[m: n]$ denotes bits m to n of w
- $\operatorname{Bv}(b)$ is the number represented by bit b
- $\mathrm{V}(w)$ is the natural number represented by word w
- Abstraction from words to numbers (data abstraction):

$$
\begin{array}{ll}
\vdash \mathrm{B} v & =\text { if } b \text { then } 1 \text { else } 0 \\
\vdash \mathrm{~V} w[0: 0] & =\mathrm{Bv} w[0] \\
\vdash \mathrm{V} w[n+1: 0] & =2^{n+1}(\mathrm{Bv} w[n+1])+\mathrm{V} w[n: 0]
\end{array}
$$

Scope of the Method

- The inverter example is, of course, trivial!
- But the same method has been applied to
- a commercial CMOS cell library
- several complete microprocessors (e.g. ARM)
- floating point algorithms and hardware
- Features of the approach:
- the specification language is just logic
* logic can mimic HDL constructs
- the rules of reasoning are also pure logic
* special-purpose derived rules are possible
- big formal proofs require machine assistance

Defining the Model

- Recursive view of an $n+1$-bit adder:

- Primitive recursive definition in logic:

$$
\begin{aligned}
& \text { AdderImp }(0)(a, b, \text { cin }, s, \text { cout })= \\
& \quad \text { Add1 }(a[0], b[0], \text { cin, } s[0], \text { cout }) \\
& \text { AdderImp } n(a, b, \text { cin }, s, \text { cout })= \\
& \quad \exists c \text {. Add } 1(a[n], b[n], c, s[n], \text { cout }) \wedge \\
& \quad \text { AdderImp }(n-1)(a[n-1: 0], b[n-1: 0], \text { cin }, s[n-1: 0], c)
\end{aligned}
$$

Formulation of Correctness

- Logical formulation of correctness:

$$
\begin{aligned}
& \text { Spec } n(a, b, \text { cin }, s, \text { cout })=\left(\left(2^{n+1} \text { cout }\right)+s=a+b+\text { cin }\right) \\
& \forall n \text { a } b \text { cin } s \text { cout. } \\
& \text { AdderImp } n(a, b, \text { cin }, s, \text { cout }) \\
& \Rightarrow \text { Spec } n(\mathbf{V} a[n: 0], \mathrm{V} b[n: 0], \mathrm{Bv} \text { cin, } \mathrm{V} s[n: 0], \mathrm{Bv} \text { cout })
\end{aligned}
$$

- Note the data abstraction (abs in an earlier slide)
- This is easy to prove (done later in the course)

Defining the Model: recursive definition

- If $n>0$ an $(n+1)$-bit adder is built from an n-bit adder

Defining the Model: Add1

- Diagram of a 1-bit full adder:

- Lines a, b, cin, sum and cout carry boolean values
- Specification (note data abstraction from bool to num):

$$
\begin{aligned}
& \text { Add1 }(\mathrm{a}, \mathrm{~b}, \text { cin, sum, cout })= \\
& \quad(2 \times \operatorname{Bv}(\text { cout })+\mathrm{Bv}(\text { sum })=\operatorname{Bv}(\mathrm{a})+\mathrm{Bv}(\mathrm{~b})+\mathrm{Bv}(\mathrm{cin}))
\end{aligned}
$$

Formulating Correctness

- Then correctness is stated by:
$\vdash \forall c k . \operatorname{lnf}($ Rise $c k) \Rightarrow$
$\forall d q$. Dtype $(c k, d, q) \Rightarrow$
$\operatorname{Del}(d$ when $($ Rise $c k), q$ when $($ Rise $c k))$
- Note the formal validity condition:

$$
\vdash \operatorname{Inf} P=\forall t . \exists t^{\prime} . t^{\prime}>t \wedge P t^{\prime}
$$

Temporal Abstraction

- Example—abstracting to unit delay:

- Notions of time involved:
- coarse grain of time- unit time $=1$ clock cycle
- fine grain of time-unit time ≈ 1 gate delay

Industry use of theorem proving

- Intel
- floating point algorithms (uses HOL Light system)
- hardware (uses internal tools Forte/reFL ${ }^{\text {ect }}$)
- AMD
- floating point (uses ACL2 prover)
- Sun
- high level architecture verification (PVS)
- Rockwell Collins
- low level code verification (ACL2)
- Use of model checking widespread
- discussed in latter part of the course

Formulating Correctness

- A mapping between time-scales:

- Define the temporal abstraction functions:
\vdash Timeof $\mathrm{P} n=$ the time on t_{c} such that P true for nth time
\vdash signal when $P=$ signal $\circ($ Timeof $P)$
where $(f \circ g) x=f(g x) \quad$ [\circ is function composition]

Summary

- Specifying behaviour:
- predicates- $\mathrm{S}[a, b, c, d]$
- Specifying structure:
- composition- $\mathrm{S}_{1}[a, x] \wedge \mathrm{S}_{2}[x, b]$
- hiding- $\exists x . \mathrm{S}_{1}[a, x] \wedge \mathrm{S}_{2}[x, b]$
- Formulating correctness:
- $\vdash \forall v_{1} \ldots v_{n} . \mathbf{M}\left[v_{1}, \ldots, v_{n}\right]=\mathbf{S}\left[v_{1}, \ldots, v_{n}\right]$
- $\vdash \forall v_{1} \ldots v_{n} . \mathbf{M}\left[v_{1}, \ldots, v_{n}\right] \Rightarrow \mathbf{S}\left[v_{1}, \ldots, v_{n}\right]$
- $\vdash \forall v_{1} \ldots v_{n} . \mathbf{M}\left[v_{1}, \ldots, v_{n}\right] \Rightarrow \mathbf{S}\left[a b s v_{1}, \ldots, a b s v_{n}\right]$
- Abstraction
- data: $w \mapsto \mathrm{~V}(w)$
- temporal: $s i g \mapsto s i g$ when (Rise $c l k)$

A 1-bit CMOS full adder

- Here is a diagram of a 1-bit full adder:

- Lines a, b, cin, sum and cout carry the boolean values T or F.
- Specification of the adder:

Add1(a, b, cin, sum, cout) \equiv
$(2 \times \operatorname{Bv}($ cout $)+\operatorname{Bv}($ sum $)=\operatorname{Bv}($ a $)+\operatorname{Bv}($ b $)+\operatorname{Bv}($ cin $))$

- A correct implementation has:
- lines a, b, cin, sum and cout
- constrains a, b, cin, sum and, cout so $\operatorname{Add1}(a, b$, cin, sum, cout $)$

Implementation

- A CMOS implementation of the adder:
- lines with the same name are connected
- lines p0, .., p11 are internal
- horizontal transistors are bidirectional

Specification in logic

Add1_Imp $(a, b$, cin, sum, cout $) \equiv$
$p_{0} p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7} p_{8} p_{9} p_{10} p_{11}$
$\operatorname{Ptran}\left(p_{1}, p_{0}, p_{2}\right) \wedge \operatorname{Ptran}\left(\operatorname{cin}, p_{0}, p_{3}\right) \wedge \operatorname{Ptran}\left(b, p_{2}, p_{3}\right) \wedge \operatorname{Ptran}\left(a, p_{2}, p_{4}\right) \wedge$
$\operatorname{Ptran}\left(p_{1}, p_{3}, p_{4}\right) \wedge \operatorname{Ntran}\left(a, p_{4}, p_{5}\right) \wedge \operatorname{Ntran}\left(p_{1}, p_{4}, p_{6}\right) \wedge \operatorname{Ntran}\left(b, p_{5}, p_{6}\right) \wedge$
$\operatorname{Ntran}\left(p_{1}, p_{5}, p_{11}\right) \wedge \operatorname{Ntran}\left(\operatorname{cin}, p_{6}, p_{11}\right) \wedge \operatorname{Ptran}\left(a, p_{0}, p_{7}\right) \wedge \operatorname{Ptran}\left(b, p_{0}, p_{7}\right) \wedge$
$\operatorname{Ptran}\left(a, p_{0}, p_{8}\right) \wedge \operatorname{Ptran}\left(\right.$ cin, $\left.p_{7}, p_{1}\right) \wedge \operatorname{Ptran}\left(b, p_{8}, p_{1}\right) \wedge \operatorname{Ntran}\left(\right.$ cin $\left., p_{1}, p_{9}\right) \wedge$
$\stackrel{\operatorname{Ptran}\left(a, p_{0}, p_{8}\right.}{\operatorname{Ntran}\left(b, p_{1}, p_{10}\right) \wedge \operatorname{Ntran}\left(a, p_{9}, p_{11}\right) \wedge \operatorname{Ntran}\left(b, p_{9}, p_{11}\right) \wedge \operatorname{Ntran}\left(a, p_{10}, p_{11}\right) \wedge}$
$\operatorname{Ntran}\left(b, p_{1}, p_{10}\right) \wedge \operatorname{Ntran}\left(a, p_{9}, p_{11}\right) \wedge \operatorname{Ntran}\left(b, p_{9}, p_{11}\right) \wedge \operatorname{Ntran}\left(a, p_{10}, p_{11}\right) \wedge$
$\operatorname{Gnd}\left(p_{11}\right) \wedge \operatorname{Ptran}\left(p_{1}, p_{0}\right.$, cout $) \wedge \operatorname{Ntran}\left(p_{1}\right.$, cout,$\left.p_{11}\right)$

- Verify by Boolean algebra (tedious) or exhaustive enumeration

An n-bit adder

- n-bit adder computes an n-bit sum and 1-bit carry-out from two n-bit inputs and a 1-bit carry-in
- Diagram:

- cin and cout carry single bits, i.e. Booleans
- a, b and sum carry n-bit words
- Adder n specifies an $n+1$-bit adder !!!
- Example: Adder(3) specifies a 4-bit adder

Specification

- The definition of Adder is:

Adder $(n)(a, b$, cin, sum, cout $) \equiv$

$$
\left(2^{n+1} \times \operatorname{Bv}(\text { cout })+\mathrm{V}(\text { sum }[n: 0])=\right.
$$

$$
\mathrm{V}(a[n: 0])+\mathrm{V}(b[n: 0])+\operatorname{Bv}(c i n))
$$

- Diagram of implementation:

- By primitive recursion:

Adder_Imp $(0)(a, b$, cin, sum, cout $) \equiv$ Add1 (a [0], $b[0]$, cin, sum [0] , cout)
Adder_Imp $(n+1)(a, b$, cin, sum, cout $) \equiv$
$\exists c$. Adder_Imp $(n)(a, b$, cin, sum,$c) \wedge$ Add1 ($a[n+1], b[n+1], c$, sum $[n+1]$, cout $)$

Verification:

- Prove by induction on n that for all n :

Adder_Imp $(n)(a, b$, cin, sum, cout $)$
Adder $(n)(a, b$, cin, sum, cout $)$

- Basis:
$\stackrel{\text { Adder_Imp }}{\Rightarrow}(0)(a, b$, cin, sum, cout $)$
\Rightarrow
Adder $(0)(a, b$, cin, sum, cout $)$
- Expanding definitions of Adder_Imp and Adder:

Add1 (a [0], b[0], cin, sum [0], cout)
$\underset{\left(2^{0+1}\right.}{\overrightarrow{7}} \times \operatorname{Bv}($ cout $)+\mathrm{V}($ sum $[0: 0])=\mathrm{V}(a[0: 0])+\mathrm{V}(b[0: 0])+\operatorname{Bv}($ cin $\left.)\right)$

- Expanding definition of Add1 and simplifying:
$(2 \times \operatorname{Bv}($ cout $)+\operatorname{Bv}($ sum $[0])=\operatorname{Bv}(a[0])+\operatorname{Bv}(b[0])+\operatorname{Bv}($ cin $))$
$\overrightarrow{(2 \times \operatorname{Bv}(\text { cout })+\mathrm{V}(\text { sum }[0: 0])=\mathrm{V}(a[0: 0])+\mathrm{V}(b[0: 0])+\operatorname{Bv}(\text { cin })) ~}$
- Follows by $\mathrm{V}(w[0: 0])=\operatorname{Bv}(w[0])$

Induction step

- Step:

(Adder_Imp $(n)(a, b$, cin, sum, cout $) \Rightarrow$ Adder $(n)(a, b$, cin, sum, cout $))$
\Rightarrow
(Adder_Imp $(n+1)(a, b$, cin, sum, cout $) \Rightarrow$ Adder $(n+1)(a, b$, cin, sum, cout $))$

- Assume:
(Adder_Imp $(n)(a, b$, cin, sum, cout $) \Rightarrow$
Adder $(n)(a, b$, cin, sum, cout $))$
- Then show:

Adder_Imp $(n+1)(a, b$, cin, sum, cout $)$
$=\exists c . \operatorname{Adder} \operatorname{Imp}^{\prime}(n)(a, b$, cin, sum,$c) \wedge$ $\operatorname{Add} 1(a[n+1], b[n+1], c, \operatorname{sum}[n+1]$, cout $)$
$\Rightarrow \exists c$. Adder $(n)(a, b$, cin, sum,$c) \wedge$ $\operatorname{Add} 1(a[n+1], b[n+1], c$, sum $[n+1]$, cout $)$
$=\exists c .\left(2^{n+1} \operatorname{Bv}(c)+\mathrm{V}(\operatorname{sum}[n: 0])=\mathrm{V}(a[n: 0])+\mathrm{V}(b[n: 0])+\mathrm{Bv}(\right.$ cin $\left.)\right)$ \wedge
$(2 \mathrm{Bv}($ cout $)+\operatorname{Bv}(\operatorname{sum}[n+1])=\operatorname{Bv}(a[n+1])+\operatorname{Bv}(b[n+1])+\operatorname{Bv}(c))$

Step continued

If:
$(A=B) \wedge(C=D)$
then it follows that (\Rightarrow)
$\left(A+2^{n+1} C\right)=\left(B+2^{n+1} D\right)$
hence:

$$
=\exists c \cdot\left(\mathrm{~V}(\operatorname{sum}[n+1: 0])+2^{n+2} \operatorname{Bv}(\text { cout })=\mathrm{V}(a[n+1: 0])+\mathrm{V}(b[n+1: 0])+\mathrm{Bv}(\text { cin })\right)
$$

$=\left(\mathrm{V}(\operatorname{sum}[n+1: 0])+2^{n+2} \operatorname{Bv}(\right.$ cout $)=\mathrm{V}(a[n+1: 0])+\mathrm{V}(b[n+1: 0])+\operatorname{Bv}($ cin $\left.)\right)$
$=\operatorname{Adder}(n+1)(a, b$, cin, sum, cout $))$

$$
\begin{aligned}
& \exists c \cdot \overbrace{\left(2^{n+1} \mathrm{Bv}(c)+\mathrm{V}(\operatorname{sum}[n: 0])\right.}^{A}=\overbrace{\mathrm{V}(a[n: 0])+\mathrm{V}(b[n: 0])+\mathrm{Bv}(\text { cin })}^{B} \\
& \underbrace{(2 \operatorname{Bv}(\text { cout })+\operatorname{Bv}(\operatorname{sum}[n+1])}_{C}=\underbrace{\operatorname{Bv}(a[n+1])+\operatorname{Bv}(b[n+1])+\operatorname{Bv}(c)}_{D} \\
& \Rightarrow \exists c \cdot \overbrace{2^{n+1} \operatorname{Bv}(c)+\mathrm{V}(\text { sum }[n: 0])}^{A}+\overbrace{2^{n+1} 2 \operatorname{Bv}(\text { cout })+2^{n+1} \operatorname{Bv}(\text { sum }[n+1])}^{2^{n+1} C} \\
& =\overparen{\mathrm{V}(a[n: 0])+\mathrm{V}(b[n: 0])+\mathrm{Bv}(\text { cin })} \\
& +\underbrace{2^{n+1} \operatorname{Bv}(a[n+1])+2^{n+1} \operatorname{Bv}(b[n+1])+2^{n+1} \operatorname{Bv}(c)}_{2^{n+1} D}
\end{aligned}
$$

Sequential Devices

- Pure combinational adder:

Adder $(n)(a, b$, cin, sum, cout $) \equiv$ $\left(2^{n+1} \times \operatorname{Bv}(\right.$ cout $)+\mathrm{V}($ sum $[n: 0])=$

$$
\mathrm{V}(a[n: 0])+\mathrm{V}(b[n: 0])+\operatorname{Bv}(c i n))
$$

- a, b and sum range over words
- cin and cout range over bits (Booleans)
- Zero-delay adder:

Combinational_Adder $(n)(a, b$, cin, sum, cout $) \equiv$ $\forall t$. Adder $(n)(a(t), b(t), \operatorname{cin}(t), \operatorname{sum}(t), \operatorname{cout}(t))$

- a, b and sum range over functions from time to words
- cin and cout range over functions from time to bits
- Unit-delay adder:

Unit_Delay_Adder $(n)(a, b$, cin, sum, cout $) \equiv$
$\forall t$. Adder $(n)(a(t), b(t), \operatorname{cin}(t), \operatorname{sum}(t+1), \operatorname{cout}(t+1))$

Textbook add-shift multiplier

- A standard add-shift multiplier:

- This can be verified directly
- Verification can be done directly in HOL or using Hoare Logic
- HOL proof by induction on word size
- essence the of proofs (the invariant) are the same
- compare sections 1.8 and 2.7 of notes (only if you enjoy messy details)

An edge-triggered Dtype

- Register-transfer (RT) level:
- abstract level in which devices are viewed as sequential machines
- registers are modelled as unit-delay elements without explicit clock lines
- used for previous multipliers
- Trace level (N.B. not standard terminology):
- closer to HDL simulation timescale
- clocks explicit, edges modelled
- used for various degress of 'temporal granularity'
- Dtype - a fine grain trace level example

Specification of Dtype

- the clock ck has a rising edge at time t_{1}, and
- the next rising edge of ck is at t_{2}, and
- the value at d is stable for c_{1} units of time before t_{1} (c_{1} is the setup time), and
- there are at least c_{2} units of time between t_{1} and t_{2} (c_{2} constrains the minimum clock period)

then

- the value at q will be stable from c_{3} units of time after t_{1} (c_{3} is the start time) until c_{4} units of time after t_{2} (c_{4} is the finish time), and
- the value at q between the start and finish times will equal the value held stable at d during the setup time.

Rising edges

Notes are confused!

- Page 43:
$\operatorname{Rise}_{1}(f)(t) \equiv(f(t-1)=\mathrm{F}) \wedge(f(t)=\mathrm{T})$
- Page 65:

Rise $_{2}(f)(t)=\neg f(t) \wedge f(t+1)$

- However:
$\forall f t . t>0 \Rightarrow\left(\operatorname{Rise}_{1}(f)(t)=\operatorname{Rise}_{2}(f)(t-1)\right)$
$\forall f t . t \geq 0 \Rightarrow\left(\operatorname{Rise}_{2}(f)(t)=\operatorname{Rise}_{1}(f)(t+1)\right)$
- In Accellera standard language PSL function Rise $_{1}$ is called Rose

Some temporal operators in Higher Order Logic

- Define:

$\operatorname{Next}\left(t_{1}, t_{2}\right)(f) \equiv t_{1}<t_{2} \wedge f\left(t_{2}\right) \wedge \forall t . t_{1}<t \wedge t<t_{2} \Rightarrow \neg f(t)$

- Define:
$\operatorname{Stable}\left(t_{1}, t_{2}\right)(f) \equiv \forall t . t_{1} \leq t \wedge t<t_{2} \Rightarrow\left(f(t)=f\left(t_{1}\right)\right)$
- These are raw higher order logic not temporal logic
- various temporal logics are described later

Dtype specification

- Logic specification:
$\operatorname{Dtype}\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right)(d, c k, q) \equiv$
$\forall t_{1} t_{2} . \operatorname{Rise}_{1}(c k)\left(t_{1}\right) \wedge$
$\operatorname{Next}\left(t_{1}, t_{2}\right)\left(\operatorname{Rise}_{1}(c k)\right) \wedge$
$\left(t_{2}-t_{1}>\mathrm{c}_{2}\right) \wedge$
$\operatorname{Stable}\left(t_{1}-\mathrm{c}_{1}, t_{1}+1\right)(d)$
\Rightarrow
$\left(\operatorname{Stable}\left(t_{1}+\mathrm{c}_{3}, t_{2}+\mathrm{c}_{4}\right)(q) \wedge\left(q\left(t_{2}\right)=d\left(t_{1}\right)\right)\right)$
- c_{1}, c_{2}, c_{3} and c_{4} are timing constants
- value depends on how the device is fabricated
- Note that
$\operatorname{Next}\left(t_{1}, t_{2}\right)\left(\operatorname{Rise}_{1}(c k)\right)$
formed by applying
$\operatorname{Next}\left(t_{1}, t_{2}\right)$
to the predicate
$\operatorname{Rise}_{1}(c k)$

Implementation

- Can implement Dtype using NAND-gates:

- Unit delay model
$\operatorname{NAND}\left(i_{1}, i_{2}, o\right) \equiv \forall t . o(t+1)=\neg\left(i_{1}(t) \wedge i_{2}(t)\right)$
$\operatorname{NAND} 3\left(i_{1}, i_{2}, i_{3}, o\right) \equiv \forall t . o(t+1)=\neg\left(i_{1}(t) \wedge i_{2}(t) \wedge i_{3}(t)\right)$
- Note: modelling at the fine-grain time level

Verification

- Dtype implementation in logic:

Dtype_Imp $(d, c k, q) \equiv$
$\exists p_{1} p_{2} p_{3} p_{4} p_{5}$.
$\operatorname{NAND}\left(p_{2}, d, p_{1}\right) \wedge \operatorname{NAND} 3\left(p_{3}, c k, p_{1}, p_{2}\right) \wedge$
$\operatorname{NAND}\left(p_{4}, c k, p_{3}\right) \wedge \operatorname{NAND}\left(p_{1}, p_{3}, p_{4}\right) \wedge$
$\operatorname{NAND}\left(p_{3}, p_{5}, q\right) \wedge \operatorname{NAND}\left(q, p_{2}, p_{5}\right)$

- Correctness: find $\delta_{1}, \delta_{2}, \delta_{3}$ and δ_{4} and prove:
$\operatorname{Dtype} \operatorname{Imp}(d, c k, q) \Rightarrow \operatorname{Dtype}\left(\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\right)(d, c k, q)$
- Hard!
- Dtype is modelled at the trace level
- fine grain time
- explicit clock

A sequential RT level example: simple parity checker

- Input inp, an output out
- The nth output is $T \Leftrightarrow$ an even number of T's input
- PARITY $f n$ iff an even number of T's in $f(1), \ldots, f(n)$
$1-(\forall f$. Parity $f 0=T) \wedge$
($\forall \mathrm{n} \mathrm{f}$. PARITY $\mathrm{f}(\mathrm{n}+1)=$ if $\mathrm{f}(\mathrm{n}+1)$ then \neg PARITY f n else PARITY f n)
- Specification of the parity checking device:

$$
\forall t . \text { out } \mathrm{t}=\text { PARITY inp } \mathrm{t}
$$

- Signals modelled as functions from numbers (times) to booleans
- Specification can be written as an equation between functions: out $=$ PARITY inp
- Intuitively clear that specification will be satisfied if: (out (0) $=T) \wedge$
$\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then $\neg($ out $t)$ else out t
- Intuition can be verified by proving:
$\forall i n p$ out.
(out $0=T) \wedge(\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then $\neg($ out $t)$ else out $t)$
\Rightarrow
$\forall \mathrm{t}$. out $\mathrm{t}=$ PARITY inp t

Notation for writing proofs \& how proof assistants work

- Write formula to be proved (the goal) above a dotted line
- Write assumptions (numbered) below the line
- For example, initially we start with no assumptions

```
\forallinp out
    (out 0 = T) }
    \forallt. out(t+1)= if inp(t+1) then }\neg\mathrm{ (out t) else out t) }
    (\forallt. out t = PARITY inp t)
```

- First step is to consider arbitrary inp and out and then to assume the antecedents of the implication and try to prove the conclusion

```
vt. out t = PARITY inp t
    0. out 0 = T
    1. }\forallt\mathrm{ . out ( }t+1)=\mathrm{ if inp (t+1) then }\neg\mathrm{ (out t) else out
```

- Proof assistants let users perform proof steps on proof states
- The proofs here are derived from the HOL4 system, but other tools like ProofPower, Isabelle and PVS are based on related ideas
- details of proof state and proof steps differ
- in HOL and ProofPower proof steps are performed via ML functions
- Isabelle has a declarative interface, Isar, inspired by Mizar
- in Acl2 and PVS proof steps are performed via Lisp functions

A Proof by induction

- Start with the following proof state

```
\forallinp out.
```

(out $0=T) \wedge$
$(\forall t . \operatorname{out}(t+1)=$ if $\operatorname{inp}(t+1)$ then \neg (out t) else out $t) \Rightarrow$
($\forall \mathrm{t}$. out $\mathrm{t}=$ PARITY inp t)

- As on previous slide, consider arbitrary inp and out and then to assume the antecedents of the implication

```
\forallt. out t = PARITY inp t
    1. }\forallt\mathrm{ . out (t+1) = if inp(t+1) then }\neg\mathrm{ (out t) else out t
```

- Now do induction on t - this creates a proof state with two subgoals

```
out 0 = PARITY inp 0
```

. out $0=T$

1. $\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then \neg (out $t)$ else out t
out $(t+1)=$ PARITY inp ($t+1$)
. out $0=T$
. $\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then $\neg($ out $t)$ else out t 2. out $\mathrm{t}=$ PARITY inp t [induction hypothesis added to assumptions]
```
                                    [the basis of the induction]
```

 \(\neg(\) out \(t)\) else out \(t\)

Next step: unfold definition of PARITY

- Recall definition of PARITY

I- ($\forall f$. PARITY f $0=T$)
$\forall \mathrm{n} f$. PARITY $\mathrm{f}(\mathrm{n}+1)=$ if $\mathrm{f}(\mathrm{n}+1)$ then \neg PARITY f n else PARITY f n

- Unfolding (rewriting with) the definition of PARITY in

```
out 0 = PARITY inp 0
0 . out \(0=T\)
1. \(\forall t\). out \((t+1)=\) if \(\operatorname{inp}(t+1)\) then \(\neg\) (out \(t)\) else out \(t\)
out \((t+1)=\) PARITY inp ( \(t+1\) )
[the step of the induction]
. \(\forall t\). out \((t+1)=\) if \(\operatorname{inp}(t+1)\) then \(\neg\) (out \(t\) ) else out \(t\)
2. out \(t=\) PARITY inp \(t\)
```

- Yields

```
out \(0=T\)
    0. out \(0=T\)
    1. \(\forall t\). out \((t+1)=\) if \(\operatorname{inp}(t+1)\) then \(\neg\) (out \(t)\) else out \(t\)
out \((t+1)=\) if \(\operatorname{inp}(t+1)\) then \(\neg\) PARITY inp \(t\) else PARITY inp \(t\)
    0 . out \(0=T\)
    1. \(\forall t\). out \((t+1)=\) if \(\operatorname{inp}(t+1)\) then \(\neg\) (out \(t)\) else out \(t\)
    2. out \(t=\) PARITY inp \(t\)
```


Goal now easily proved

- Proof state from last slide

```
out 0 = T
            0. out 0 = T
            1. }\forallt.out(t+1)=if inp(t+1) then \neg(out t) else out 
    out (t+1) = if inp(t+1) then }\neg\mathrm{ PARITY inp t else PARITY inp t
            out 0 = T
            \forallt. out (t+1) = if inp(t+1) then }\neg\mathrm{ (out t) else out t
            2. out t = PARITY inp t
```

- Basis: goal follows from assumption 0
- Step: substitute assumption 2 into assumption 1
- Call theorem just proved UNIQUENESS_LEMMA

UNIQUENESS_LEMMA =
।- \forall inp out
(out $0=T$) \wedge
$(\forall t . \operatorname{out}(t+1)=$ if $\operatorname{inp}(t+1)$ then $\neg($ out $t)$ else out $t) \Rightarrow$
$\forall \mathrm{t}$. out $\mathrm{t}=$ PARITY inp t

Implementation

Components

- Assume registers 'power up' storing F
- Thus the output at time 0 cannot be taken directly from a register - because the output of the parity checker at time 0 is specified to be T

I- ONE out $=\forall t$. out $t=T$

I- NOT(inp, out) $=\forall$ t. out $t=\neg($ inp $t)$

।- MUX(sw,in1,in2,out) $=\forall t$. out $t=$ if sw t then in1 t else in2 t

I- REG(inp,out) $=\forall t$. out $t=$ if $(t=0)$ then F else inp($t-1)$

Implementation in HOL

[^0]
Verification

- The following theorem will eventually be proved:

।- \forall inp out. PARITY_IMP (inp,out) $\Rightarrow \forall t$. out $t=$ PARITY inp t

- First prove a lemma (then theorem follows from Uniqueness lemma)
- The lemma (PARITy lemma):
\forall inp out.
PARITY_IMP (inp, out) \Rightarrow
(out $)$
(out $0=T) \wedge$
$\forall t$. out $(t+1)=$ if inp $(t+1)$ then $\neg($ out $t)$ else out t
- First step: rewrite with component definitions, split conjunction
out 0-= =T

2. $\forall t .12 t=$ if $\mathrm{t}=0$ then F else out $(\mathrm{t}-1)$

out $(t+1)=$ if inp $(t+1)$ then \neg (out $t)$ else out t
: $\forall \mathrm{t}$: $11 \frac{\mathrm{t}}{\mathrm{t}}=-712 \mathrm{t}$ if t then 11 t else 12 t
3. $\forall t .12 \mathrm{t}=$ if $\mathrm{t}=0$ then F else out $(\mathrm{t}-1)$

Proof continued

- Consider the $t=0$ case first

$$
\begin{aligned}
& \text { out } 0=T \\
& \text { 0. } \forall \mathrm{t} .11 \mathrm{t}=\neg 12 \mathrm{t} \\
& \text { 1. } \forall \mathrm{t} .13 \mathrm{t}=\mathrm{if} \mathrm{inp} \mathrm{t} \text { then } 11 \mathrm{t} \text { else } 12 \mathrm{t} \\
& \text { 2. } \forall t .12 \mathrm{t}=\text { if } \mathrm{t}=0 \text { then } \mathrm{F} \text { else out }(\mathrm{t}-1) \\
& \text { 3. } \forall \mathrm{t} .14 \mathrm{t}=\mathrm{T} \\
& \text { 4. } \forall t .15 t=\text { if } t=0 \text { then } F \text { else } 14(t-1) \\
& \text { 5. } \forall \mathrm{t} \text {. out } \mathrm{t}=\text { if } 15 \mathrm{t} \text { then } 13 \mathrm{t} \text { else } 14 \mathrm{t}
\end{aligned}
$$

- Easily follows (see stuff in blue)
- Now consider $t+1$ case

$$
\begin{aligned}
& \text { out }(\mathrm{t}+1)=\text { if } \operatorname{inp}(\mathrm{t}+1) \text { then } \neg \text { (out } \mathrm{t}) \text { else out } \mathrm{t} \\
& \text { 0. } \forall \mathrm{t} .11 \mathrm{t}=\neg 12 \mathrm{t} \\
& \text { 1. } \forall \mathrm{t} .13 \mathrm{t}=\text { if inp } \mathrm{t} \text { then } 11 \mathrm{t} \text { else } 12 \mathrm{t} \\
& \text { 2. } \forall \mathrm{t} .12 \mathrm{t}=\text { if } \mathrm{t}=0 \text { then } \mathrm{F} \text { else out }(\mathrm{t}-1) \\
& \text { 3. } \forall \mathrm{t} .14 \mathrm{t}=\mathrm{T} \\
& \text { 4. } \forall \mathrm{t} .15 \mathrm{t}=\text { if } \mathrm{t}=0 \text { then } \mathrm{F} \text { else } 14(\mathrm{t}-1) \\
& \text { 5. } \quad \forall \mathrm{t} . \text { out } \mathrm{t}=\text { if } 15 \mathrm{t} \text { then } 13 \mathrm{t} \text { else } 14 \mathrm{t}
\end{aligned}
$$

- Goal is solved if left hand side, out ($t+1$), is expanded using 5 $\forall \mathrm{t}$. out $\mathrm{t}=$ if 15 t then 13 t else 14 t
- See next slide ...

Proof continued

- Use assumption 5 to expand blue term, but not red terms

```
out(t+1) = if inp(t+1) then नout t else out t
    ut(t+1) = if inp(t+1) then ᄀout t
            \forallt. 11 t = ᄀ12 t
            \forallt. 13 t = if inp t then l1 t else 12 t
            \forallt. 12 t = if t = 0 then F else out(t - 1)
            \forallt. 14 t = T
            \forallt. 15 t = if t = 0 then F else 14 (t - 1)
            . }\forall\textrm{t}\mathrm{ . out t = if 15 t then 13 t else 14 t
```

- Result is

```
(if 15 (t+1) then 13 (t+1) else 14 (t+1)) =
(if inp(t+1) then }\neg\mathrm{ (out t) else out t)
    \forallt. 11 t = ᄀ12 t
    t. 13 t = if inp t then l1 t else 12 t
        \forallt. 12 t = if t=0 then F else out(t - 1)
        tt. 14 t = T
        \forallt. 15 t = if t = 0 then F else 14(t - 1)
    5. }\forall\textrm{t}\mathrm{ . out t = if 15 t then 13 t else 14 t
```

- Goal follows from assumptions with a bit of calculation

Combining lemmas

- Call lemma just proved parity lemma, so

PARITY_LEMMA $=$
।- \forall inp out.
PARITY_IMP (inp,out) \Rightarrow
(out $0=T) \wedge$
$\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then \neg (out $t)$ else out t

- Recall

Uniqueness_Lemma =
I- \forall inp out.
(out $0=T$) λ
$(\forall t$. out $(t+1)=$ if $\operatorname{inp}(t+1)$ then $\neg($ out $t)$ else out $t)$
\Rightarrow
$\forall \mathrm{t}$. out $\mathrm{t}=$ PARITY inp t

- Hence by transitivity of \Rightarrow

।- \forall inp out. PARITY_IMP (inp, out) $\Rightarrow \forall t$. out $t=$ PARITY inp t

- PARITY_IMP used abstract registers REG
- Next: make model more concrete by using clocked Dtype

Review

- Specification: $\forall t$. out $t=$ PARITY inp t
- Equivalent equation between functions: out = PARITY inp

|- PARITY_IMP(inp,out) =
$\exists 1112131415$.
$\operatorname{NOT}(12,11) \wedge \operatorname{MUX}($ inp $, 11,12,13) \wedge \operatorname{REG}($ out,12 $) \wedge$ ONE $14 \wedge \operatorname{REG}(14,15) \wedge \operatorname{MUX}(15,13,14$, out $)$
- Verification: ।- \forall inp out. PARITY_IMP (inp,out) \Rightarrow (out $=$ PARITY inp)

An incorrect implementation of the parity checker

```
1- (\forallf. PARITY f 0 = T)
    |}f\mathrm{ . PARITY f ( }\textrm{n}+1)=\mathrm{ if }\textrm{f}(\textrm{n}+1)\mathrm{ then }\neg\mathrm{ PARITY f n else PARITY f n
```

- The following implementation doesn't work

Trace level version of the Parity device

DtypePARITY_IMP (ck,inp,out) $=$
1112131415
NOT $(12,11)$
MUX(inp,11,12,13) \wedge
DtypeF(ck,out,12) \wedge
ONE 14 (ck 14, 15) \wedge
MUX $(15,13,14$, out $)$

Temporal refinement

- PARITY_IMP used abstract registers REG
- Next: make model more concrete by using clocked Dtype
- Recall the (course grained) trace level model of a Dtype:

- Need a version of Dtype that powers up storing F
$\operatorname{DtypeF}(c k, d, q)=(q 0=F) \wedge \operatorname{Dtype}(c k, d, q)$

Formulating Correctness

- A mapping between time-scales:

- Define the temporal abstraction functions:
$(s$ when $P)(n)=$ value of s at the concrete time t when P true for nth time
\vdash Timeof $\mathrm{P} n=$ the concrete time t when P true for nth time
$\vdash s$ when $P=s \circ$ (Timeof P)
- From Melham's Theorem:
$\vdash \forall c k . \operatorname{Inf}($ Rise $c k) \Rightarrow$
$\forall d q . \operatorname{DtypeF}(c k, d, q) \Rightarrow \operatorname{REG}(d$ when (Rise $c k), q$ when (Rise $c k)$)
- Inf P means " P true infinitely often"
$\operatorname{Inf} P=\forall t . \exists t^{\prime} . t^{\prime}>t \wedge P t^{\prime}$

Digression on defining Timeof

- How do we define the temporal abstraction function:
\vdash Timeof $\mathrm{P} n=$ the concrete time t_{c} such that P true for nth time
- What if there is no time such that P true for nth time - for example, if P is never true
- Need to actually define:
\vdash Timeof $\mathrm{P} n=$ the time t_{c} such that P true for nth time, if such a time exists
- But then what is Timeof $\mathrm{P} n$ if no such time exists?

Hilbert's epsilon-operator to the rescue

- $\epsilon x . t[x]$ is an epsilon-term
- The meaning of $\epsilon x . t[x]$ is specified by an axiom:

$$
\forall P .(\exists x . P x) \Rightarrow P(\epsilon x . P x)
$$

- $\epsilon x . t[x]$ denotes some value, v say, such that $t[v]$, if $\exists t . t[x]$
- $\epsilon x . t[x]$ denotes some arbitrary value if $\forall t . \neg t[x]$
- of the type of $t[x]$
- all types are assumed non-empty
- The ϵ-operator builds the Axiom of Choice into the logic

Definition of Timeof

- Recall the Next operator

Next t1 t2 sig $=\mathrm{t} 1<\mathrm{t} 2 \wedge$ sig $\mathrm{t} 2 \wedge \forall \mathrm{t} . \mathrm{t} 1<\mathrm{t} \wedge \mathrm{t}<\mathrm{t} 2 \Rightarrow \neg($ sig t$)$

- Define IsTimeof n sig t
to mean " t is when sig is true for the n -th time"
(IsTimeof $0 \operatorname{sig} t=(\operatorname{sig} t \wedge \forall t ' . t ’<t \Rightarrow ~(s i g ~ t '))) ~$
\wedge
(IsTimeof ($\mathrm{n}+1$) sig $\mathrm{t}=\exists \mathrm{t}$ '. IsTimeof n sig $\mathrm{t}^{\prime} \wedge$ Next t ' t sig)
- Define Timeof using ϵ-operator and IsTimeof

Timeof sig $\mathrm{n}=\epsilon \mathrm{t}$. IsTimeof n sig t

- IsTimeof and Timeof are higher-order total functions

Temporal abstraction

- Define f @ck to be signal f abstracted on rising edges of ck

$$
\text { I- } f @ c k=f \text { when (Rise ck) }
$$

- Recall definition of REG

।- REG(inp,out) $=\forall t$. out $t=i f(t=0)$ then F else inp $(t-1)$

- It follows easily that

$$
\text { I- REG(inp,out) }=(\text { out } 0=F) \wedge \operatorname{Del(inp,out)~}
$$

- The properties below also follow (why?)

I- $\operatorname{Inf}($ Rise ck) $\Rightarrow \operatorname{DtypeF}(c k, d, q) \Rightarrow \operatorname{REG}(d @ c k, q @ c k)$
I- MUX(switch, i1, i2, out)
\Rightarrow
MUX(switch@ck, i1@ck, i2@ck, out@ck)
।- NOT(inp, out) \Rightarrow NOT(inp@ck, out@ck)
I- ONE out \Rightarrow ONE(out@ck)

- Hint: $\vdash \forall f .(\forall x . P(x)) \Rightarrow(\forall x . P(f(x))) \quad$ take $f=x \mapsto x$ @ck

Cycle and trace versions

- Compare
|- PARITY_IMP(inp,out) =
$\exists 1112131415$.
$\operatorname{NOT}(12,11) \wedge \operatorname{MUX}($ inp $, 11,12,13) \wedge \operatorname{REG}($ out,12 $) \wedge$
ONE $14 \wedge \operatorname{REG}(14,15) \wedge \operatorname{MUX}(15,13,14$, out $)$
1- DtypePARITY_IMP(ck,inp,out) =
$\exists 1112131415$.
$\operatorname{NOT}(12,11) \wedge \operatorname{MUX}(i n p, 11,12,13) \wedge \operatorname{DtypeF}(c k$, out, 12$) \wedge$
ONE $14 \wedge \operatorname{DtypeF}(c k, 14,15) \wedge \operatorname{MUX}(15,13,14$, out $)$
- Hence by implications on previous slide

I- $\operatorname{Inf}($ Rise ck)
\Rightarrow
DtypePARITY_IMP(ck,inp,out) \Rightarrow PARITY_IMP(inp@ck, out@ck)

- use $(A \Rightarrow B) \wedge(\cdots A \cdots) \Rightarrow(\cdots B \cdots)$
- then use $(A \Rightarrow B) \wedge(\exists l . A) \Rightarrow(\exists l . B)$
- then use $(\exists l . \cdots l$ on $\mathrm{ck} \cdots) \Rightarrow(\exists l . \cdots l \cdots)$

Trace level verification

- Proved earlier

I- \forall inp out. PARITY_IMP(inp,out) $\Rightarrow \forall t$. out $t=$ PARITY inp t

- Specialising inp to inp@ck and out to out@cl

।- PARITY_IMP(inp@ck, out@ck)
\Rightarrow
$\forall \mathrm{t} .($ out@ck) $\mathrm{t}=$ PARITY (inp@ck) t

- From previous slide
|- Inf(Rise ck)
\Rightarrow
DtypePARITY_IMP(ck,inp,out) \Rightarrow PARITY_IMP(inp@ck, out@ck)
- Hence, by transitivity of \Rightarrow
|- $\operatorname{Inf}($ Rise ck)
\Rightarrow
DtypePARITY_IMP (ck,inp,out)
\Rightarrow
$\vec{\forall}$. (out@ck) $\mathrm{t}=$ PARITY (inp@ck) t
- This is a typical correctness result using temporal abstraction

NEW TOPIC: modelling transistors

- Recall simple switch model of CMOS

$$
\vdash \operatorname{Ptran}(g, s, d)=(\neg g \Rightarrow(d=s))
$$

$\vdash \operatorname{Ntran}(g, s, d)=(g \Rightarrow(d=s))$

$$
\stackrel{g}{\stackrel{\perp}{=}} \vdash \operatorname{Gnd} g=(g=\mathrm{F})
$$

$$
\stackrel{\mathrm{O}}{\stackrel{1}{p}} \quad \vdash \operatorname{Pwr} p=(p=\mathrm{T})
$$

- This is the so-called switch model of CMOS.

The simple adder example

- This example shows non-obvious examples can be analysed

$\stackrel{\text { p11 }}{ }$
$\operatorname{Add1}(\mathrm{a}, \mathrm{b}$, cin, sum, cout $)=$
$\exists \mathrm{p} 0 \mathrm{p} 1 \mathrm{p} 2 \mathrm{p} 3 \mathrm{p} 4 \mathrm{p} 5 \mathrm{p} 6 \mathrm{p} 7 \mathrm{p} 8 \mathrm{p} 9 \mathrm{p} 10 \mathrm{p} 11$.

$\operatorname{Ptran}(a, p 2, p 4) \wedge \operatorname{Ptran}(p 1, p 3, p 4) \wedge$ Ntran $(b, p 2, p 3)$
Ntran(p1,p4,p6) \wedge Ntran (b, p5, p6) \wedge Ntran (a, p4, p5) Ntran (cin, p6, p11) $\wedge \operatorname{Ptran}(\mathrm{a}, \mathrm{p0} 0, \mathrm{p} 7) \wedge$ Ntran(p1,p5,p11) Ptran(a,p0,p8) ^Ptran(cin, p7,p1) ^Ptran(b,p8,p1) Ntran (cin, p1,p9) \wedge Ntran (b, p1, p10) $\wedge \operatorname{Ntran}(a, p 9, p 11)$ Ptran(p4,p1 ${ }^{2}$ Ntran(a,p10,p11) $\wedge \operatorname{Pwr}(p 0)$ (pup11) \wedge Gnd(p11) Ptran(p1,p0, cout) $\wedge \operatorname{Ntran}(\mathrm{p} 1$, cout, p11)

I - Add1 $(\mathrm{a}, \mathrm{b}$, cin, sum, cout $)=(2 * \mathrm{Bv}$ cout +Bv sum $=\mathrm{Bv} \mathrm{a}+\mathrm{Bv} \mathrm{b}+\mathrm{Bv}$ cin $)$

Problems with simple switch model

- Compare

- Equivalent in simple switch model!

What happens in the Simple Switch Model

5 v

- From the definitions

```
\(1-\forall p . \operatorname{Pwr} p=(p=T)\)
I- \(\forall \mathrm{g} \mathrm{a}\) b. Ntran \((\mathrm{g}, \mathrm{a}, \mathrm{b})=\mathrm{g} \Rightarrow(\mathrm{a}=\mathrm{b})\)
1- \(\forall\) out. Bad out \(=\)
    \(\exists 11\) 12. Pwr \(11 \wedge\) Ntran (11,11,12) \(\wedge\) Ntran (12,12,out)
```

- It follows that

।- \forall out. Bad out $=$ out

How transistors work

- Transistors conduct if there is a big enough voltage difference, $V_{T H}$ say, between gate and source/drain

- If $V_{g}=V_{a}$ there is a voltage drop of about $V_{T H}$
- Example: 'hi' is $5 v$, 'low' is $0 v$

- Weak output may not be able to switch transistors

Consider two Xors when both inputs are F

- Compare

- Bad design has weak output
- Good design has strong output
- Need a better model to distinguish the designs

Difference switching model (Mike Fourman)

- Don't identify boolean values and signal values
- Consider a type of values containing Hi , Lo and other values

$\operatorname{Ntran}(\mathrm{g}, \mathrm{a}, \mathrm{b})=((\mathrm{g}=\mathrm{Hi}) \wedge(\mathrm{a}=\mathrm{Lo}) \Rightarrow(\mathrm{b}=\mathrm{Lo}))$ $((\mathrm{g}=\mathrm{Hi}) \wedge(\mathrm{b}=\mathrm{Lo}) \Rightarrow(\mathrm{a}=\mathrm{Lo}))$
$\underset{a-\frac{9}{\stackrel{1}{\square}}-b}{ }$
$\operatorname{Ptran}(\mathrm{g}, \mathrm{a}, \mathrm{b})=((\mathrm{g}=\mathrm{Lo}) \wedge(\mathrm{a}=\mathrm{Hi}) \Rightarrow(\mathrm{b}=\mathrm{Hi}))$ $((\mathrm{g}=\mathrm{Lo}) \wedge(\mathrm{b}=\mathrm{Hi}) \Rightarrow(\mathrm{a}=\mathrm{Hi}))$

More compact definitions

$\operatorname{Ntran}(g, a, b)=(g=H i) \Rightarrow((a=L o)=(b=L o))$

$\operatorname{Ptran}(\mathrm{g}, \mathrm{a}, \mathrm{b})=(\mathrm{g}=\mathrm{Lo}) \Rightarrow((\mathrm{a}=\mathrm{Hi})=(\mathrm{b}=\mathrm{Hi}))$

this is now equivalent to $\neg($ out $=$ Lo)

Good and bad Xors now distinguished

$((\mathrm{i} 1=\mathrm{Hi}) \wedge(\mathrm{i} 2=\mathrm{Hi}) \Rightarrow($ out $=\mathrm{Lo})) \wedge$
$((\mathrm{i} 1=\mathrm{Hi}) \wedge(\mathrm{i} 2=\mathrm{Lo}) \Rightarrow($ out $=\mathrm{Hi})) \wedge$
$(($ i1 $=\mathrm{Lo}) \wedge($ i2 $2=\mathrm{Hi}) \Rightarrow \neg($ out $=\mathrm{Lo})) \wedge$
$(($ i1 $=$ Lo $) \wedge(i 2=$ Lo $) \Rightarrow \neg($ out $=H i))$
$((\mathrm{i} 1=\mathrm{Hi}) \wedge(\mathrm{i} 2=\mathrm{Hi}) \Rightarrow($ out $=\mathrm{Lo})) \wedge$
$((i 1=\mathrm{Hi}) \wedge(\mathrm{i} 2=\mathrm{Lo}) \Rightarrow($ out $=\mathrm{Hi})) \wedge$ $((\mathrm{i} 1=\mathrm{Lo}) \wedge(\mathrm{i} 2=\mathrm{Hi}) \Rightarrow($ out $=\mathrm{Hi})) \wedge$ $((i 1=$ Lo $) \wedge(i 2=L o) \Rightarrow($ out $=$ Lo $))$

Earlier examples still work

- Define

I- Strong $v=((v=H i) \vee(v=L o))$
$1-($ TBv Hi $=1) \wedge($ TBv Lo $=0)$

- $\operatorname{TAdd} 1 \operatorname{Spec}(\mathrm{a}, \mathrm{b}, \mathrm{cin}$, sum, cout) $=$
$(2 *(T B v$ cout $)+T B v$ sum $=T B v a+T B v \mathrm{~b}+\mathrm{TBv}$ cin $)$
- Then it follows that

1-Strong a \wedge Strong b \wedge Strong cin
$\overrightarrow{\text { TAdd1 }} \operatorname{Imp}(\mathrm{a}, \mathrm{b}, \mathrm{cin}$, sum, cout) \Rightarrow TAdd1Spec (a, b, cin, sum, cout) \wedge Strong sum \wedge Strong cout

Sequential shift register

- Switch models only allow us to deduce
$($ ph1 $=\mathrm{Hi}) \wedge(\mathrm{ph} 2=\mathrm{Hi}) \Rightarrow((\mathrm{in}=\mathrm{Hi}) \Rightarrow(\mathrm{out}=\mathrm{Hi})) \wedge((\mathrm{in}=\mathrm{Lo}) \Rightarrow($ out=Lo $))$
- Actual behaviour is a shift register
- for simplicity threshold effects ignored in what follows

Phase 1: ph1=Hi and ph2=Lo

Phase 3: ph1=Hi and ph2=Lo

$(\mathrm{ph} 1 \mathrm{t}=\mathrm{Hi}) \wedge(\mathrm{ph} 2 \mathrm{t}=\mathrm{Lo}) \wedge$
$(p h 1(t+1)=L o) \wedge(p h 2(t+1)=H i) \wedge$
$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo})$
(out $(t+2)=$ in t)

Phase 4: ph1=Lo and ph2=Hi

$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo}) \wedge$
$(\mathrm{ph} 1(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+3)=\mathrm{Hi})$
$(\operatorname{ph} 1(t+3)=\operatorname{Lo}) \wedge(\mathrm{ph} 2(t+3)=\mathrm{Hi}$
$\underset{(\text { out }(t+3)}{ }=$ in $(t+2))$

Characterisation of behaviour

$($ ph1 $t=H i) \wedge(p h 2 t=L o) \wedge$
$(\operatorname{ph1}(t+1)=$ Lo $) \wedge(p h 2(t+1)=H i)$
(out $(t+1)=$ in $t)$
$($ ph1 $t=H i) \wedge(p h 2 t=L o) \wedge$
$=H i) \wedge$
$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo})$
(out $(t+2)=$ in t)

- out $(t+3)$ value follows by $t \mapsto t+2$ in first property

Unidirectional sequential model

- Four values: Hi, Lo, Fl ('floating'), X (unknown/error)

$$
\begin{aligned}
& \text { I- } \quad \neg(\mathrm{Hi}=\mathrm{Lo}) \wedge \neg(\mathrm{Lo}=\mathrm{Hi}) \wedge \\
& \quad \neg(\mathrm{Hi}=\mathrm{Fl}) \wedge \neg(\mathrm{Fl}=\mathrm{Hi}) \wedge \\
& \quad \neg(\mathrm{Lo}=\mathrm{Fl}) \wedge \neg(\mathrm{Fl}=\mathrm{Lo}) \\
& \\
& \text { I- Strong } \mathrm{v}=((\mathrm{v}=\mathrm{Hi}) \vee(\mathrm{v}=\mathrm{Lo})) \\
& \text { |- Float } \mathrm{v}=(\mathrm{v}=\mathrm{Fl})
\end{aligned}
$$

- Join operator: U
l- v1 U v2 = if Strong v1 \wedge Float v2 then v1 else
if Float v1 \wedge Strong v2 then v2 else
if Float v1 \wedge Float v2
then Fl else X
|- Join(i1,i2,out) $=\forall t$. out $t=(i 1 t) U(i 2 t)$

Signals are functions of time

I- Join(i1, i2,out) $=\forall t$. out $t=(i 1 t) U(i 2 t)$
I- Pwr out $=\forall t$. out $t=H i$
I- Gnd out $=\forall t$. out $\mathrm{t}=\mathrm{Lo}$
${ }^{i}{ }^{\text {out }}$

I- Cap(i,out) $=\forall t$. out $t=i f \operatorname{Strong}(i \operatorname{t})$ then i t else

$$
\text { if } t=0 \text { then } X \text { else }
$$

if Float (i t) \wedge Strong ($i(t-1)$) then $i(t-1)$ else Fl

Unidirectional sequential transistor models

I- Nswitch(g, i, out) $=\forall \mathrm{t}$. out $\mathrm{t}=$ if $\mathrm{g} \mathrm{t}=\mathrm{Hi}$ then i t else
if ($\mathrm{g} t=\mathrm{Lo}) \vee(\mathrm{i} \mathrm{t}=\mathrm{Fl})$ then Fl else X

I- Pswitch(g, i,out) $=\forall \mathrm{t}$. out $\mathrm{t}=$ if $\mathrm{g} \mathrm{t}=\mathrm{Lo}$ then i t else
if $(\mathrm{g} t=H i) \vee(i t=F l)$ then Fl
else X

Sequential shift register model

|- ShiftReg(i,out,ph1,ph2) =
$\exists 11121314151617181911011112113$
Nswitch $($ ph1, 1,11$) \wedge \operatorname{Cap}(11,12) \wedge$
Pwr $13 \wedge$ Pswitch $(12,13,14) \wedge$ Nswitch $(12,16,15) \wedge$ Gnd $16 \wedge$
Join $(14,15,17) \wedge$ Nswitch $(\mathrm{ph} 2,17,18) \wedge \operatorname{Cap}(18,19) \wedge$
Pwr $110 \wedge$ Pswitch $(19,110,111) \wedge$ Nswitch $(19,113,112) \wedge$ Gnd $113 \wedge$ Join(111,112,out)

- Lots more state variables than in combinational switch model!

Correctness of sequential shift register model

।- ShiftReg(in,out,ph1,ph2) $\wedge \operatorname{Strong}($ in $t) \wedge$
$(\mathrm{ph} 1 \mathrm{t} \stackrel{\mathrm{Hi})}{=} \wedge(\mathrm{ph} 2 \mathrm{t} \stackrel{\mathrm{Hi}}{\mathrm{L}} \mathrm{L}) \wedge$
$(\operatorname{ph} 1(t+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+1)=\mathrm{Hi})$
(out $(t+1)=$ in $t)$
।- ShiftReg(in, out, ph1,ph2) \wedge Strong (in t) \wedge
$($ ph1 $t=H i) \wedge(p h 2 t=L o) \wedge$
$($ ph1 $(t+1)=$ Lo $) \wedge(p h 2(t+1)=H i)$
$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo})$
(out $(t+2)=$ in $t)$

A model of NMOS

- Need a new component: pullup

$$
\mid-\mathrm{Pu}(\mathrm{i}, \mathrm{out})=\forall \mathrm{t} \text {. out } \mathrm{t}=\text { if Float }(\mathrm{i} \mathrm{t}) \text { then Hi else it }
$$

- If i is strong then out $=\mathrm{i}$
- If i is floating then out $=\mathrm{Hi}$

NMOS inverter

|- Inv(i,out) =
$\exists 111213$.
Cap(i, l1) \wedge Gnd $12 \wedge$ Nswitch (11, 12, 13) $\wedge \mathrm{Pu}(13$, out $)$
I- Inv(i,out)
$\overrightarrow{(}$
$((\mathrm{i} t=\mathrm{Hi}) \Rightarrow($ out $\mathrm{t}=\mathrm{Lo}))$
$((\mathrm{i} t=\mathrm{Lo}) \Rightarrow$ (out $\mathrm{t}=\mathrm{Hi}))$
$((i(t+1)=F l) \Rightarrow(((i t=H i) \Rightarrow(\operatorname{out}(t+1)=L o))$
$\hat{((i \quad t=L o)} \Rightarrow(\operatorname{out}(t+1)=H i))))$

Four phase NMOS shift register

I- FourPhaseShiftReg(i,out, ph1,ph2,ph3,ph4)
\wedge Strong (i(t+1))
$\wedge(\mathrm{ph} 1 \mathrm{t}=\mathrm{Hi}) \wedge(\mathrm{ph} 2 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 3 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 4 \mathrm{t}=\mathrm{Lo})$
$\wedge(\mathrm{ph} 1(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+1)=\mathrm{Hi}) \wedge(\mathrm{ph} 3(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+1)=\mathrm{Lo})$
$\wedge(p h 1(t+2)=L o) \wedge(p h 2(t+2)=L o) \wedge(p h 3(t+2)=H i) \wedge(p h 4(t+2)=L o)$
$\wedge(\operatorname{ph} 1(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+3)=\mathrm{Hi})$
\Rightarrow (out $(t+3)=i(t+1))$

Phase 1 (precharge internal node)
Colour scheme: Hi, Lo, Fl; threshold effects ignored

$(\mathrm{ph} 1 \mathrm{t}=\mathrm{Hi}) \wedge(\mathrm{ph} 2 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 3 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 4 \mathrm{t}=\mathrm{Lo})$

Phase 2 (input Lo, retain precharge)
Colour scheme: Hi , Lo, Fl and dotted means precharge

$(\mathrm{ph} 1(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+1)=\mathrm{Hi}) \wedge(\mathrm{ph} 3(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+1)=\mathrm{Lo})$
$(i(t+1)=L o)$

Phase 3 (precharge out, internal node retains value)

$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 4(\mathrm{t}+2)=\mathrm{Lo})$
$($ out $(t+2)=H i)$

Phase 4 (kill precharge)

$(\mathrm{ph} 1(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+3)=\mathrm{Hi})$
(out ($\mathrm{t}+3$) $=\mathrm{Lo}$)

Phase 1 (precharge internal node)

$(\mathrm{ph} 1 \mathrm{t}=\mathrm{Hi}) \wedge(\mathrm{ph} 2 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 3 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 4 \mathrm{t}=\mathrm{Lo})$

- out retains previous value

Phase 2 (input Hi, kill precharge)

$(\mathrm{ph} 1(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+1)=\mathrm{Hi}) \wedge(\mathrm{ph} 3(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+1)=\mathrm{Lo})$
$(i(t+1)=H i)$

Phase 3 (precharge out, internal node retains value)

$(\mathrm{ph} 1(\mathrm{t}+2)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+2)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+2)=\mathrm{Hi}) \wedge(\mathrm{ph} 4(\mathrm{t}+2)=\mathrm{Lo})$

Phase 4 (out retains precharge)

$(\mathrm{ph} 1(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+3)=\mathrm{Hi})$
out $(t+3)=H i$

Four phase NMOS shift register model

1- FourPhaseShiftReg(i,out,ph1, ph2,ph3,ph4) =
$\exists 111213141516171819110111$.
Nswitch(ph1,ph1,11) \wedge Nswitch $(1,13,12) \wedge$ Nswitch $(p h 2, p h 1,13) \wedge$
$\operatorname{Join}(11,12,14) \wedge \operatorname{Cap}(14,15) \wedge \operatorname{Cap}(15,16) \wedge \operatorname{Cap}(16,17) \wedge$
Nswitch $(\mathrm{ph} 3, \mathrm{ph} 3,18) \wedge \operatorname{Nswitch}(17,110,19) \wedge \operatorname{Nswitch}(\mathrm{ph} 4, \mathrm{ph} 3,110) \wedge$
$\operatorname{Join}(18,19,111) \wedge \operatorname{Cap}(111$, out $)$

Conclusions

- Simple switch model good for sanity checking
- won't catch threshold errors
- won't catch threshold
- Threshold switch model catches threshold errors
- proofs a bit harder (not much)
- Sequential models of dubious electrical validity
- but they can sanity check functional correctness of designs
- can handle subtle circuits

1- FourPhaseShiftReg(in,out, ph1, ph2, ph3,ph4) \wedge Strong (in(t+1))
$\wedge(\mathrm{ph} 1 \mathrm{t}=\mathrm{Hi}) \wedge(\mathrm{ph} 2 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 3 \mathrm{t}=\mathrm{Lo}) \wedge(\mathrm{ph} 4 \mathrm{t}=\mathrm{Lo})$ $\wedge(\mathrm{ph} 1(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+1)=\mathrm{Hi}) \wedge(\mathrm{ph} 3(\mathrm{t}+1)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+1)=\mathrm{Lo})$ $\wedge(p h 1(t+2)=L o) \wedge(p h 2(t+2)=L o) \wedge(p h 3(t+2)=H i) \wedge(p h 4(t+2)=L o)$ $\wedge(\mathrm{ph} 1(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 2(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 3(\mathrm{t}+3)=\mathrm{Lo}) \wedge(\mathrm{ph} 4(\mathrm{t}+3)=\mathrm{Hi})$ \Rightarrow (out $(\mathrm{t}+3)=$ in $(\mathrm{t}+1)$)

An earlier slide on Hoare logic for hardware

- Would like a generalised Hoare Logic specification:
\vdash \{If environment ensures always that: DONE $=0 \Rightarrow$ Load $=0$ and if Load is set to 1 when: $\operatorname{In} 1=x \wedge \operatorname{In} 2=y\}$ FOREVER
IF Load=1
THEN $\mathrm{X}:=\mathrm{In} 1 ; \mathrm{Y}:=\mathrm{In} 2 ;$ DONE:=0; R:=X; $\mathrm{Q}:=0$
ELSE IF $\mathrm{Y} \leq \mathrm{R}$ THEN $\mathrm{R}:=\mathrm{R}-\mathrm{Y}$; $\mathrm{Q}:=\mathrm{Q}+1$
ELSE DONE:=1
$\{$ Then x and y will be stored into X and Y and on the next cycle DONE will be set to 0 and sometime later DONE will be be set to 1 and X and Y won't change until DONE is set to 1 and when DONE goes to 1 we have: $x=\mathrm{R}+y \times \mathbf{Q}\}$
- Stuff in red needs Temporal Logic

Specification and Verification II

DONE SO FAR:

- Higher-order logic used directly for specification and verification
- various abstraction levels from transistors to high-level behaviour

COMING NEXT:

- Temporal logic
- various constructs and time models: CTL, LTL
- the 'Industry Standard' logic PSL
- semantics via a shallow embedding in higher order logic
- overview key ideas for model checking temporal logic properties
- Simulation (Verilog, VHDL) compared with formal verification

NEW TOPIC: Model Checking

- Models as state transition systems
- Reachability properties
- Counterexamples (used for debugging)
- Binary Decision Diagrams - BDDs
- Symbolic reachability checking
- A general property language: CTL
- Semantics in HOL (shallow embedding)
- Examples of CTL properties
- Overview of model checking (explicit state and symbolic)
- Linear Temporal Logic (LTL)
- Expressibility, CTL*
- Interval Temporal Logic (ITL)
- Accellera Property Specification Language (Sugar/PSL)

Models are expressed as State Transition Systems

- Set of states: type states
- Set of initial states: predicate \mathcal{B}
$-\mathcal{B}:$ states \rightarrow bool
$-\mathcal{B} s$ means s is an initial state
- State transition relation: \mathcal{R}
$-\mathcal{R}$: states \times states \rightarrow bool
$-\mathcal{R}\left(s, s^{\prime}\right)$ means s^{\prime} a successor to s

\mathcal{R} defines a branching time model

Example: single state machine

- State transition function: δ

$\delta:$ states \times inputs \rightarrow states

- Define state transition relation:
$\mathcal{R}\left(s, s^{\prime}\right)=\exists$ inp. $s^{\prime}=\delta(s$, inp $)$
- Deterministic machine:
- non-deterministic transition relation
- existential quantification over inputs
- so called "input non-determinism"

Example: n machines in parallel

- Assume n state variables
- states $=$ states $_{1} \times \cdots \times$ states $_{n}$
$-\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$
- Assume n transition functions
δ_{i} : states \times inputs \rightarrow states $_{i}$
$(1 \leq i \leq n)$
- Note: each machine δ_{i} reads all inputs and states
- An \mathcal{R}-step is a non-deterministically chosen step of one machine
$\mathcal{R}\left(\vec{v}, \vec{v}^{\prime}\right)=$
ヨinp.
$v_{1}^{\prime}=\delta_{1}(\vec{v}$, inp $) \wedge v_{2}^{\prime}=v_{2} \wedge \cdots \wedge v_{n}^{\prime}=v_{n}$
\vee
$v_{1}^{\prime}=v_{1} \wedge v_{2}^{\prime}=\delta_{2}(\vec{v}$, inp $) \wedge \cdots \wedge v_{n}^{\prime}=v_{n}$
\vee
\vdots
\vee
$v_{1}^{\prime}=v_{1} \wedge v_{2}^{\prime}=v_{2} \wedge \cdots \wedge v_{n}^{\prime}=\delta_{n}(\vec{v}$, inp $)$
- Asynchronous parallel composition

Explicit state property checking

- Goal: check some property P holds of all reachable states
- e.g. $P(s)$ means s has no errors
- Represent sets of states somehow
- Start with $S_{0}=\{s \mid \mathcal{B} s\}$
- Iteratively compute with $S_{n+1}=S_{n} \cup\left\{s \mid \exists u . u \in S_{n} \wedge \mathcal{R}(u, s)\right\}$
- Note $S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq$.
- if finite number of states then eventually reach an n such that $S_{n}=S_{n+1}$
- so S_{n} is set of reachable states
- Now check $P(s)$ for every reachable s (i.e. for every $s \in S_{n}$)

Symbolic approach: representing sets as formulas

- Set $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ represented by formula $v=b_{1} \vee v=b_{2} \vee \ldots \vee v=b_{n}$
$-b_{1}, b_{2}, \ldots, b_{n}$ are truth-values (i.e. T or F)
$-v$ is a boolean variable
$-b \in\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ if and only if $\vdash\left(v=b_{1} \vee v=b_{2} \vee \ldots \vee v=b_{n}\right)[b / v]$
- A set of states
$\left\{\left(b_{11}, \ldots, b_{1 m}\right), \ldots,\left(b_{n 1}, \ldots, b_{n m}\right)\right\}$
is represented by a formula with m boolean variables:
$\left(v_{1}=b_{11} \wedge \ldots \wedge v_{m}=b_{1 m}\right) \vee \ldots \vee\left(v_{1}=b_{n 1} \wedge \ldots \wedge v_{m}=b_{n m}\right)$
- To test if $\left(b_{1}, \ldots, b_{m}\right)$ is in the set,
just evaluate the formula with $v_{1}=b_{1}, \ldots, v_{m}=b_{m}$, i.e. evaluate:
$\left(\left(v_{1}=b_{11} \wedge \ldots \wedge v_{m}=b_{1 m}\right) \vee \ldots \vee\left(v_{1}=b_{n 1} \wedge \ldots \wedge v_{m}=b_{n m}\right)\right)\left[\left(b_{1}, \ldots, b_{m}\right) /\left(v_{1}, \ldots, v_{m}\right)\right]$

Transition relations as Boolean Formulas

- Part of a handshake circuit
(model at cycle level - registers are unit delays)

- Primed variables (dreq', q 0 ', dack') represent 'next state'
- Transition relation is:
$\left(\mathrm{q}^{\prime}{ }^{\prime}=\operatorname{dreq}\right) \wedge\left(\right.$ dack ${ }^{\prime}=\operatorname{dreq} \wedge(\mathrm{q} 0 \vee(\neg q 0 \wedge$ dack $\left.))\right)$
- Transition relation equivalent to:
$\left(\mathrm{q}^{\prime}{ }^{\prime}=\right.$ dreq $) \wedge\left(\right.$ dack ${ }^{\prime}=$ dreq $\wedge(q 0 \vee$ dack $\left.)\right)$
- Define $\mathcal{R}_{\text {RECEIver }}$ by:
$\mathcal{R}_{\text {RECEIVER }}\left((\right.$ dreq, q 0, dack $),\left(\right.$ dreq $^{\prime}$, q0 ${ }^{\prime}$, dack $\left.\left.{ }^{\prime}\right)\right)=$
$\left(\mathrm{q} 0^{\prime} \Leftrightarrow\right.$ dreq) $\wedge($ dack $) \Leftrightarrow$ dreq $\wedge(q 0 \vee$ dack $\left.)\right)$
- dreq' unconstrained, hence non-determinism

Symbolic reachability: sets of states are formulas

- Condition for a state s to be reachable
in one \mathcal{R}-step from a state in \mathcal{B}

$$
\exists u . \mathcal{B} u \wedge \mathcal{R}(u, s)
$$

- Define ReachBy $n \mathcal{R} \mathcal{B}$ to be set of states reachable in at most n steps:
\vdash ReachBy $0 \mathcal{R} \mathcal{B} s=\mathcal{B} s$
\vdash ReachBy $(n+1) \mathcal{R} \mathcal{B} s=$ ReachBy $n \mathcal{R} \mathcal{B} s$
\vee
$\exists u$. ReachBy $n \mathcal{R} \mathcal{B} u \wedge \mathcal{R}(u, s)$
- Reachable states are states reachable in a finite number of steps:
\vdash Reach $\mathcal{R} \mathcal{B} s=\exists n$. ReachBy $n \mathcal{R} \mathcal{B} s$
- Key property (equality between predicates represents set equality):
$\vdash($ ReachBy $n \mathcal{R} \mathcal{B}=\operatorname{ReachBy}(n+1) \mathcal{R} \mathcal{B})$
$\stackrel{(\text { Reach } \mathcal{R} \mathcal{B}}{ }=$ ReachBy $n \mathcal{R} \mathcal{B})$

Represent formulas as Binary Decision Diagrams

- Reduced Ordered Binary Decision Diagrams (ROBDDs or BDDs for short) are a data-structure for representing Boolean formulas
- Key features:
- canonical (given a variable ordering)
- efficient to manipulate
- Variables: $\mathrm{v}=$ if v then 1 else 0 and $\neg \mathrm{v}=$ if v then 0 else 1
- Example: BDDs of variable v and $\neg \mathrm{v}$

- Example: BDDs of v1 \wedge v2 and v1 \vee v2

More BDD examples

- BDD of $\mathrm{v} 1=\mathrm{v} 2$

- BDD of $\mathrm{v} 1 \neq \mathrm{v} 2$

BDD of a transition relation

- BDDs of

$$
\left(\mathrm{v} 1^{\prime}=(\mathrm{v} 1=\mathrm{v} 2)\right) \wedge\left(\mathrm{v} 2^{\prime}=(\mathrm{v} 1 \oplus \mathrm{v} 2)\right)
$$

with two different variable orderings

- Exercise: draw BDD of $\mathcal{R}_{\text {RECEIVER }}$

Standard BDD operations

- If formulas f_{1}, f_{2} represents sets s_{1}, s_{2}, respectively then $f_{1} \wedge f_{2}, f_{1} \vee f_{2}$ represent $s_{1} \cap s_{2}, s_{1} \cup s_{2}$ respectively
- Standard algorithms can compute boolean operation on BDDs.
- If $f(x)$ represents $\{x \mid \mathcal{B}(x)\}$ and $g\left(s, s^{\prime}\right)$ represents $\left\{\left(s, s^{\prime}\right) \mid \mathcal{R}\left(s, s^{\prime}\right)\right\}$ then $\exists u$. $f(u) \wedge g(u, s)$ represents $\{s \mid \exists u . \mathcal{R}(u, s)\}$
- Exist algorithm to compute BDD of $\exists u . h(u, v)$ from BDD of $h(u, v)$
- BDD of $\exists u . h(u, v)$ is BDD of $h(\mathrm{~T}, v) \vee h(\mathrm{~F}, v)$
- Given a BDD representing formula f with free variables v_{1}, \ldots, v_{n} there exists an algorithm to find truth-values b_{1}, \ldots, b_{n}
such that if $v_{1}=b_{1}, \ldots, v_{n}=b_{n}$ then f evaluates to T
$-b_{1}, \ldots, b_{n}$ is a satisfying assignment (solution to SAT problem)
$-f\left[\left(b_{1}, \ldots, b_{n}\right) /\left(v_{1}, \ldots, v_{n}\right)\right]$ evaluates to T
- used for counterexample generation (see later)

Reachable States via BDDs

- Represent $\mathcal{R}\left(s, s^{\prime}\right)$ and $\mathcal{B} s$ as BDDs
- Iteratively compute BDDs of $\mathcal{S}_{0} s, \mathcal{S}_{1} s, \mathcal{S}_{2} s$ etc:
$\mathcal{S}_{0} s=\mathcal{B} s$
$\mathcal{S}_{1} s=\mathcal{S}_{0} s \vee \exists u . \mathcal{S}_{0} u \wedge \mathcal{R}(u, s)$
$\mathcal{S}_{2} s=\mathcal{S}_{1} s \vee \exists u . \mathcal{S}_{1} u \wedge \mathcal{R}(u, s)$
:
$\mathcal{S}_{n+1} s=\mathcal{S}_{n} s \vee \exists u . \mathcal{S}_{n} u \wedge \mathcal{R}(u, s)$
- BDD of $\exists u . \mathcal{S}_{i} u \wedge \mathcal{R}(u, s)$ computed by:
$\exists u .\left(\mathcal{S}_{i} s\right)[u / s] \wedge \mathcal{R}\left(s, s^{\prime}\right)\left[(u, s) /\left(s, s^{\prime}\right)\right]$
efficient using standard BDD algorithms
(renaming, then conjuction, then existential quantification)
- At each iteration check $\mathcal{S}_{n+1} s=\mathcal{S}_{n} s$ efficient using BDDs,
when $\mathcal{S}_{n+1} s=\mathcal{S}_{n} s$ can conclude
Reach $\mathcal{R} \mathcal{B} s=\mathcal{S}_{n} s$
hence have computed BDD of Reach $\mathcal{R} \mathcal{B} s$

Example BDD optimisation: disjunctive partitioning

- Transition relation (asynchronous interleaving semantics):
$\left.\mathcal{R}(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=$
$\left(x^{\prime}=\delta_{x}(x, y, z) \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \vee$
$\left(x^{\prime}=x \wedge y^{\prime}=\delta_{y}(x, y, z) \wedge z^{\prime}=z\right) \vee$
$\left(x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=\delta_{z}(x, y, z)\right)$

Avoiding building big BDDs

- Transition relation for three machines in parallel
$\left.\mathcal{R}(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)=$
$\left(x^{\prime}=\delta_{x}(x, y, z) \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \vee$
$\left(x^{\prime}=x \wedge y^{\prime}=\delta_{y}(x, y, z) \wedge z^{\prime}=z\right) \vee$
$\left(x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=\delta_{z}(x, y, z)\right)$

- Recall:

ReachBy $(n+1) \mathcal{R} \mathcal{B} s$
$=$ ReachBy $n \mathcal{R} \mathcal{B} s \vee$

$$
\exists u . \text { ReachBy } n \mathcal{R} \mathcal{B} u \wedge \mathcal{R}(u, s)
$$

- With $s=(x, y, z)$ it can be shown (see next slide):

ReachBy $(n+1) \mathcal{R} \mathcal{B}(x, y, z)$
$=$ ReachBy $n \mathcal{R} \mathcal{B}(x, y, z) \vee$
$\left(\exists x\right.$. ReachBy $\left.n \mathcal{R} \mathcal{B}(x, y, z) \wedge x=\delta_{x}(x, y, z)\right) \vee$
(ヨy. ReachBy $\left.n \mathcal{R} \mathcal{B}(x, y, z) \wedge y=\delta_{y}(x, y, z)\right) \vee$
($\exists z$. ReachBy $\left.n \mathcal{R} \mathcal{B}(x, y, z) \wedge z=\delta_{z}(x, y, z)\right)$

- $\mathcal{R}(u, s)$ not a subterm: 'early quantification', 'disjunctive partitioning'

More Details (Exercise: check the logic below)

Let $\operatorname{Ry}(\bar{x}, \bar{y}, \bar{z})$ abbreviate ReachBy $n \mathcal{R} \mathcal{B}(\bar{x}, \bar{y}, \bar{z})$ then:
$\exists x y \bar{z} . \operatorname{ReachBy} n \mathcal{R} \mathcal{B}(\bar{x}, \bar{y}, \bar{z}) \wedge \mathcal{R}((\bar{x}, \bar{y}, \bar{z}),(x, y, z))$
$=\exists \bar{x} \bar{y} \bar{z} \cdot \operatorname{Ry}(\bar{x}, \bar{y}, \bar{z}) \wedge \mathcal{R}((\bar{x}, \bar{y}, \bar{z}),(x, y, z))$
$=\exists \bar{x} \bar{z} \cdot \operatorname{Ry}(\bar{x}, \bar{y}, \bar{z}) \wedge\left(\left(x=\delta_{x}(\bar{x}, \bar{y}, \bar{z}) \wedge y=\bar{y} \wedge z=\bar{z}\right) \vee\right.$
$\left(x=\bar{x} \wedge y=\delta_{y}(\bar{x}, \bar{y}, \bar{z}) \wedge z=\bar{z}\right) \vee$
$\left.\left(x=\bar{x} \wedge y=\bar{y} \wedge z=\delta_{z}(\bar{x}, \bar{y}, \bar{z})\right)\right)$
$=\left(\exists \bar{x} \bar{y} \bar{z} \cdot \operatorname{Ry}(\bar{x}, \bar{y}, \bar{z}) \wedge x=\delta_{x}(\bar{x}, \bar{y}, \bar{z}) \wedge y=\bar{y} \wedge z=\bar{z}\right) \vee$ $\left(\exists \bar{x} y \bar{z} \cdot \operatorname{Ry}(\bar{x}, \bar{y}, \bar{z}) \wedge x=\bar{x} \wedge y=\delta_{y}(\bar{x}, \bar{y}, \bar{z}) \wedge z=\bar{z}\right) \vee$ $\left(\exists \bar{x} y \bar{z} \cdot \operatorname{Ry}(\bar{x}, \bar{y}, \bar{z}) \wedge x=\bar{x} \wedge y=\bar{y} \wedge z=\delta_{z}(\bar{x}, \bar{y}, \bar{z})\right)$
$=\left(\exists \bar{x} \bar{z} \cdot \operatorname{Ry}(\bar{x}, y, z) \wedge x=\delta_{x}(\bar{x}, y, z) \wedge y=\bar{y} \wedge z=\bar{z}\right) \vee$ $\left(\exists x y z \cdot \operatorname{Ry}(x, y, z) \wedge x=\bar{x} \wedge y=\delta_{y}(x, \bar{y}, z) \wedge z=\bar{z}\right) \vee$ $\left(\exists x y z \cdot \operatorname{Ry}(x, y, \bar{z}) \wedge x=\bar{x} \wedge y=\bar{y} \wedge z=\delta_{z}(x, y, \bar{z})\right)$
$=\left(\left(\exists \bar{x} \cdot \operatorname{Ry}(\bar{x}, y, z) \wedge x=\delta_{x}(\bar{x}, y, z)\right) \wedge(\exists \bar{y} \cdot y=\bar{y}) \wedge(\exists \bar{z} \cdot z=\bar{z})\right) \vee$ $\left((\exists \bar{x} \cdot x=\bar{x}) \wedge\left(\exists \bar{y} \cdot \operatorname{Ry}(x, \bar{y}, z) \wedge y=\delta_{y}(x, \bar{y}, z)\right) \wedge(\exists \bar{z} \cdot z=\bar{z})\right) \vee$ $\left((\exists \bar{x} \cdot x=\bar{x}) \wedge(\exists \bar{y} \cdot y=\bar{y}) \wedge\left(\exists \bar{z} \cdot \operatorname{Ry}(x, y, \bar{z}) \wedge z=\delta_{z}(x, y, \bar{z})\right)\right)$
$=\left(\exists \bar{x} \cdot \operatorname{Ry}(\bar{x}, y, z) \wedge x=\delta_{x}(\bar{x}, y, z)\right) \vee$
$\left(\exists \bar{y} \cdot \operatorname{Ry}(x, \bar{y}, z) \wedge y=\delta_{y}(x, \bar{y}, z)\right) \vee$
$\left(\exists z \cdot \operatorname{Ry}(x, y, z) \wedge z=\delta_{z}(x, y, \bar{z})\right)$

Verification and Counterexamples

- Typical safety question:

- is \mathcal{Q} true in all reachable states?
- i.e. is Reach $\mathcal{R} \mathcal{B} s \Rightarrow \mathcal{Q} s$ true?
- Compute BDD of Reach $\mathcal{R} \mathcal{B} s \Rightarrow \mathcal{Q} s$
- Formula is true if BDD is the single node 1
- because T represented by a unique BDD (canonical property)
- If BDD is not 1 can get counterexample

Generating Counterexample Traces

BDD algorithms can find satisfying assignments (SAT)

- Suppose Reach $\mathcal{R} \mathcal{B} s \Rightarrow \mathcal{Q} s$ is not true
- Must exist s satisfying Reach $\mathcal{R} \mathcal{B} s \wedge \neg \mathcal{Q} s$
- Find counterexample algorithm:
- iteratively generate BDDs of ReachBy $i \mathcal{R} \mathcal{B} s(i=0,1, \ldots)$
- at each stage check if ReachBy $i \mathcal{R} \mathcal{B} s \wedge \neg(Q$ s) satisfiable
- hence find first n and, using SAT, a state s_{n} such that
(ReachByn $\mathcal{R} \mathcal{B} s \wedge \neg(Q s))\left[\mathbf{s}_{n} / s\right]$
ReachByn $\mathcal{R} \mathcal{B} \mathbf{s}_{n} \wedge \neg\left(Q \mathbf{s}_{n}\right)$
- Then use BDD SAT to get s_{n-1} where $\left(\operatorname{ReachBy}(\mathrm{n}-1) \mathcal{R} \mathcal{B} s \wedge \mathcal{R}\left(s, \mathbf{s}_{n}\right)\right)\left[\mathbf{s}_{n-1} / s\right]$ i.e.

ReachBy $(n-1) \mathcal{R} \mathcal{B} \mathbf{s}_{n-1} \wedge \mathcal{R}\left(\mathbf{s}_{n-1}, \mathbf{s}_{n}\right)$

- Iteratively trace backwards to get $\mathrm{s}_{n}, \ldots, \mathrm{~s}_{0}$ where for $0<i \leq \mathrm{n}$: $\operatorname{ReachBy}(i-1) \mathcal{R} \mathcal{B} \mathbf{s}_{i-1} \wedge \mathcal{R}\left(\mathbf{s}_{i-1}, \mathbf{s}_{i}\right)$
- Can sometimes apply partitioning, so BDD of \mathcal{R} not needed

Example (from an exam)

Consider a 3×3 array of 9 switches

Suppose each switch $1,2, \ldots, 9$ can either be on or off, and that toggling any switch will automatically toggle all its immediate neighbours. For example, toggling switch 5 will also toggle switches $2,4,6$ and 8 , and toggling switch 6 will also toggle switches 3,5 and 9 .
(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the behavior of the array of switches
(b) You are given the problem of getting from an initial state in which even numbered switches are on and odd numbered switches are off, to a final state in which all the switches are off.
Write down predicates on your state space that characterises the initial [2 marks] and final [2 marks] states.
(c) Explain how you might use a model checker to find a sequences of switches to toggle to get from the initial to final state. [6 marks] You are not expected to actually solve the problem, but only to explain how to represent it in terms of model checking.

Solution

The state space can consist of the set of vectors
(v0, v1, v2, v3, v4, v5, v6, v7, v8)
where the boolean variable vi represents switch number $i+1$, and is true if and only if switch $i+1$ is T .

A transition relation Trans is then defined by:
Trans((v0, v1, v2, v3, v4, v5, v6, v7, v8) , (v0', v1', v2', v3', v4', v5', v6', v7', v8'))
$=\left(\left(\mathrm{v} 0^{\prime}=\neg \mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\neg \mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\neg \mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\mathrm{v} 4\right) \wedge\right.$
$\left.\left(\mathrm{v} 5^{\prime}=\mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\mathrm{v} 8\right)\right) \quad($ toggle switch 1$)$
$\left.\left(v 5^{\prime}=v 5\right) \wedge\left(v 6^{\prime}=v 6\right) \wedge\left(v 7^{\prime}=v 7\right) \wedge\left(v 8^{\prime}=v 8\right)\right) \quad($ toggle switch
$\vee\left(\left(v 0^{\prime}=\neg v 0\right) \wedge\left(v 1^{\prime}=\neg v 1\right) \wedge\left(v 2^{\prime}=\neg v 2\right) \wedge\left(v 3^{\prime}=v 3\right) \wedge\left(v 4^{\prime}=\neg v 4\right) \wedge\right.$ $\left(\mathrm{v} 0^{\prime}=\neg \mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\neg \mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\neg \mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\neg \mathrm{v} 4\right) \wedge$
$\left.\left(\mathrm{v} 5^{\prime}=\mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\mathrm{v} 8\right)\right) \quad($ toggle switch 2)
$\vee\left(\left(v 0^{\prime}=v 0\right) \wedge\left(v 1^{\prime}=\neg v 1\right) \wedge\left(v 2^{\prime}=\neg v 2\right) \wedge\left(v 3^{\prime}=v 3\right) \wedge\left(v 4^{\prime}=v 4\right) \wedge\right.$ $\left.\left(\mathrm{v} 5^{\prime}=\neg \mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\mathrm{v} 8\right)\right) \quad($ toggle switch 3)
$\vee\left(\left(\mathrm{v} 0^{\prime}=\neg \mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\neg \mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\neg \mathrm{v} 4\right) \wedge\right.$
$\left.\left(\mathrm{v} 5^{\prime}=\mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\neg \mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\mathrm{v} 8\right)\right) \quad($ toggle switch 4)
$\vee\left(\left(\mathrm{v} 0^{\prime}=\mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\neg \mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\neg \mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\neg \mathrm{v} 4\right) \wedge\right.$ $\left.\left(v 5^{\prime}=\neg v 5\right) \wedge\left(v 6^{\prime}=v 6\right) \wedge\left(v 7^{\prime}=\neg v 7\right) \wedge\left(v 8^{\prime}=v 8\right)\right) \quad($ toggle switch 5)
$\vee\left(\left(\mathrm{v} 0^{\prime}=\mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\neg \mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\neg \mathrm{v} 4\right) \wedge\right.$
$\left.\left(v 5^{\prime}=\neg v 5\right) \wedge\left(v 6^{\prime}=v 6\right) \wedge\left(v 7^{\prime}=v 7\right) \wedge\left(v 8^{\prime}=\neg v 8\right)\right) \quad($ toggle switch 6)
$\vee\left(\left(\mathrm{v} 0^{\prime}=\mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\neg \mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\mathrm{v} 4\right) \wedge\right.$ $\left.\left(\mathrm{v} 5^{\prime}=\mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\neg \mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\neg \mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\mathrm{v} 8\right)\right) \quad($ toggle switch 7$)$
$\left(\left(\mathrm{v} 0^{\prime}=\mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\neg \mathrm{v} 4\right) \wedge\right.$
$\left.\left(\mathrm{v} 5^{\prime}=\mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\neg \mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\neg \mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\neg \mathrm{v} 8\right)\right) \quad($ toggle switch 8$)$
$\vee\left(\left(v 0^{\prime}=\mathrm{v} 0\right) \wedge\left(\mathrm{v} 1^{\prime}=\mathrm{v} 1\right) \wedge\left(\mathrm{v} 2^{\prime}=\mathrm{v} 2\right) \wedge\left(\mathrm{v} 3^{\prime}=\mathrm{v} 3\right) \wedge\left(\mathrm{v} 4^{\prime}=\mathrm{v} 4\right) \wedge\right.$ $\left.\left(\mathrm{v} 5^{\prime}=\neg \mathrm{v} 5\right) \wedge\left(\mathrm{v} 6^{\prime}=\mathrm{v} 6\right) \wedge\left(\mathrm{v} 7^{\prime}=\neg \mathrm{v} 7\right) \wedge\left(\mathrm{v} 8^{\prime}=\neg \mathrm{v} 8\right)\right) \quad($ toggle switch 9$)$

Predicates Init, Final characterising the initial and final states, respectively, are defined by:

Init(v0, v1, v2, v3, v4, v5, v6, v7, v8) =
ᄀv0 $\wedge \mathrm{v} 1 \wedge \neg \mathrm{v} 2 \wedge \mathrm{v} 3 \wedge \neg \mathrm{v} 4 \wedge \mathrm{v} 5 \wedge \neg \mathrm{v} 6 \wedge \mathrm{v} 7 \wedge \neg \mathrm{v} 8$

Final (v0, v1, v2, v3, v4, v5, v6, v7, v8) =
$\neg \mathrm{v} 0 \wedge \neg \mathrm{v} 1 \wedge \neg \mathrm{v} 2 \wedge \neg \mathrm{v} 3 \wedge \neg \mathrm{v} 4 \wedge \neg \mathrm{v} 5 \wedge \neg \mathrm{v} 6 \wedge \neg \mathrm{v} 7 \wedge \neg \mathrm{v} 8$
Model checkers can find counter-examples to properties, and sequences of transitions from an initial state to a counter-example state. Thus we could use a model checker to find a trace to a counter-example to the property that \neg Final (v0, v1, v2, v3, v4, v5, v6, v7, v8).

Properties

- Reach $\mathcal{R} \mathcal{B} s \Rightarrow \mathcal{Q} s$ means \mathcal{Q} true in all reachable states
- Might want to verify other properties, e.g:

1. DeviceEnabled is always true somewhere along every path starting anywhere (i.e. it holds infinitely often along every path)
2. From any state it is possible to get to a state for which Restart holds
3. Ack is true on all paths sometime between i units of time later and j units of time later.

- CTL is a logic for expressing such properties
- Exist efficient algorithms for checking them
- Model checking:
- check property in a model
- Emerson, Clarke \& Sifakis, early 1980s - Turing award 2008
- used in industry (e.g. IBM's RuleBase tool)
- Language wars: CTL vs LTL, PSL vs SVA

Concrete example

- Consider circuit below:

- Input: dreq, registers: q0, dack
- Timing Diagram:

If dreq rises, then it continues high, until it is acknowledged by a rise on dack.
If dreq falls, then it will continue low until dack false.

Paths and computations

- Properties can asserted about complete computation trees (CTL)
- Properties can be asserted just about paths (LTL)

Paths, branching time and linear time

- Let \mathcal{R} have type $\alpha \times \alpha \rightarrow$ bool
- \mathcal{R} is a transition relation
- α ranges (intuitively) over states
- An \mathcal{R}-path is a function $\sigma: n u m \rightarrow \alpha$ such that: $\forall t . \mathcal{R}(\sigma(t), \sigma(t+1))$
- $\operatorname{Path}(\mathcal{R}, s) \sigma$ means σ is an \mathcal{R}-path from s
$\operatorname{Path}(\mathcal{R}, s) \sigma=(\sigma(0)=s) \wedge \forall t . \mathcal{R}(\sigma(t), \sigma(t+1))$

- CTL is a branching time logic

- properties may hold along all paths - A
- properties may hold along some paths - E
- LTL is a linear time logic
- only properties along all paths - no path quantifiers

Computation Tree Logic (CTL)

- Syntax of CTL well-formed formulas:
$w f f::=\operatorname{Atom}(p)$
(Atomic formula)
| \neg wff
(Negation)
$w_{f f_{1}} \wedge w f f_{2} \quad$ (Conjunction)
wff ${ }_{1} \vee w f f_{2} \quad$ (Disjunction)
wff $1 \Rightarrow$ wff $_{2} \quad$ (Implication)
$\mid \mathbf{A X}$ wff (All successors)
EX wff (Some successors)
A $\left[w \mathrm{ff}_{1} \mathbf{U} w \mathrm{wf}_{2}\right] \quad$ (Until - along all paths)
| $\mathbf{E}\left[\right.$ wff $_{1} \mathbf{U}$ wff $\left.{ }_{2}\right]$ (Until - along some path)
- Atomic formulas p are properties of states
- sometimes just write " p " rather than "Atom (p) "
- General CTL formulas P are properties of models

Semantics of CTL (shallow embedding)

- A model is a pair (\mathcal{R}, s) - a transition relation and an initial state
- Define:
$\operatorname{Atom}(p)=\lambda(\mathcal{R}, s) \cdot p(s)$
$\neg P \quad=\lambda(\mathcal{R}, s) . \neg(P(\mathcal{R}, s))$
$P \wedge Q=\lambda(\mathcal{R}, s) \cdot P(\mathcal{R}, s) \wedge Q(\mathcal{R}, s)$
$P \vee Q=\lambda(\mathcal{R}, s) \cdot P(\mathcal{R}, s) \vee Q(\mathcal{R}, s)$
$P \Rightarrow Q=\lambda(\mathcal{R}, s) \cdot P(\mathcal{R}, s) \Rightarrow Q(\mathcal{R}, s)$
$\operatorname{AXP}=\lambda(\mathcal{R}, s) \cdot \forall s^{\prime} \cdot \mathcal{R}\left(s, s^{\prime}\right) \Rightarrow P\left(\mathcal{R}, s^{\prime}\right)$
$\operatorname{EXP}=\lambda(\mathcal{R}, s) \cdot \exists s^{\prime} \cdot \mathcal{R}\left(s, s^{\prime}\right) \wedge P\left(\mathcal{R}, s^{\prime}\right)$
$\mathbf{A}[P \mathbf{U} Q]=\lambda(\mathcal{R}, s) . \forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\begin{aligned}
& \overrightarrow{\exists i .} Q(\mathcal{R}, \sigma(i)) \\
& \quad \hat{\forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j))}
\end{aligned}
$$

$\mathbf{E}[P \mathbf{U} Q]=\lambda(\mathcal{R}, s) . \exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\begin{aligned}
& \text { Эi. } Q(\mathcal{R}, \sigma(i)) \\
& \quad \forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j))
\end{aligned}
$$

The defined operator AF

- Define $\mathbf{A F} P=\mathbf{A}\left[\begin{array}{lll}\mathbf{T} & \mathrm{U}\end{array}\right]$
- AF P is true if P holds somewhere along every \mathcal{R}-path $-P$ is inevitable

AF P
$=\mathbf{A}[\mathbf{T} \mathbf{U} P]$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma$.
$\operatorname{Path}(\mathcal{R}, s) \sigma$
\Rightarrow
$\exists i . P(\mathcal{R}, \sigma(i)) \wedge \forall j . j<i \Rightarrow \mathrm{~T}(\mathcal{R}, \sigma(j))$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma$.
$\operatorname{Path}(\mathcal{R}, s) \sigma$
\Rightarrow
\exists i. $P(\mathcal{R}, \sigma(i))$

The defined operator EF

- Define $\mathbf{E F} P=\mathbf{E}\left[\begin{array}{ll}\mathrm{U} & P\end{array}\right]$
- EF P is true if P holds somewhere along some \mathcal{R}-path - i.e. P potentially holds

EF P

$$
\begin{aligned}
& =\mathbf{E}[\mathrm{T} \mathbf{U} P] \\
& =\lambda(\mathcal{R}, s) . \\
& \quad \exists \sigma . \\
& \quad \operatorname{Path}(\mathcal{R}, s) \sigma \\
& \quad \wedge \\
& \quad \exists i . P(\mathcal{R}, \sigma(i)) \wedge \forall j . j<i \Rightarrow \mathrm{~T}(\mathcal{R}, \sigma(j)) \\
& =\lambda(\mathcal{R}, s) . \\
& \quad \exists \sigma . \\
& \quad \operatorname{Path}(\mathcal{R}, s) \sigma \\
& \quad \hat{} \quad \exists i . P(\mathcal{R}, \sigma(i))
\end{aligned}
$$

The defined operator AG

- Define AG $P=\neg \mathbf{E F}(\neg P)$
- AG P is true if P holds everywhere along every \mathcal{R}-path

$$
\begin{aligned}
\mathbf{A G} P & =\neg \mathbf{E F}(\neg P) \\
& =\lambda(\mathcal{R}, s) .(\neg \mathbf{E F}(\neg P))(\mathcal{R}, s) \\
& =\lambda(\mathcal{R}, s) . \neg(\exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge \exists i .(\neg P)(\mathcal{R}, \sigma(i))) \\
& =\lambda(\mathcal{R}, s) . \neg(\exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge \exists i . \neg P(\mathcal{R}, \sigma(i))) \\
& =\lambda(\mathcal{R}, s) . \forall \sigma . \neg(\operatorname{Path}(\mathcal{R}, s) \sigma \wedge \exists i . \neg P(\mathcal{R}, \sigma(i))) \\
& =\lambda(\mathcal{R}, s) . \forall \sigma . \neg \operatorname{Path}(\mathcal{R}, s) \sigma \vee \neg(\exists i . \neg P(\mathcal{R}, \sigma(i))) \\
& =\lambda(\mathcal{R}, s) . \forall \sigma . \neg \operatorname{Path}(\mathcal{R}, s) \sigma \vee \forall i . \neg \neg P(\mathcal{R}, \sigma(i)) \\
& =\lambda(\mathcal{R}, s) . \forall \sigma . \neg \operatorname{Path}(\mathcal{R}, s) \sigma \vee \forall i . P(\mathcal{R}, \sigma(i)) \\
& =\lambda(\mathcal{R}, s) . \forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \forall i . P(\mathcal{R}, \sigma(i))
\end{aligned}
$$

- AG P means P true at all reachable states
- $\mathbf{A G}(\operatorname{Atom} p)(\mathcal{R}, s) \equiv \forall s^{\prime}$. Reach $\mathcal{R}(\lambda x . x=s) s^{\prime} \Rightarrow p\left(s^{\prime}\right)$

The defined operator EG

- EG P is true if P holds everywhere along some \mathcal{R}-path
$\mathbf{E G} P=\neg \mathbf{A F}(\neg P)$
$=\lambda(\mathcal{R}, s) .(\neg \mathbf{A F}(\neg P))(\mathcal{R}, s)$
$=\lambda(\mathcal{R}, s) . \neg(\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \exists i .(\neg P)(\mathcal{R}, \sigma(i)))$
$=\lambda(\mathcal{R}, s) . \neg(\forall \sigma \cdot \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \exists i . \neg P(\mathcal{R}, \sigma(i)))$
$=\lambda(\mathcal{R}, s) . \exists \sigma . \neg(\operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \exists i . \neg P(\mathcal{R}, \sigma(i)))$
$=\lambda(\mathcal{R}, s) . \exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge \neg(\exists i . \neg P(\mathcal{R}, \sigma(i)))$
$=\lambda(\mathcal{R}, s) . \exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge \forall i . \neg \neg P(\mathcal{R}, \sigma(i))$
$=\lambda(\mathcal{R}, s) . \exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge \forall i . P(\mathcal{R}, \sigma(i))$

The defined operator $\mathbf{A}[P \mathbf{W} Q]$

- $\mathbf{A}[P \mathbf{W} Q]$ is a 'partial correctness' version of $\mathbf{A}[P \mathbf{U} Q]$
- It is true if along a path if
- P always holds along the path
- Q holds sometime on the path, and until it does P holds
- Define

A $[P \mathbf{W} Q]$
$=\neg \mathrm{E}[(P \wedge \neg Q) \mathbf{U}(\neg P \wedge \neg Q)]$
$=\lambda(\mathcal{R}, s) .(\neg \mathrm{E}[(P \wedge \neg Q) \mathbf{U}(\neg P \wedge \neg Q)])(\mathcal{R}, s)$
$=\lambda(\mathcal{R}, s) . \neg(\mathbf{E}[(P \wedge \neg Q) \mathbf{U}(\neg P \wedge \neg Q)])(\mathcal{R}, s)$
$=\lambda(\mathcal{R}, s)$.
$\neg(\exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$
$\exists i .(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i))$
\wedge
$\forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))$

- Exercise: understand the next three slides

$\mathrm{A}[P \mathbf{W} Q]$ continued (1)

- Continuing:
$\lambda(\mathcal{R}, s)$.
$\neg(\exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$
\wedge
$\exists i .(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i)) \wedge \forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \neg(\operatorname{Path}(\mathcal{R}, s) \sigma$
\wedge
$\exists i .(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i)) \wedge \forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\Rightarrow
$$

$$
=\lambda(\mathcal{R}, s)
$$

$$
\text { s). } \neg(\exists i .(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i)) \wedge \forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))
$$

$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\overrightarrow{\forall i .} \neg(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i)) \vee \neg(\forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))
$$

A $[P \mathbf{W} Q]$ continued (2)

- Continuing:
$\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$
$\forall i . \neg(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i)) \vee \neg(\forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$
\Rightarrow
$\forall i . \neg(\forall j . j<i \Rightarrow(P \wedge \neg Q)(\mathcal{R}, \sigma(j)))$
\vee
$\neg(\neg P \wedge \neg Q)(\mathcal{R}, \sigma(i))$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\begin{aligned}
& \Rightarrow \quad(\forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j)) \wedge \neg Q(\mathcal{R}, \sigma(j))) \\
& \quad \Rightarrow \\
& \quad P(\mathcal{R}, \sigma(i)) \vee Q(\mathcal{R}, \sigma(i))
\end{aligned}
$$

$$
P(\mathcal{R}, \sigma(i)) \vee Q(\mathcal{R}, \sigma(i))
$$

- Exercise: does this correspond to earlier description of $\mathbf{A}[P \mathbf{W} Q]$?
- this exercise illustrates the subtlety of writing CTL!

$\mathbf{A}[P \mathbf{W F}]=\mathbf{A G} P$

- From last slide:
$\mathbf{A}[P \mathbf{W} Q]$
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\begin{aligned}
& \forall i .(\forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j)) \wedge \neg Q(\mathcal{R}, \sigma(j))) \\
& \quad \Rightarrow \\
& \quad P(\mathcal{R}, \sigma(i)) \vee Q(\mathcal{R}, \sigma(i))
\end{aligned}
$$

- Set Q to be F :

A [PWF]
$=\lambda(\mathcal{R}, s)$.
$\forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma$

$$
\begin{aligned}
& \Rightarrow i .(\forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j)) \wedge \neg \mathrm{F}(\mathcal{R}, \sigma(j))) \\
& \quad \Rightarrow \quad \Rightarrow(\mathcal{R}, \sigma(i)) \vee \mathrm{F}(\mathcal{R}, \sigma(i))
\end{aligned}
$$

- Simplify:
$\mathbf{A}[P \mathbf{W F}]$

$$
=\lambda(\mathcal{R}, s) \cdot \forall \sigma \cdot \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \forall i .(\forall j . j<i \Rightarrow P(\mathcal{R}, \sigma(j))) \Rightarrow P(\mathcal{R}, \sigma(i))
$$

- By induction on i :
$\mathbf{A}[P \mathbf{W F}]=\lambda(\mathcal{R}, s) \cdot \forall \sigma \cdot \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow \forall i . P(\mathcal{R}, \sigma(i))$
- Exercise: describe the property specified by $\mathbf{A}[\mathrm{TW} Q]$

Example of current research

TCAD Newsletter - March 2010 Issue
Placing you one click away from the best new CAD research!
Regular Papers
==============
Zheng, H.; "Compositional Reachability Analysis for Efficient Modular Verification of Asynchronous Designs"
Abstract: Compositional verification is essential to address state explosion in model checking. Traditionally, an over-approximate context is needed for each individual component in a system for sound verification. This may cause state explosion for the intermediate results as well as inefficiency for abstraction refinement. This paper presents an opposite approach, a compositional reachability method, which constructs the state space of each component from an under-approximate context gradually until a counter-example is found or a fixpoint in state space is reached. This method has an additional advantage in that counter-examples, if there are any, can be found much earlier, thus leading to faster verification. Furthermore, this much earlier, thus leading to faster verification. Furthermore, this modular verification framework does not require complex compositional
reasoning rules. The experimental results indicate that this method is promising.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5419238\&isnumber=5419222

Summary of CTL operators (primitive + defined)

- CTL formulas:

Atom (p)	(Atomic formula - $p:$ states \rightarrow bool)
$\neg P$	(Negation)
$P \wedge Q$	(Conjunction)
$P \vee Q$	(Disjunction)
$P \Rightarrow Q$	(Implication)
$\mathbf{A X} P$	(All successors)
$\mathbf{E X} P$	(Some successors)
$\mathbf{A F} P$	(Somewhere - along all paths)
$\mathbf{E F} P$	(Somewhere - along some path)
$\mathbf{A G} P$	(Everywhere - along all paths)
$\mathbf{E G} P$	(Everywhere - along some path)
$\mathbf{A}[P \mathbf{U} Q]$	(Until - along all paths)
$\mathbf{E}[P \mathbf{U} Q]$	(Until - along some path)
$\mathbf{A}[P \mathbf{W} Q]$	(Unless - along all paths)
$\mathbf{E}[P \mathbf{W} Q]$	(Unless - along some path)

- Say ' P holds' if $P(\mathcal{R}, s)$ for all initial states s

Example CTL formulas

- $\mathbf{E F}($ Started $\wedge \neg$ Ready $)$

It is possible to get to a state where Started holds but Ready does not hold

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A F} A c k)$

If a request $R e q$ occurs, then it will eventually be acknowledged by $A c k$

- AG(AF DeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

- AG(EF Restart)

From any state it is possible to get to a state for which Restart holds

More CTL examples (1)

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A}[R e q \mathbf{U} A c k])$

If a request $R e q$ occurs, then it continues to hold, until it is eventually acknowledged

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}(\mathbf{A}[\neg R e q \mathbf{U} A c k]))$

Whenever $R e q$ is true either it must become false on the next cycle and remains false until $A c k$, or $A c k$ must become true on the next cycle

Exercise: is the AX necessary?

- $\mathbf{A G}(\operatorname{Req} \Rightarrow(\neg A c k \Rightarrow \mathbf{A X}(\mathbf{A}[R e q \mathbf{U} A c k])))$

Whenever $R e q$ is true and $A c k$ is false then $A c k$ will eventually become true and until it does $R e q$ will remain true

Exercise: is the AX necessary?

More CTL examples (2)

- $\mathbf{A G}[$ Enabled $\Rightarrow \mathbf{A G}[$ Start $\Rightarrow \mathbf{A}[\neg$ Waiting \mathbf{U} Ack $]]]$

If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false

- AG[\neg Req $_{1} \wedge \neg R^{\prime} q_{2}$
\Rightarrow
$\mathbf{A}\left[\neg \operatorname{Req}_{1} \wedge \neg \operatorname{Req}_{2} \mathbf{U}\left(\right.\right.$ Start $\left.\left.\left.\wedge \neg \operatorname{Req}_{2}\right)\right]\right]$
Whenever $R e q_{1}$ and $R e q_{2}$ are false, they remain false until Start becomes true with Req still false
- $\mathbf{A G}[R e q \Rightarrow \mathbf{A X}(A c k \Rightarrow \mathbf{A F} \neg R e q)]$

If $R e q$ is true and $A c k$ becomes true one cycle later, then eventually $R e q$ will become false

Some abbreviations

- $\mathbf{A X}_{i} P \equiv \underbrace{\mathbf{A X}(\mathbf{A X}(\cdots(\mathbf{A X} P) \cdots))}_{i}$

$$
i \text { instances of AX }
$$

P is true on all paths i units of time later

- $\mathbf{A B F}_{i . j} P \equiv$
$\mathbf{A X}_{i} \underbrace{(P \vee \mathbf{A X}(P \vee \cdots)}_{j-i \text { instances of AX }}$
P is true on all paths sometime between i units of time later and j units of time later
- $\mathbf{A G}\left[R e q \Rightarrow \mathbf{A X}\left[A_{c k} \wedge \mathbf{A B F}_{1 . .6}\left(\right.\right.\right.$ Ack $_{2} \wedge \mathbf{A}[$ Wait \mathbf{U} Reply $\left.\left.\left.]\right)\right]\right]$

One cycle after Req, $A c k_{1}$ should become true, and then $A c k_{2}$ becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack ${ }_{2}$

- More abbreviations in the 'Industry Standard' language PSL

CTL model checking algorithm

- A model is a relation \mathcal{R}
- A property is a CTL formula P
- Model checking: given CTL formula P compute $\{s \mid P(\mathcal{R}, s)\}$
- $P\left(\mathcal{R}, s_{0}\right)$ true if and only if $s_{0} \in\{s \mid P(\mathcal{R}, s)\}$
- Assume set of states to be finite (infinite state model checking possible for some models)
- Already seen how to model check reachability
$\mathbf{A G}($ Atom $p)(\mathcal{R}, s) \equiv \forall s^{\prime}$. Reach $\mathcal{R}(\mathrm{Eq} s) s^{\prime} \Rightarrow p\left(s^{\prime}\right)$
so can model check AG of atomic properties - compute:
$\left\{s^{\prime} \mid\right.$ Reach $\mathcal{R}($ Eq $\left.s) s^{\prime} \Rightarrow p\left(s^{\prime}\right)\right\}$,
e.g. via BDD of

Reach $\mathcal{R}(\mathrm{Eq} s) s^{\prime} \Rightarrow p\left(s^{\prime}\right)$

Checking EF Atom (p)

EF (Atom $p)(\mathcal{R}, s)$ if p holds along some path starting at s

- Mark all the states satisfying p
- Repeatedly mark all the states which have at least one marked successor until no change
- $\{s \mid \mathbf{E F}($ Atom $p)(\mathcal{R}, s)\}$ computed by generating:
$\mathcal{S}_{0}=\{s \mid($ Atom $p)(\mathcal{R}, s)\}$

$$
=\{s \mid p(s)\}
$$

$\mathcal{S}_{i+1}=\mathcal{S}_{i} \cup\left\{s \mid \exists s^{\prime} . \mathcal{R}\left(s, s^{\prime}\right) \wedge s^{\prime} \in \mathcal{S}_{i}\right\}$

- $\operatorname{EF}($ Atom p) is true in marked states and false in unmarked states
- Algorithm similar for AF (Atom p):
repeatedly mark all the states which have all successors marked
- To check AF EF (Atom p):
- apply EF algorithm
- starting with resulting marking apply AF algorithm

Recall handshake example

- Part of a handshake circuit

- Transition relation:
$\left(\mathrm{q}^{\prime}{ }^{\prime}=\right.$ dreq $) \wedge\left(\right.$ dack ${ }^{\prime}=\operatorname{dreq} \wedge(\mathrm{q} 0 \vee$ dack $\left.)\right)$
- Define $\mathcal{R}_{\text {RECEIVER }}$ by:
$\mathcal{R}_{\text {RECEIVER }}\left(\right.$ (dreq, $\mathrm{q0}$, dack), (dreq', qO^{\prime}, dack') $)=$ ($\mathrm{q} 0^{\prime} \Leftrightarrow$ dreq) \wedge (dack' \Leftrightarrow dreq $\wedge(\mathrm{q} 0 \vee$ dack $)$)
- Primed variables (dreq', qO^{\prime} ', dack') represent 'next state'
- dreq' unconstrained, hence non-determinism

Model checking RECEIVER

- Possible states for RECEIVER:
$\{000,001,010,011,100,101,110,111\}$
where $b_{2} b_{1} b_{0}$ denotes state
dreq $=b_{2} \wedge \mathrm{q} 0=b_{1} \wedge$ dack $=b_{0}$
- Graph of the transition relation:

- i above a state indicates membership of \mathcal{S}_{i} (defined below)

Example: EF(dreq $\wedge \mathrm{q} 0 \wedge$ dack)

- Define:
$P=\operatorname{Atom}\left(\lambda b_{2} b_{1} b_{0} . b_{2} \wedge b_{1} \wedge b_{0}\right)$
$P\left(\mathcal{R}_{\text {RECEIVER }}, b_{2} b_{1} b_{0}\right)=b_{2} \wedge b_{1} \wedge b_{0}$
- Define:
$\mathcal{S}_{0}=\left\{b_{2} b_{1} b_{0} \mid P\left(\mathcal{R}_{\text {RECEIVER }}, b_{2} b_{1} b_{0}\right)\right\}$
$\mathcal{S}_{i+1}=\mathcal{S}_{i} \cup\left\{s \mid \exists s^{\prime} . \mathcal{R}\left(s, s^{\prime}\right) \wedge s^{\prime} \in \mathcal{S}_{i}\right\}$

$$
=\mathcal{S}_{i} \cup\left\{b_{2} b_{1} b_{0} \mid \exists b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} .\left(b_{1}^{\prime}=b_{2}\right) \wedge\left(b_{0}^{\prime}=b_{2} \wedge\left(b_{1} \vee b_{0}\right)\right) \wedge b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} \in \mathcal{S}_{i}\right\}
$$

Checking EF(dreq \wedge q0 \wedge dack)

$\mathcal{S}_{0}=\left\{b_{2} b_{1} b_{0} \mid P\left(\mathcal{R}_{\text {RECEIVER }}, b_{2} b_{1} b_{0}\right)\right\}$
$\mathcal{S}_{i+1}=\mathcal{S}_{i} \cup\left\{b_{2} b_{1} b_{0} \mid \exists b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} .\left(b_{1}^{\prime}=b_{2}\right) \wedge\left(b_{0}^{\prime}=b_{2} \wedge\left(b_{1} \vee b_{0}\right)\right) \wedge b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} \in \mathcal{S}_{i}\right\}$

- Compute:
$\mathcal{S}_{0}=\{111\}$
$\mathcal{S}_{1}=\{111\} \cup\{101,110\}$
$=\{111,101,110\}$
$\mathcal{S}_{2}=\{111,101,110\} \cup\{100\}$

$$
=\{111,101,110,100\}
$$

$\mathcal{S}_{3}=\{111,101,110,100\} \cup\{000,001,010,011\}$
$=\{111,101,110,100,000,001,010,011\}$
$\mathcal{S}_{i}=\mathcal{S}_{3} \quad(i>3)$

- Hence $\forall s$. $\mathbf{E F}($ Atom $(\lambda($ dreq, q 0 , dack $)$. dreq $\wedge \mathrm{q} 0 \wedge$ dack $))\left(\mathcal{R}_{\text {RECEIVER }}, s\right)$

Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of $P(\mathcal{R}, s), Q(\mathcal{R}, s)$ are known, then BDDs of $\neg P(\mathcal{R}, s)$
$P(\mathcal{R}, s) \wedge Q(\mathcal{R}, s)$
$P(\mathcal{R}, s) \vee Q(\mathcal{R}, s)$
$P(\mathcal{R}, s) \Rightarrow Q(\mathcal{R}, s)$
can be computed using standard BDD algorithms
- If BDDs of $P(\mathcal{R}, s), Q(\mathcal{R}, s)$ are known, then BDDs of $\operatorname{AX} P(\mathcal{R}, s), \quad \mathbf{E X} P(\mathcal{R}, s), \quad \mathbf{A}[P \mathbf{U} Q](\mathcal{R}, s), \quad \mathbf{E}[P \mathbf{U} Q](\mathcal{R}, s)$ computed using fairly straightforward algorithms (see textbooks)
- Model checking CTL generalises iteration for reachable states (AG)

History of Model checking

- CTL model checking invented by Emerson, Clarke and Sifakis
- Use of BDDs to represent and compute sets of states is called symbolic model checking
- Independently discovered by several people:

Clarke \& McMillan
Coudert, Berthet \& Madre
Pixley

- SMV (McMillan) is a popular symbolic model checker
http://www.cs.cmu.edu/~modelcheck/smv.html (original)
http://www.kenmcmil.com/smv.html
(Cadence extension by McMillan)
(new implementation)
- Other temporal logics
- Linear temporal logic (LTL): easier to use, more complicated to check
- CTL*: combines CTL and LTL (also harder to check)
- Industrial languages PSL and SVA designed to be 'engineer friendly'

Expressibility of CTL

- Consider the property
"on every path there is a point after which \mathbf{p} is always true on that path"
- Consider

- Property true, but cannot be expressed in CTL
- would need something like AF P
- where P is something like "property \mathbf{p} true from now on"
- but in CTL P must start with a path quantifier A or E
- so cannot talk about current path, only about all or some paths
- AF AG (Atom p) is false (consider path s0s0s0 \cdots)

Linear Temporal Logic (LTL)

- CTL property is a predicate on a state in a tree: $P(\mathcal{R}, s)$
- LTL property is a predicate on a path: $P(\sigma)$
- Syntax of LTL well-formed formulae:

- Note: no path quantifiers \mathbf{A} or \mathbf{E}

Semantics of LTL (shallow embedding)

- Define Tail $m \sigma=\lambda n \cdot \sigma(n+m)$
- Define:
$\operatorname{Atom}(p)=\lambda \sigma . p(\sigma(0))$
$\neg P \quad=\lambda \sigma . \neg(P \sigma)$
$P \vee Q=\lambda \sigma . P \sigma \vee Q \sigma$
$\mathbf{X} P=\lambda \sigma . P($ Tail $1 \sigma)$
$\mathbf{F} P \quad=\lambda \sigma . \exists m . P($ Tail $m \sigma)$
$\mathbf{G} P \quad=\lambda \sigma . \forall m . P($ Tail $m \sigma)$
$[P \mathbf{U} Q]=\lambda \sigma . \exists i . Q($ Tail $i \sigma) \wedge \forall j . j<i \Rightarrow P($ Tail $j \sigma)$
- Example:
$\mathbf{X}(\operatorname{Atom}(p))(\sigma)=\operatorname{Atom}(p)($ Tail $1 \sigma)=p($ Tail $1 \sigma 0)=p(\sigma(0+1))=p(\sigma(1))$

CTL can express things that LTL can't express

- AG(EF P) says:

"from every state it is possible to get to a state for which P holds"

- Can't say this in LTL (proof omitted)
- Consider disjunction:
"along every path there is a state from which P will hold forever or
from every state it is possible to get to a state for which P holds"
- Can't say this in either CTL or LTL! (proof omitted)
- CTL* combines CTL and LTL and can express this property

FG

- FG P is true if there is a point after which P is always true FG $P(\sigma)$

$$
\begin{aligned}
& =\mathbf{F}(\mathbf{G}(P))(\sigma) \\
& =\exists m_{1} \cdot(\mathbf{G}(P))\left(\text { Tail } m_{1} \sigma\right) \\
& =\exists m_{1} \cdot \forall m_{2} \cdot P\left(\text { Tail } m_{2}\left(\text { Tail } m_{1} \sigma\right)\right) \\
& =\exists m_{1} \cdot \forall m_{2} \cdot P\left(\text { Tail }\left(m_{1}+m_{2}\right) \sigma\right)
\end{aligned}
$$

- Recall:

- LTL can express things that CTL can't express

CTL*

- Two kinds of formulas: state formulas (swff) \& path formulas (pwff) - state formulas are true of a state s in a tree $\mathcal{R} \ldots \ldots \ldots \ldots . \lambda(\mathcal{R}, s)$ like CTL - path formulas are true of a path σ through a tree $\mathcal{R} \ldots \ldots . \lambda(\mathcal{R}, \sigma)$ like LTL
- Defined mutually recursively

- CTL is CTL* restricted with X, F, G, [-U-] preceded by A or E
- LTL consists of CTL* formulas of form Apwff,
where the only state formulas in $p w f f$ are atomic
- Selection of primitives above arbitrary: $\vee, \neg, \mathbf{X}, \mathbf{U}, \mathbf{E}$ enough

CTL* semantics

- Combining state semantics of CTL with path semantics of LTL:

$\operatorname{Atom}(p)$	$=\lambda(\mathcal{R}, s) \cdot p(s)$
$\neg S$	$=\lambda(\mathcal{R}, s) \cdot \neg(S(\mathcal{R}, s))$
$S_{1} \vee S_{2}$	$=\lambda(\mathcal{R}, s) \cdot S_{1}(\mathcal{R}, s) \vee S_{2}(\mathcal{R}, s)$
$\mathbf{A} P$	$=\lambda(\mathcal{R}, s) \cdot \forall \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \Rightarrow P(\mathcal{R}, \sigma)$
$\mathbf{E} P$	$=\lambda(\mathcal{R}, s) . \exists \sigma . \operatorname{Path}(\mathcal{R}, s) \sigma \wedge P(\mathcal{R}, \sigma)$

$\operatorname{PathForm}(S)$	$=\lambda(\mathcal{R}, \sigma) \cdot S(\mathcal{R}, \sigma(0))$
$\neg P$	$=\lambda(\mathcal{R}, \sigma) \cdot \neg(P(\mathcal{R}, \sigma))$
$P_{1} \vee P_{2}$	$=\lambda(\mathcal{R}, \sigma) \cdot P_{1}(\mathcal{R}, \sigma) \vee P_{2}(\mathcal{R}, \sigma)$
$\mathbf{X} P$	$=\lambda(\mathcal{R}, \sigma) \cdot P(\mathcal{R}$, Tail $1 \sigma)$
$\mathbf{F} P$	$=\lambda(\mathcal{R}, \sigma) . \exists m \cdot P(\mathcal{R}$, Tail $m \sigma)$
$\mathbf{G} P$	$=\lambda(\mathcal{R}, \sigma) \cdot \forall m . P(\mathcal{R}$, Tail $m \sigma)$
$\left[P_{1} \mathbf{U} P_{2}\right]$	$=\lambda(\mathcal{R}, \sigma) . \exists i . P_{2}(\mathcal{R}$, Tail $i \sigma) \wedge \forall j \cdot j<i \Rightarrow P_{1}(\mathcal{R}$, Tail $j \sigma)$

- Note semantics of state and path formulas have different types - $\lambda(\mathcal{R}, \boldsymbol{s})$ versus $\lambda(\mathcal{R}, \sigma)$
- Semantics looks simpler if we assume \mathcal{R} fixed

Simplified CTL* semantics (textbook semantics)

- Let Path $s \sigma$ abbreviate $\operatorname{Path}(\mathcal{R}, s) \sigma$, then:

$\operatorname{Atom}(p)$	$=\lambda s . p(s)$
$\neg S$	$=\lambda s . \neg(S s)$
$S_{1} \vee S_{2}$	$=\lambda s . S_{1} s \vee S_{2} s$
$\mathbf{A} P$	$=\lambda s . \forall \sigma$. Path $s \sigma \Rightarrow P \sigma$
$\mathbf{E} P$	$=\lambda s . \exists \sigma$. Path $s \sigma \wedge P \sigma$
$\operatorname{PathForm}(S)$	$=\lambda \sigma . S(p(0))$
$\neg P$	$=\lambda \sigma . \neg(P \sigma)$
$P_{1} \vee P_{2}$	$=\lambda \sigma . P_{1} \sigma \vee P_{2} \sigma$
$\mathbf{X} P$	$=\lambda \sigma . P($ Tail $1 \sigma)$
$\mathbf{F} P$	$=\lambda \sigma . \exists m . P($ Tail $m \sigma)$
$\mathbf{G} P$	$=\lambda \sigma . \forall m . P($ Tail $m \sigma)$
$\left[P_{1} \mathbf{U} P_{2}\right]$	$=\lambda \sigma . \exists i . P_{2}($ Tail $i \sigma) \wedge \forall j . j<i \Rightarrow P_{1}($ Tail $j \sigma)$

Propositional modal μ-calculus

- Modal μ-calculus is an even more powerful property language
- Has fixed-point operators
- both maximal and minimal fixed points
- model checking consists of calculating fixed points
- many logics (e.g. CTL*) can be translated into μ-calculus
- Strictly stronger than CTL*
- expressibility in μ-calculus strictly increases as allowed nesting increases
- need fixed point operators nested 2 deep for CTL*
- The μ-calculus is very non-intuitive to use!
- intermediate code rather than a practical property language
- nice meta-theory and algorithms, but terrible usability!

Interval Temporal Logic (ITL)

- ITL specifies properties of intervals
- An interval is a sequence of states with a beginning and an end
- Useful for talking about 'transactions'
- ITL specifies properties of finite intervals not infinte traces
- Has an executable subset called Tempura suitable for simulation
- Developed by Ben Moszkowski at Stanford then here at Cambridge
- Moszkowski is now at De Montford University

Examples of ITL

Abbreviation	Meaning
$P_{1} ; P_{2}$	P_{1} holds then P_{2} holds (overlapping state)
$P_{1} ;$ skip $; P_{2}$	P_{1} holds then P_{2} holds (no overlapping state)
skip $; P$	P true on the next state
true $; P$	P sometimes true
\neg true $; \neg P$	P always true

ITL (simplified and with expressions omitted)

- Syntax of ITL well-formed formulae:
$w f f::=\operatorname{Atom}(p)$
(Atomic formula)
$\left\lvert\, \begin{gathered}\text { true } \\ \neg \text { wff }\end{gathered}\right.$
(Truth)
$\left\lvert\, \begin{aligned} & \neg \text { wff } \\ & \text { wff }_{1} \vee \text { wff }_{2}\end{aligned}\right.$
$\left\lvert\, \begin{aligned} & \text { skip }^{2} \\ & \text { wff }_{1} ; \text { wff }_{2}\end{aligned}\right.$
(Negation)
(interval with exactly two states)
| wff*
(Chop)
(Repeat)
- Semantics (properties are predicates on intervals):

$$
\begin{aligned}
\text { Atom }(p)= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot p\left(s_{0}\right) \\
\text { true }= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot T \\
\neg P \quad= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot \neg\left(P\left\langle s_{0} \cdots s_{n}\right\rangle\right) \\
P \vee Q= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot P\left\langle s_{0} \cdots s_{n}\right\rangle \vee Q\left\langle s_{0} \cdots s_{n}\right\rangle \\
\text { skip }= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot n=1 \\
P ; Q= & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle \cdot \exists k \cdot k \leq n \wedge P\left\langle s_{0} \cdots s_{k}\right\rangle \wedge Q\left\langle s_{k} \cdots s_{n}\right\rangle \\
P * \quad & \lambda\left\langle s_{0} \cdots s_{n}\right\rangle . \\
& \exists w_{1} \cdots w_{l} \cdot\left\langle s_{0} \cdots s_{n}\right\rangle=w_{1} \cdots w_{l} \wedge P w_{1} \wedge \cdots \wedge P w_{l}
\end{aligned}
$$

Too many logics: CTL, LTL, CTL*, ITL, ...

- Large variety of separate logics
- Can be viewed as idioms in higher order logic
- Can model complete hardware systems in higher order logic
- Can model programming languages and logics in higher order logic
- Why not dump ad hoc languages and just work in logic?
- specialized logics support specialized specification and verification methods
- compact assertions developed for specific applications

Assertion-based verification (ABV)

- Claimed that assertion based verification:
"is likely to be the next revolution in hardware design verification"
- Basic idea:
- document designs with formal properties
- check properties using both simulation (dynamic) and model checking (static)
- Accellera organisation and IEEE are specifying languages
- Frequently used acronyms

$$
\begin{aligned}
& \text { PSL: Property Specification Language } \\
& \text { OVL: Open Verification Library (Verilog modules) } \\
& \text { OVA: Open Vera Language } \\
& \text { SVA: System Verilog Assertions } \\
& \text { SVL: System Verilog assertion Library (SVA version of OVL) }
\end{aligned}
$$

- Problem: too many languages
- PSL from Accellera Formal Verification Technical Committee
- OVA/SVA from Accellera SystemVerilog Assertion Committee
- OVL from Accellera Open Verification Library Technical Commitee
- all Accellera committees + some new IEEE committees!
- PSL and OVA/SVA have been 'aligned'
- OVL is a checker library for dynamic property verification
- currently VHDL, Verilog and PSL versions
- eventually PSL version golden and others derived \qquad maybe

IBM's Sugar and Accellera's PSL

- Sugar 1 is the property language of IBM's RuleBase model checker
- Sugar 1 is CTL plus Sugar Extended Regular Expressions (SEREs)
- SEREs are ITL-like constructs
- Accellera ran a competition to select a 'standard' property language
- Finalists were IBM's Sugar 2 and Motorola's CBV
- Intel/Synopsys ForSpec eliminated earlier (apparently industry politics involved)
- Sugar 2 is based on LTL rather than CTL
- has CTL constructs called "Optional Branching Extension" (OBE)
- has clocking constructs for temporal abstraction
- Accellera purged "Sugar" from it property language
- the word "Sugar" was too associated with IBM
- language renamed to PSL
- SEREs now Sequential Extended Regular Expressions
- People lobby to make PSL more like ForSpec (align with SVA)

PSL notation

Previous notation

$P \wedge Q$	$P \& Q$	
$P \Rightarrow Q$	$P>Q$	
$\neg P$	$!P$	
$\mathbf{X} P$	next P	
$\mathbf{F} P$	eventually! P	(exclamation mark is negation)
$\mathbf{G} P$	always P	
$[P \mathbf{U} Q]$	P until! Q	
$[P \mathbf{W} Q]$	P until Q	
skip	true	
R^{*}	$R[*]$	
$R_{1} ; R_{2}$	$R_{1}: R_{2}$	
$R_{1} ;$ skip; R_{2}	$R_{1} ; R_{2}$	

Sequential Extended Regular Expressions (SEREs)

- Similar to ITL - but weaker
- On earlier slide: $R[*], R_{1}: R_{2}, R_{1} ; R_{2}$
- Other SERE operators include
$R_{1} \mid R_{2} \quad$ either R_{1} or R_{2} holds
$R_{1} \& \& R_{2} \quad$ both R_{1} and R_{2} hold for same number of cycles
$R_{1} \& R_{2} \quad$ both R_{1} and R_{2} hold, but one may finish before the other
- Actually \& is not primitive (braces \{ and \} used for grouping) $\{r 1\} \&\{r 2\}=\{\{r 1\} \& \&\{r 2 ; \operatorname{true}[*]\}\} \mid\{\{r 1 ; \operatorname{true}[*]\} * *\{r 2\}\}$
- SEREs can be used to improve readability of formulas, compare:
always
(reqin -> next(ackout -> next(!abortin -> (ackin \& next ackin))))
with
always \{reqin;ackout;!abortin\} |-> \{ackin;ackin\}
where PSL formulas $r_{1} \mid->r_{2}$ defined later

SEREs in HOL

- Syntax :

$r::=\operatorname{Atom}(p) \quad$| | |
| :--- | :--- |
| | $\left\lvert\,$$r_{1} \mid r_{2}$ (Atomic formula)
 $r_{1} ; r_{2}$ (Concatenation)
 $r_{1}: r_{2}$ (Fusion: ITL's chop)
 $r_{1} \& \& r_{2}$ (Length matching conjunction)
 $r[*]$ (Repeat).\right. |

- Semantics:
(s ranges over states; w ranges over finite lists of states
"head" denotes head of a list; infix "." denotes concatenation)
$\operatorname{Atom}(p)=\lambda w \cdot p(\operatorname{head} w)$
$r_{1} \mid r_{2}=\lambda w \cdot r_{1} w \vee r_{2} w$
$r_{1} ; r_{2}=\lambda w . \exists w_{1} w_{2} . w=w_{1} \cdot w_{2} \wedge r_{1} w_{1} \wedge r_{2} w_{2}$
$r_{1}: r_{2}=\lambda w . \exists w_{1} s w_{2} \cdot w=w_{1} \cdot s . w_{2} \wedge r_{1}\left(w_{1} \cdot s\right) \wedge r_{2}\left(s . w_{2}\right)$
$r_{1} \& \& r_{2}=\lambda w \cdot r_{1} w \wedge r_{2} w$
$r[*] \quad=\lambda w \cdot w=\langle \rangle \vee \exists w_{1} \cdots w_{l} . w=w_{1} \cdots w_{l} \wedge r w_{1} \wedge \cdots \wedge r w_{l}$

PSL Foundation Language (FL)

- Syntax

$f::$	$=\operatorname{Atom}(p)$	(Atomic formula)
	$\mid \checkmark f$	(Negation)
	$\mid f_{1} \vee f_{2}$	(Disjunction)
	next f	(successor)
	$\mid\{r\}(f)$	(Suffix implication)
	$\left\|\left\{r_{1}\right\}\right\|->\left\{r_{2}\right\}$	(Suffix next implication)
	$\mid\left[f_{1}\right.$ until $\left.f_{2}\right]$	(Until)

- Semantics
(simplified - no clocking, weak/strong distinction omitted):
$\operatorname{Atom}(p) \quad=\lambda \sigma \cdot p(\sigma(0))$
$\neg f \quad=\lambda \sigma . \neg(f \sigma)$
$f_{1} \vee f_{2} \quad=\lambda \sigma . f_{1} \sigma \vee f_{2} \sigma$
next $f=\lambda \sigma . f($ Tail $1(\sigma))$
$\{r\}(f)=\lambda \sigma . \exists w \sigma^{\prime} \cdot \sigma=w \cdot \sigma^{\prime} \wedge r w \wedge f \sigma^{\prime}$
$\left\{r_{1}\right\} \mid->\left\{r_{2}\right\}=\lambda \sigma . \exists w_{1} \sigma^{\prime} . \sigma=w_{1} \cdot \sigma^{\prime} \wedge r_{1} w_{1} \Rightarrow \exists w_{2} \sigma^{\prime \prime} . \sigma^{\prime}=w_{2} \cdot \sigma^{\prime \prime} \wedge r_{2} w_{2}$
$\left[f_{1}\right.$ until $\left.f_{2}\right]=\lambda \sigma . \exists i . f_{2}($ Tail $i \sigma) \wedge \forall j . j<i \Rightarrow f_{1}($ Tail $j \sigma)$
- There is also an Optional Branching Extension (OBE)
- completely standard CTL: EX, E[-U-], EG etc.

Combining SEREs with LTL formulas

- Formula $\{r\} f$ means LTL formula f true after SERE r
- Example

After a sequence in which req is asserted, followed four cycles later by an assertion of grant, followed by a cycle in which abortin is not asserted, we expect to see an assertion of ack some time in the future.

- Can represent by
always \{req; [*3];grant;!abortin\}(eventually! ack)
- where eventually! is LTL future operator F, so:
eventually! $\mathrm{f}=[\mathrm{T} U \mathrm{f}]=$ [true until! f$]$
- N.B. suffix "!" denotes "strong"
- strong/weak distinction not covered here - important for dynamic checking
- gives semantics when simulator halts before an expected event occurs

SERE examples

- How can we modify
always \{reqin; ackout;!abortin\} |-> \{ackin;ackin\}
so that the two cycles of ackin start the cycle after !abortin?
- Two ways of doing this

$$
\begin{aligned}
& \text { always \{reqin;ackout;!abortin\} |-> \{true;ackin;ackin\} } \\
& \text { always \{reqin;ackout;!abortin\} |=> \{ackin;ackin\} }
\end{aligned}
$$

- I $=>$ is a defined operator

$$
\{r 1\}|=>\{r 2\}=\{r 1\}|->\{\text { true } ; r 2\}
$$

- Note: true and T are synonyms

Examples of defined notations: consecutive repetition

- Define
$r[+]=\{r ; r[*]\}$
$r[* i] \quad= \begin{cases}\text { false }[*] & \text { if } i=0 \\ \{r ; r ; \ldots ; r\} & \text { otherwise (i repetitions of } r \text {) }\end{cases}$
$r\left[*_{i} \ldots j\right]=\left\{r\left[*_{i}\right]\right\}|\{r[*(i+1)]\}| \ldots \mid\{r[* j]\}$
$[+]=\operatorname{true}[+]$
[*] = true[*]
- Example

Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal start_trans, followed by one to eight consecutive data transfers, followed by the assertion of signal end_trans. A data transfer is indicated by the assertion of signal data
always \{req;ack\} |=> \{start_trans; data[*1..8];end_trans\}

Fixed number of non-consecutive repetitions

- Example

Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal start_trans, followed by eight not necessarily consecutive data transfers, followed by the assertion of signal end_trans. A data transfer is indicated by the assertion of signal data

- Can represent by
always \{req;ack\} I=>
\{start_trans;\{\{!data[*]; data\}[*8];!data[*]\};end_trans\}
- Define
$\mathrm{b}[=\mathrm{i}]=\{!\mathrm{b}[*] ; \mathrm{b}\}\left[\mathrm{*}_{\mathrm{i}}\right] ; \mathrm{b}[\mathrm{b}]$
- Then have a nicer representation
always \{req;ack\} |=> \{start_trans;data[= 8];end_trans\}

Variable number of non-consecutive repetitions

- Example

Whenever we have a sequence of req followed by ack, we should see a full transaction starting the following cycle. A full transaction starts with an assertion of the signal start_trans, followed by one to eight not necessarily consecutive data transfers, followed by the assertion of signal end_trans. A data transfer is indicated by the assertion of signal data

- Define
$\mathrm{b}[=\mathrm{i} . \mathrm{j}]=\{\mathrm{b}[=\mathrm{i}]\} \mid\{\mathrm{b}[=(\mathrm{i}+1) \mathrm{l}\}|\ldots| \quad.\{\mathrm{b}[=j]\}$
- Then
always\{req;ack\} |=> \{start_trans;data[= 1..8];end_trans\}
- These examples are meant to illustrate how PSL/Sugar is much more readable than raw CTL or LTL

Clocking

- Basic idea: b@clk abstracts b on rising edges of $c l k$
- Can clock SEREs (r @clk) and formulas ($f @ c l \mathrm{k}$)
- Can have several clocks
- Official semantics messy due to clocking
- Can 'translate away' clocks by pushing @clk inwards
- rules given in PSL manual
- roughly: beclk $\longrightarrow\{!c 1 k[*] ; c 1 k \& b\}$
- Same idea as temporal abstraction: b at clk

Model checking PSL

- SEREs checked by generating a finite automaton
- recall: regular expressions can be recognised by finite automata
- these automata are called "satellites"
- FL checked using standard LTL methods
- OBE checked by standard CTL methods
- Can also check formula for runs of a simulator
- this is dynamic verification
- semantics handles possibility of finite paths - messy!

PSL layer structure

- Boolean layer has atomic predicates
- Temporal layer has LTL (FL) and CTL (OBE) properties
- Verification layer has commands for how to use properties - e.g. assert, assume

- Modelling layer has HDL constructs for specifying inputs and auxiliary hardware

PSL/Sugar summary

- Combines together LTL, ITL and CTL
- Regular expressions - SEREs
- LTL - Foundation Language formulas
- CTL - Optional Branching Extension
- Relatively simple set of primitives + definitional extension
- Boolean, temporal, verification, modelling layers
- Semantics for static and dynamic verification (needs strong/weak distinction)

New Topic: Simulation or Event semantics

- HDLs use discrete event simulation
- changes to variables \Rightarrow threads enabled
- enabled threads executed non-deterministically
- execution of threads \Rightarrow more events
- Combinational thread:
always @(v_{1} or \cdots or $\left.v_{n}\right) v:=E$
- enabled by any change to v_{1}, \ldots, v_{n}
- Positive edge triggered sequential threads:
always @(posedge clk) v := E
- enabled by $c l k$ changing to T
- Negative edge triggered sequential threads:
always @(negedge clk) $v:=E$
- enabled by $c l k$ changing to F

Simulation

- Given

- a set of threads
- initial values for variables read or written by threads
- a sequence of input values
(inputs are variables not in LHS of assignments)
- simulation algorithm \Rightarrow a sequence of states

- Simulation is non-deterministic

Combinational threads in series

- HDL-like specification:
always @(in) $l_{1}:=\mathrm{f}(\mathrm{in}) \quad \ldots$. thread T1
always @ $\left(l_{1}\right) l_{2}:=\mathrm{g}\left(l_{1}\right) \quad \ldots$. thread T2
always @(l_{2}) out $:=\mathrm{h}\left(l_{2}\right) \ldots$. thread T3
- Suppose in changes to v at simulation time t
- T1 will become enabled and assign $\mathrm{f}(v)$ to l_{1}
- if l_{1} 's value changes then T 2 will become enabled (still simulation time t)
- T2 will assign $\mathrm{g}(\mathbf{f}(v))$ to l_{2}
- if l_{2} 's value changes then T will become enabled (still simulation time t)
- T3 will assign $\mathrm{h}(\mathrm{g}(\mathrm{f}(v)))$ to out
- simulation quiesces
(still simulation time t)
- Steps at same simulation time happen in δ-time (VHDL jargon)

Semantic gap

- Designers use HDLs and verify via simulation - event semantics
- Formal verifiers use logic and verify via proof
- trace semantics
- Problem: show consistency between semantics
- Goal:

traces $=$ sequences of quiescent simulation states

- Outline (see Section 4.4 of Notes for details):
- first analyse sets of combinational threads
- identify conditions for "non-looping"
- simulation terminates \Rightarrow trace semantics
- simulation always termininates"quiesces"
- extend to sequential threads
(partial correctness) (total correctness)

Trace defined by a simulation run

- Simulation defines a tree of states

- Inputs read at start of cycle
- State computed at end of cycle
- Traces $=$ sequences of end-of-cycle states (example shown in red)
- Branching time

Sequential threads - trace semantics

- Trace semantics:
$(\forall t . l(t+1)=($ Rise clk $t \rightarrow$ in $t \mid l t)) \wedge$
$(\forall t$. out $(t+1)=($ Rise clk $t \rightarrow l t \mid$ out $t))$
- Corresponds to right thread executed first
- How to ensure event and trace semantics agree?
- Method 1: use non-blocking assignments:
always @(posedge clk) $l<=i n$;
always $@$ (posedge clk) out $<=l$;
- non-blocking assignments (<<) in Verilog
- RHS of all non-blocking assignments first computed
- assignments done at end of simulation cycle
- Method 2: make simulation cycle VHDL-like

Verilog versus VHDL simulation cycles

- Verilog-like simulation cycle:

- VHDL-like simulation cycle:

VHDL event semantics

- Recall HDL:
always @(posedge clk) $l:=$ in
always @(posedge clk) out $:=l$
- If posedge clk:
- both threads become enabled
- VHDL semantics:
- both threads executed in parallel
- out gets previous value of l
- in parallel l gets value input at in
- Now no race
- Event semantics matches trace semantics

Summary of dynamic versus static semantics

- Simulation (event) semantics different from trace semantics
- No standard event semantics (Verilog versus VHDL)
- Verilog: need non-blocking assignments
- VHDL semantics closer trace semantics

Summary of Specification I and II

- Software specification and verification
- Hoare logic: partial and total correctness
- proof by invariants and variants
- mechanisation via VCs (WP or SP)
- only nice for simple languages
- can apply Hoare logic to behavioral view of hardware
- Higher order logic (HOL)
- unifying general logic
- supports Hoare logic via embedding
- supports temporal logics via embedding
- can directly represent hardware behavior and structure (\exists, \wedge)
- hardware verification as pure logic proof
- relating models: event vs trace vs RTL vs cycles
- Hardware specification and verification
- automatic FV uses state machine models, fit nicely into HOL
- reachable states calculated by iteration (fixed point)
- symbolic representations: BDDs
- model checking of properties (CTL, LTL, ITL, PSL)
- event simulation used in industry

[^0]: |- PARITY_IMP(inp,out) =
 $\exists 1112131415$.
 $\operatorname{NOT}(12,11) \wedge \operatorname{MUX}($ inp $, 11,12,13) \wedge \operatorname{REG}($ out, 12$) \wedge$
 ONE $14 \wedge \operatorname{REG}(14,15) \wedge \operatorname{MUX}(15,13,14$, out $)$

