
Specification and Verification II

x Topic of course is the Specification and Verification of Hardware

x Assumes familiarity with Specification and Verification I

(which concerns software, particularly using Hoare logic)

x The two courses are really a single course

The notes contain general and background material for the course.

Some of the material in them may not be covered in the lectures.

Some details and examples are only presented in the lectures.

The examinable material is what is actually covered in the lectures

Starting today

x Hardware oriented Hoare logic examples

u apply Specification and Verification I ideas to hardware

x Modelling data

u words as numbers or as bit arrays

x Programs as hardware

u synthesis to state machines

x Compare program behaviour with hardware behaviour

u intermediate states visible

x Motivate temporal logic

u need to specify more than relationship between input and final result

Hoare Logic, Higher Order Logic and Temporal Logic

x Hoare logic can be used to verify programs in HDLs

x Hoare logic can be embedded in higher order logic

u see last part of Specification and Verification I

x Higher order logic will be used to represent hardware structures

x Temporal logic (see later):

u is used to specify properties

u can be embedded in higher order logic

x Hoare Logic is for data reasoning, temporal logic for time (control)

x Need to chose appropriate logic – all live inside higher order logic

x Goal: software and hardware modelled in same language

u programming languages get hardware features: SystemC

u hardware description languages get programming features: . . SystemVerilog

Hardware Oriented Programs

x Hoare logic can be used to verify hardware algorithms

u can reason about programs to develop hardware

u not yet ‘Industry Standard’ practice

u interesting research direction: applications to hardware/software co-design?

x Hoare logic ideas appear in some industrial methods

u Intel’s Symbolic Trajectory Evaluation (STE)

{stimulus} <hardware model> {response}

u Assertion Based Verification (ABV) for hardware

annotates HDL source with assertions

Hoare Logic applied to hardware algorithms

x Examples: addition and multiplication

x Initially natural numbers will represent words

u leads to messy details

u later a type of words is introduced

x We will multiply natural numbers a and b

u assume they can be represented with n bits

x Write ab to abbreviate a× b

x ai is i-th bit of the binary representation of a

(a0 being the least significant bit)

a = 2n−1an−1 + 2n−2an−2 + · · · + 20a0

hence
ab = (2n−1an−1 + 2n−2an−2 + · · · + 20a0)b

= 2n−1an−1b + 2n−2an−2b + · · · + 20a0b

= an−12
n−1b + an−22

n−2b + · · · + a02
0b

Binary multiplication algorithm

x Multiplying by 2 corresponds to:
u shifting one place to the left
u adding a 0 as the least significant bit

x Denote this operation by b 7→ b⌢0, then:
20b = b

21b = b⌢0
22b = b⌢00

...
2nb = b⌢ 0 · · · 0

︸ ︷︷ ︸

n 0s

x Recall: ab = an−12
n−1b + an−22

n−2b + · · · + a02
0b

x Thus product of a and b is given by the sum:
a0b

+ a1b⌢0
+ a2b⌢00
+ a3b⌢000

...

+ an−1b⌢0 · · · 0

u the ith row is either all zeros (if ai is 0)

u or b shifted i places to the left (if ai is 1)

x a, b need n-bits ⇒ product needs 2n bits

Extracting bits and subwords

x Let A[n] denote the n-th bit of the binary representation of A

x A[n] is a number 1 or 0

x A[0] is the least significant bit

x Thus:
A[n] = (A div 2n) mod 2

x Define A[m : n] to be the numerical value of the word comprising
bits n upto to m of A:







2m−nA[m] + 2m−n−1A[m−1] + · · · + 20A[n] if m > n

A[n] if m = n

0 if m < n

x Later we’ll represent words as bit-strings instead of as numbers

Hoare logic verification of a multiplier

x Add-shift multiplication program:

I := 0; PROD := 0;

WHILE I < N DO

BEGIN PROD := PROD + A[I] × (2I× B);

I := I + 1;

END

x Annotated Hoare specification:

{A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
I := 0; PROD := 0;

WHILE I < N DO {I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab}

BEGIN PROD := PROD + A[I] × (2I× B);

I := I + 1;

END

{PROD = a× b}

x Routine (not trivial) to verify using Hoare Logic

u reasoning about div and mod is horrible

Using FOR-commands instead of WHILE

⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
PROD := 0;

FOR I := 0 UNTIL N-1 DO

BEGIN PROD := PROD + A[I]×B;
B := 2×B;

END

{PROD = a× b}

x Program corresponds directly to hardware (i.e. more like HDL)

u three registers A, B and PROD

u initially PROD is set to 0

u A and B contain numbers to be multiplied

x I-th step of the multiplication:

u adding A[I]× B to PROD

u then shifting B one bit to the left (i.e. multiplying it by 2)

Textbook multiplier

x Simple textbook add-shift multiplier:

Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

x Optimised version of naive algorithm

x Can apply Hoare logic methods to verify correctness

u see notes for (horrible) details of Hoare-style proof

Words as bit-strings (see notes for full details)

x Distinguish words from numbers – different type
u Advantages: corresponds more to intuition – words have a size
u Disadvantage: can’t use off-the-shelf theory of arithmetic

x Size of a word is denoted by |w|

x nth bit of w denoted by w[n]

x w[m : n] denotes bits m to n of w

x The word corresponding to a bit b is Bw(b)

x Bv(b) is the number represented by bit b

x V(w) is the natural number represented by word w

x W n maps number m to the n-bit word representing it

x Concatenation of w1 with w2 denoted by w1⌢w2

x w{n←b} denotes a word such that w[n] = b and is identical to w at
all other bit positions (pad w with 0s at left if n ≥ |w|)

x The addition w1 ⊎ w2 of w1 and w2 is defined by:
w1 ⊎ w2 = W (max(|w1|, |w2|) + 1) (V(w1) + V(w2))

x b•w equals w if b = T and equals W |w| 0 if b = F

Words vs bits

x w[n : n] is the 1-bit word consisting of w[n]

x w[n] : bool

x w[n : n] : word

x Bits and 1-bit words are different types

x The word corresponding to a bit b is Bw(b)

x Thus: Bw(b)[0] = b

Representing Numbers

x Natural number: bn−1 · · · b0 represents

2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

x Integer: bn−1 · · · b0 represents

−2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

u this is the two’s complement representation

x V(w) is the natural number represented by a w

V(bn−1 · · · b0) = 2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

x Words can represent other values

u e.g. floating point numbers; opcodes

x Bv(b) is the number represented by b

Bv(T) = 1 and Bv(F) = 0

Arithmetic on bits and words

x The sum of bits a and b and a carry-in bit c

u is computed by a⊕ b⊕ c (where ⊕ is ‘exclusive or’)

u and the carry-out by (a ∧ b) ∨ (c ∧ (a⊕ b))

x This is verified by:

Bv(a⊕ b⊕ c) = (Bv(a) + Bv(b) + Bv(c)) mod 2

Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) = (Bv(a) + Bv(b) + Bv(c)) div 2

Verification by enumeration

x Sum:
a b c Bv(a⊕ b⊕ c) (Bv(a) + Bv(b) + Bv(c)) mod 2
1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 1
0 1 1 0 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

x Carry:
a b c Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) (Bv(a) + Bv(b) + Bv(c)) div 2
1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

Verification of a ripple-carry adder of any size

one bit adder one bit adderCARRY F

A[n-1] B[n-1] A[0] B[0]

SUM[n-1] SUM[0]

. . .

x Let R be:

2IBv(CARRY) + V(SUM[I−1 : 0]) = V(A[I−1 : 0]) + V(B[I−1 : 0]) ∧
A = w1 ∧ B = w2

x Consider the following annotated specification:

{A = w1 ∧ B = w2 ∧ SUM = W N 0 ∧ CARRY = F ∧
|w1| ≤ N ∧ |w2| ≤ N ∧ N > 0}
FOR I := 0 UNTIL N-1 DO {R}
BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

{2NBv(CARRY) + V(SUM[N-1 : 0]) = V(A[N-1 : 0]) + V(B[N-1 : 0])
A = w1 ∧ B = w2}

x A, B are N-bit words, SUM, CARRY are truthvalues, I is an integer

x Proof horrible (omitted)

Word multiplication program

x Simple add-shift multiplication

x Annotated correctness specification:

{V(A) = a ∧ V(B) = b ∧ PROD = W(2N)0 ∧
|A| ≤ N ∧ |B| ≤ N ∧ N > 0}

FOR I:=0 UNTIL N-1 DO

{2IV(A[N-1 : I])b + V(PROD) = ab ∧ V(B) = 2Ib}
BEGIN

PROD := PROD ⊎ A[I]•B;

B := B⌢0

END

{V(PROD) = ab}

x Can generate VCs and prove them (horrible – omitted)

Topic shift: From programs to hardware (i.e. synthesis)

x Consider a ripple-carry adder

FOR I := 0 UNTIL N-1 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

x If a particular value of N is fixed, then the program can be unrolled
into the normal circuit for an adder.

x For example take N = 3 to get:

FOR I := 0 UNTIL 2 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

N=3 adder

x 3-bit adder:
FOR I := 0 UNTIL 2 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END
x Assuming initially CARRY = F; FOR-command unrolls to:

SUM[0]:=A[0]⊕B[0]⊕F;
CARRY:=(A[0]∧B[0])∨(F∧(A[0]⊕B[0]));
SUM[1]:=A[1]⊕B[1]⊕CARRY;
CARRY:=(A[1]∧B[1])∨(CARRY∧(A[1]⊕B[1]));
SUM[2]:=A[2]⊕B[2]⊕CARRY;
CARRY:=(A[2]∧B[2])∨(CARRY∧(A[2]⊕B[2]));

x Symbolically executing yields logic equations:
SUM[0]:=A[0]⊕B[0];
SUM[1]:=A[1]⊕B[1]⊕(A[0]∧B[0]);
SUM[2]:=A[2]⊕B[2]⊕

((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])));
CARRY :=(A[2]∧B[2])∨

(((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])))∧
(A[2]⊕B[2]));

Combinational logic

x Derived program is combinational logic:

SUM[0]:=A[0]⊕B[0];
SUM[1]:=A[1]⊕B[1]⊕(A[0]∧B[0]);
SUM[2]:=A[2]⊕B[2]⊕

((A[1]∧B[1])∨
((A[0]∧B[0])∧(A[1]⊕B[1])));

CARRY :=(A[2]∧B[2])
∨
(((A[1]∧B[1])∨

((A[0]∧B[0])∧(A[1]⊕B[1])))∧
(A[2]⊕B[2]));

x These are independent assignments

u boolean expressions for computing the values of SUM and CARRY directly in

terms of the A[0], A[1], A[2], B[0], B[1] and B[2]

x This process yields logic for adders of arbitrary (fixed) bit-widths

x Hoare Logic verifies any adder generated this way

What about non-combinational logic?

x Unrolling commands to combinational logic is sensible for the adder

x Less so for multipliers

u straightforward to unroll a multiplier into combinational logic

u but resulting Boolean expressions will be huge

u evaluating in one clock cycle likely to make the cycle time too slow

x Usually multipliers are sequential machines

u compute the product over a number of cycles

u might do the add and shift in a single cycle which would take N cycles

u might do add and shift on separate cycles, taking 2N shorter cycles

x Decision of whether to implement a particular function as combi-
national or sequential logic, and if sequential, how much to do each
cycle, is a decision which depends on engineering issues

Specifying cycles

x Abstract view of multiplier:

u computes a single state change

u from initial values of the registers

u to final values

x Adequate for functional correctness

u i.e. it does multiplication

x Less abstract views needed for timing analysis

HDLs and events

x HDLs allow operations to be scheduled to clock cycles

x Statements can be prefixed by @

u the symbol @ introduces an event control

x Multiplier that takes N cycles: R = CARRY⌢P⌢A

FOR I := 0 UNTIL N-1 DO

@R := (R[0]•B ⊎ R[2N-1:N])⌢R[N-1:1]
Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

x Multiplier that takes 2N cycles:

FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
@R := SUM⌢R[N-1:1]

END

x In Verilog, event controls can be more detailed

u @(posedge clk) or @(negedge clk)

Need more than Hoare Logic

x Programs with added event controls can still be reasoned about
using Floyd Hoare logic

u relation between initial and final state unchanged

u @’s just determine intermediate states at clock ticks

x Consider this silly program:
FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
B := ¬B;
@R := SUM⌢R[N-1:1];

B := ¬B;
END

x Same initial-final relation, but B oscillates

x Hoare specifications only deal with initial-final relation,
not intermediate states

x Temporal logic enables properties of intermediate states to be specified
u e.g. B stable (false for silly program above)

Division program from Specification and Verification I

x Division program:

R:=X;

Q:=0;

WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

x Implemented as a machine

u registers X, Y, Q and R

u a subtracter and incrementer

u on each cycle: subtract Y from R; add 1 to Q

x Specification and Verification I:

u program executes once and stops (maybe)

x Specification and Verification II :

u program executes continuously

u body of loop executed as combinational logic

Our toy language becomes an HDL

x To emphasize the continuously-running nature of hardware,
recast division program as (where FOREVER is WHILE T DO):

FOREVER

IF Load=1

THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0

ELSE IF Y≤R THEN R:=R-Y; Q:=Q+1

ELSE DONE:=1

u In1, In2 and Load are inputs

whose value is determined by the environment (e.g. the user)

u X, Y, Q, R and DONE are registers

whose value is set by the program

x Environment sets the input Load to 1 to initialise registers

x To perform a division:

u Load is set to 0

u and held at this value until DONE=1

u so the environment must ensure that DONE=0 ⇒ Load=0

FOREVER C

x Each iteration step consists of
u Circuit C computes new values of registers from current values and inputs
u then updating the registers

IF Load=1
 THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0
 ELSE IF Y<=R
 THEN R:=R-Y; Q:=Q+1
 ELSE DONE:=1

R

Q

DONE

X

Y

Load

In1

In2

Programs as temporal statements

x Would like a generalised Hoare Logic specification:

⊢ {If environment ensures always that: DONE=0 ⇒ Load=0

and if Load is set to 1 when: In1 = x ∧ In2 = y}
FOREVER

IF Load=1

THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0

ELSE IF Y≤R THEN R:=R-Y; Q:=Q+1

ELSE DONE:=1

{Then x and y will be stored into X and Y

and on the next cycle DONE will be set to 0

and sometime later DONE will be be set to 1

and X and Y won’t change until DONE is set to 1

and when DONE goes to 1 we have: x = R + y×Q}

x Stuff in red needs Temporal Logic

Brief history of temporal logic

x 1950s: philosophers invent temporal logic (A.N. Prior of Oxford)

x 1970s: Burstall, Pnueli, Lamport use temporal logic for programs

x 1980s: Emerson, Clarke and other introduce model checking

x 1980s: hardware verification examples studied

x 1990s: model checking catches on:
Intel hires many logicians for P7 verification. Uses STE.
Currently developing higher order logic tools (reFLect).

x 1997: Amir Pnueli gets the Turing Award in recognition of his con-
tribution to the applications of temporal logic

x 2004: temporal notation for properties debated and standardised
u semantics: CTL versus LTL
u syntax: PSL and SVA ‘aligned’

x 2005 onwards: Assertion Based Verification (ABV) grows
u dynamic checking of properties by simulation (e.g. used at ARM)
u static checking by model checking

x 2008: Clarke, Emerson & Sifakis get Turing prize for model checking

x 2008: Clarke gets 2008 CADE Herbrand Award

x Note: work on formal methods leads to high prestige awards!

Rest of the course

x First look at ‘raw’ higher order logic for specification and verification

u temporal logic is a notation for specifying properties of traces

u first look at reasoning directly about traces in higher order logic

x Towards the end of the course we return to temporal logic

u look at its constructs

u semantics via a shallow embedding in higher order logic

u look at the ‘Industry Standard’ logic PSL

u overview some key ideas for model checking temporal logic properties

Modelling Hardware in Higher Order Logic
Original slides by Tom Melham and Michael Norrish

(edited by Mike Gordon)

Modelling Hardware: TFM/MN/MJCG – p.1/32

Hardware Verification Method
• Classical method of hardware verification:

1. write a specification of intended behaviour
Spec

2. write specifications of the design components
Part-1, . . .Part-n

3. define a formal model of the design
⊢ Design = Part-1 + · · · + Part-n

4. formulate and prove correctness
⊢ Design satisfies Spec

• This general verification approach

• underlies various specific formal methods

• requires mechanized support for large designs

• is usually applied hierarchically

Modelling Hardware: TFM/MN/MJCG – p.2/32

Limitations of the Method

• Formal proof can’t guarantee actual chips will work:

• design models are not always accurate
• there may be fabrication defects

• Specifications may not capture requirements:

• large specifications may be unreadable
• some input conditions may be ignored

Modelling Hardware: TFM/MN/MJCG – p.3/32

Why Formal Specification?
Consider this device (J. Herbert’s example):

-

- -datain

sample

dataout

HH ��
out

This can be specifiedinformally by

The input linedatain accepts a stream of bits, and the
output linedataout emits the same stream delayed
by four cycles. The busout is four bits wide. If the
input sample is false then the 4-bit word atout is the
last four bits input atdatain. Otherwise, the output
word is all zeros.

Modelling Hardware: TFM/MN/MJCG – p.4/32

Why Formal Specification?
The informal specification is
• vague: does ‘the last four bits input’ include the current bit?
• incomplete: what is the value atdataout during the first

three cycles?
• unusable: a natural language specification can’t be

simulated or compiled!

Modelling Hardware: TFM/MN/MJCG – p.5/32

Formal Specification in HOL
• Consider the following device:

Deva
b

c
d

This is specified by a boolean termS[a, b, c, d] with free
variablesa, b, c, andd.

• The idea is that

• a, b, c, d model externally-observable values

• S[a, b, c, d] =







T if a, b, c, andd could occur

simultaneously on the

corresponding external wires of the

deviceDev
F otherwise

Modelling Hardware: TFM/MN/MJCG – p.6/32

Specification Examples
• Simple combinational behaviour:�

�
�

�

i2

i1
o

⊢ Xor(i1, i2, o) = (o = ¬(i1 = i2))

• Bidirectional wires:

s d

g

⊢ Ntran(g, s, d) = (g ⇒ (d = s))

Modelling Hardware: TFM/MN/MJCG – p.7/32

Specification Examples
Sequential (time-dependent) behaviour:

Dtype

⊲

d

ck

q

⊢ Dtype(ck, d, q) = ∀t. q(t+1) = (if Rise ck t then d t else q t)

⊢ Rise ck t = ¬ck(t) ∧ ck(t+1)

Modelling Hardware: TFM/MN/MJCG – p.8/32

Specification of the Sampler
• We can specify the sampler formally by

∀t:time.

(dataout(t) = datain(t−4))
∧
(out(t) = if sample(t)

then [F; F; F; F]

else [datain(t−4); datain(t−3);
datain(t−2); datain(t−1)])

Modelling Hardware: TFM/MN/MJCG – p.9/32

Specification of the Sampler
• We can specify the sampler formally by

∀t:time.

(dataout(t) = datain(t−4))
∧
(out(t) = if sample(t)

then [F; F; F; F]

else [datain(t−4); datain(t−3);
datain(t−2); datain(t−1)])

• The formal specification is

• precise: ‘last four bits input’ doesn’t include current bit
• complete: can infer thatdataout equalsdatain(0) during

the first three cycles.
• usable: logic notation can be processed by machine

Modelling Hardware: TFM/MN/MJCG – p.9/32

Composing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
xs

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

Hiding Internal Structure
• Consider the composite device

D1 D2a b
x

S1[a, x] ∧ S2[x, b]

• Existential quantification (∃) models the effect of making
wires internal to the design:

D1 D2a b
x

∃x. S1[a, x] ∧ S2[x, b]

• Existential quantification is called ahiding operator—it
‘hides’ internal wires.

Modelling Hardware: TFM/MN/MJCG – p.11/32

Shallow embedding of Verilog

• Some typical structural Verilog

module COMP (p1, ... ,pm);
wire w1, ..., wn;

COMP1 M1 (...);
COMP2 M2 (...);

endmodule

• Assume formulas forCOMP1, COMP2 already defined

• Logical representation:

COMP(p1, ..., pm) = ∃w1 ... wn. COMP1(...) ∧ COMP2(...)

Modelling Hardware: TFM/MN/MJCG – p.12/32

Formulating Correctness
• A key part of formal hardware verification is formalizing

what ‘correctness’means.
• The strongest formulation isequivalence:

⊢ ∀v1 . . . vn. M[v1, . . . , vn] = S[v1, . . . , vn]

• For partial specifications, useimplication:

⊢ ∀v1 . . . vn. M[v1, . . . , vn]⇒ S[v1, . . . , vn]

• In general, the satisfaction relationship

⊢ M[v1, . . . , vn] sat
abs

S[abs(v1), . . . , abs(vn)]

must be one ofabstraction. The specification will be an
abstraction of the design model. Various kinds of
abstractions on signals (abs) will be discussed later.

Modelling Hardware: TFM/MN/MJCG – p.13/32

Hiererchical Verification
The hierarchical verification method:

Level 0

Model:

⊢ M = ∃z. S1 ∧ S2

Correctness:

⊢ M sat
F

S

M

S1 S2

z }| {

S1 S2

z

Level 1

Models:

⊢ M1 = ∃x. P1 ∧ P2

⊢ M2 = ∃y. P3 ∧ P4

Correctness:

⊢ M1 sat
G

S1

⊢ M2 sat
G

S2

M1

P1 P2

z }| {

P1 P2

x

M2

P3 P4

z }| {

P3 P4

y

Modelling Hardware: TFM/MN/MJCG – p.14/32

Hierarchical Design—Advantages
• Each type of module verified only once

• the statement of its correctness will be reused
many times

• Controls complexity through abstraction

• each verification is done at the appropriate
level of complexity

Modelling Hardware: TFM/MN/MJCG – p.15/32

A Simple Correctness Proof
• Here is the design of a CMOS inverter:
• Suppose we wish to verify thato = ¬i.
• There are three steps:

• define a model of the circuit in logic

• formulate the correctness of the circuit
• prove the correctness of the circuit

c
f

i o

p

g

Modelling Hardware: TFM/MN/MJCG – p.16/32

CMOS Primitives
• Formal specifications of primitives:

b
s d

g

⊢ Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g

⊢ Ntran(g, s, d) = (g ⇒ (d = s))

g

⊢ Gnd g = (g = F)

p

e
⊢ Pwr p = (p = T)

• This is the so-calledswitch model of CMOS.

Modelling Hardware: TFM/MN/MJCG – p.17/32

Design Model and Correctness
• We define the design model using composition

and hiding, as follows:

⊢ Inv(i, o) =

∃g p. Pwr p ∧Gnd g ∧

Ntran(i, g, o) ∧ Ptran(i, p, o)

• Correctness is formulated by the equivalence:

⊢ ∀i o. Inv(i, o) = (o = ¬i)

This follows by purely logical inference. . .

b
e

i o

p

g

Modelling Hardware: TFM/MN/MJCG – p.18/32

The Correctness Proof
• Definition of Inv:

⊢ Inv(i, o) =

∃g p. Pwr p ∧Gnd g ∧

Ntran(i, g, o) ∧ Ptran(i, p, o)

• Expanding with definitions:

⊢ Inv(i, o) =

∃g p. (p = T) ∧ (g = F) ∧

(i⇒ (o = g)) ∧ (¬i⇒ (o = p))

• By simple logical reasoning:

⊢ Inv(i, o) = (i⇒ (o = F)) ∧ (¬i⇒ (o = T))

Modelling Hardware: TFM/MN/MJCG – p.19/32

The Correctness Proof continued
• Simplifying gives:

⊢ Inv(i, o) = (i⇒ ¬o) ∧ (¬i⇒ o)

• By the law of the contrapositive:

⊢ Inv(i, o) = (o⇒ ¬i) ∧ (¬i⇒ o)

• By the definition of boolean equality:

⊢ Inv(i, o) = (o = ¬i)

• Generalizing the free variables gives:

⊢ ∀i o. Inv(i, o) = (o = ¬i)

Modelling Hardware: TFM/MN/MJCG – p.20/32

Scope of the Method
• The inverter example is, of course, trivial!
• But the same method has been applied to

• a commercial CMOS cell library

• several complete microprocessors (e.g. ARM)
• floating point algorithms and hardware

• Features of the approach:

• the specification language is just logic

∗ logic can mimic HDL constructs

• the rules of reasoning are also pure logic

∗ special-purpose derived rules are possible
• big formal proofs require machine assistance

Modelling Hardware: TFM/MN/MJCG – p.21/32

Another Example
• An (n+1)-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n+1 × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic

• formulate the correctness of the circuit

• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Defining the Model: types

• Specification uses numbers, i.e. values of typenum

• Implementation uses words – values of typeword

• nth bit of w denoted byw[n]

• w[m : n] denotes bitsm to n of w

• Bv(b) is the number represented by bitb

• V(w) is the natural number represented by wordw

• Abstraction from words to numbers (data abstraction):

⊢ Bv b = if b then 1 else 0

⊢ V w[0 : 0] = Bv w[0]

⊢ V w[n+1 : 0] = 2n+1(Bv w[n+1]) + V w[n : 0]
Modelling Hardware: TFM/MN/MJCG – p.23/32

Defining the Model: recursive definition

• If n > 0 an(n+1)-bit adder is built from ann-bit adder

Add1 AdderImp(n−1) cincout
c

s[n] s[n−1:0]

a[n] a[n−1:0]b[n] b[n−1:0]

Modelling Hardware: TFM/MN/MJCG – p.24/32

Defining the Model: Add1

• Diagram of a 1-bit full adder:

Add1cout cin

sum

a b

• Linesa, b, cin, sum andcout carry boolean values

• Specification (note data abstraction frombool to num):

Add1(a, b, cin, sum, cout) =

(2×Bv(cout) + Bv(sum) = Bv(a) + Bv(b) + Bv(cin))

Modelling Hardware: TFM/MN/MJCG – p.25/32

Defining the Model
• Recursive view of ann+1-bit adder:

Add1 AdderImp(n−1) cincout
c

s[n] s[n−1:0]

a[n] a[n−1:0]b[n] b[n−1:0]

• Primitive recursive definition in logic:

AdderImp(0)(a, b, cin, s, cout) =

Add1(a[0], b[0], cin, s[0], cout)

AdderImp n (a, b, cin, s, cout) =

∃c. Add1(a[n], b[n], c, s[n], cout) ∧

AdderImp(n−1)(a[n−1:0], b[n−1:0], cin, s[n−1:0], c)

Modelling Hardware: TFM/MN/MJCG – p.26/32

Formulation of Correctness
• Logical formulation of correctness:

Spec n (a, b, cin, s, cout) = ((2n+1 cout)+s = a+b+cin)

∀n a b cin s cout.

AdderImp n (a, b, cin, s, cout)
⇒
Spec n (V a[n:0], V b[n:0], Bv cin, V s[n:0], Bv cout)

• Note the data abstraction (abs in an earlier slide)

• This is easy to prove (done later in the course)

Modelling Hardware: TFM/MN/MJCG – p.27/32

Temporal Abstraction
• Example—abstracting to unit delay:

Del
i o ⊢ Del(i, o) = ∀t. o(t+1) = i t

Dtype

⊲
d

ck

q

⊢ Dtype(ck, d, q) =

∀t. q(t+1) = if Rise ck t then d t else q t

⊢ Rise ck t = ¬ck(t) ∧ ck(t+1)

• Notions of time involved:

• coarse grain of time— unit time = 1 clock cycle
• fine grain of time—unit time≈ 1 gate delay

Modelling Hardware: TFM/MN/MJCG – p.28/32

Formulating Correctness
• A mapping between time-scales:

-

-

clockck: -

r r r r r r r r
r r r

concretetc:
? ? ?

f f f

abstractta:

• Define the temporal abstraction functions:

⊢ Timeof P n = the time on tc such that P true for nth time

⊢ signal when P = signal ◦ (Timeof P)

where (f ◦ g)x = f(g x) [◦ is function composition]

Modelling Hardware: TFM/MN/MJCG – p.29/32

Formulating Correctness
• Then correctness is stated by:

⊢ ∀ck. Inf(Rise ck)⇒

∀d q. Dtype(ck, d, q)⇒

Del(d when (Rise ck), q when (Rise ck))

• Note the formalvalidity condition:

⊢ Inf P = ∀t. ∃ t′. t′ > t ∧ P t′

Modelling Hardware: TFM/MN/MJCG – p.30/32

Industry use of theorem proving
• Intel

• floating point algorithms (uses HOL Light system)
• hardware (uses internal tools Forte/reFLect)

• AMD

• floating point (uses ACL2 prover)

• Sun

• high level architecture verification (PVS)

• Rockwell Collins

• low level code verification (ACL2)

.
• Use of model checking widespread

• discussed in latter part of the course
Modelling Hardware: TFM/MN/MJCG – p.31/32

Summary
• Specifying behaviour:

• predicates—S[a, b, c, d]

• Specifying structure:

• composition—S1[a, x] ∧ S2[x, b]

• hiding—∃x. S1[a, x] ∧ S2[x, b]

• Formulating correctness:

• ⊢ ∀v1 . . . vn. M[v1, . . . , vn] = S[v1, . . . , vn]

• ⊢ ∀v1 . . . vn. M[v1, . . . , vn]⇒ S[v1, . . . , vn]

• ⊢ ∀v1 . . . vn. M[v1, . . . , vn]⇒ S[abs v1, . . . , abs vn]

• Abstraction

• data:w 7→ V(w)

• temporal:sig 7→ sig when (Rise clk)
Modelling Hardware: TFM/MN/MJCG – p.32/32

A 1-bit CMOS full adder

x Here is a diagram of a 1-bit full adder:

Add1cout cin

sum

a b

x Lines a, b, cin, sum and cout carry the boolean values T or F.

x Specification of the adder:

Add1(a, b, cin, sum, cout) ≡
(2×Bv(cout) + Bv(sum) = Bv(a) + Bv(b) + Bv(cin))

x A correct implementation has:

u lines a, b, cin, sum and cout

u constrains a, b, cin, sum and, cout so Add1(a, b, cin, sum, cout)

Implementation

x A CMOS implementation of the adder:

u lines with the same name are connected

u lines p0, . . . , p11 are internal

u horizontal transistors are bidirectional

Pwr

Gnd

p1

a

a

p1

p2

p4

p5

b

b

p0

p11

cin

p1

p1

cin

sum cout

b

b

a

b

b

a

p3

p6

p7

p9

p8

p10

p1

a

cin

cin

a

• • • • •

• •

•

•

• • • • • • • •

• ••

• • • • •

•

•

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦ ◦

◦

Specification in logic

Pwr

Gnd

p1

a

a

p1

p2

p4

p5

b

b

p0

p11

cin

p1

p1

cin

sum cout

b

b

a

b

b

a

p3

p6

p7

p9

p8

p10

p1

a

cin

cin

a

• • • • •

• •

•

•

• • • • • • • •

• ••

• • • • •

•

•

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦ ◦

◦

Add1 Imp(a, b, cin, sum, cout) ≡
∃p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11.

Ptran(p1, p0, p2) ∧ Ptran(cin, p0, p3) ∧ Ptran(b, p2, p3) ∧ Ptran(a, p2, p4)∧
Ptran(p1, p3, p4) ∧ Ntran(a, p4, p5) ∧ Ntran(p1, p4, p6) ∧ Ntran(b, p5, p6)∧
Ntran(p1, p5, p11) ∧ Ntran(cin, p6, p11) ∧ Ptran(a, p0, p7) ∧ Ptran(b, p0, p7)∧
Ptran(a, p0, p8) ∧ Ptran(cin, p7, p1) ∧ Ptran(b, p8, p1) ∧ Ntran(cin, p1, p9)∧
Ntran(b, p1, p10) ∧ Ntran(a, p9, p11) ∧ Ntran(b, p9, p11) ∧ Ntran(a, p10, p11)∧
Pwr(p0) ∧ Ptran(p4, p0, sum) ∧ Ntran(p4, sum, p11)∧
Gnd(p11) ∧ Ptran(p1, p0, cout) ∧ Ntran(p1, cout, p11)

• Verify by Boolean algebra (tedious) or exhaustive enumeration

An n-bit adder

x n-bit adder computes an n-bit sum and 1-bit carry-out from two
n-bit inputs and a 1-bit carry-in

x Diagram:

Addercout cin

sum

a b

x cin and cout carry single bits, i.e. Booleans

x a, b and sum carry n-bit words

x Adder n specifies an n+1-bit adder !!!

x Example: Adder(3) specifies a 4-bit adder

Specification

x The definition of Adder is:

Adder(n)(a, b, cin, sum, cout) ≡
(2n+1×Bv(cout) + V(sum[n : 0]) =
V(a[n : 0]) + V(b[n : 0]) + Bv(cin))

x Diagram of implementation:

Add1 Add1 Add1cout cin

a[n] b[n] a[n-1] b[n-1] a[0] b[0]

sum[n] sum[n-1] sum[0]

. . .

x By primitive recursion:

Adder Imp(0)(a, b, cin, sum, cout) ≡
Add1(a[0], b[0], cin, sum[0], cout)

Adder Imp(n+1)(a, b, cin, sum, cout) ≡
∃c. Adder Imp(n)(a, b, cin, sum, c) ∧

Add1(a[n+1], b[n+1], c, sum[n+1], cout)

Verification:

x Prove by induction on n that for all n:

Adder Imp(n)(a, b, cin, sum, cout)
⇒
Adder(n)(a, b, cin, sum, cout)

x Basis:

Adder Imp(0)(a, b, cin, sum, cout)
⇒
Adder(0)(a, b, cin, sum, cout)

x Expanding definitions of Adder Imp and Adder:

Add1(a[0], b[0], cin, sum[0], cout)
⇒
(20+1×Bv(cout) + V(sum[0 : 0]) = V(a[0 : 0]) + V(b[0 : 0]) + Bv(cin))

x Expanding definition of Add1 and simplifying:

(2×Bv(cout) + Bv(sum[0]) = Bv(a[0]) + Bv(b[0]) + Bv(cin))
⇒
(2×Bv(cout) + V(sum[0 : 0]) = V(a[0 : 0]) + V(b[0 : 0]) + Bv(cin))

x Follows by V(w[0 : 0]) = Bv(w[0])

Induction step

x Step:

(Adder Imp(n)(a, b, cin, sum, cout)⇒
Adder(n)(a, b, cin, sum, cout))
⇒
(Adder Imp(n+1)(a, b, cin, sum, cout)⇒

Adder(n+1)(a, b, cin, sum, cout))

x Assume:
(Adder Imp(n)(a, b, cin, sum, cout)⇒

Adder(n)(a, b, cin, sum, cout))

x Then show:
Adder Imp(n+1)(a, b, cin, sum, cout)

= ∃c. Adder Imp(n)(a, b, cin, sum, c) ∧
Add1(a[n+1], b[n+1], c, sum[n+1], cout)

⇒ ∃c. Adder(n)(a, b, cin, sum, c) ∧
Add1(a[n+1], b[n+1], c, sum[n+1], cout)

= ∃c. (2n+1Bv(c) + V(sum[n : 0]) = V(a[n : 0]) + V(b[n : 0]) + Bv(cin))
∧

(2Bv(cout) + Bv(sum[n+1]) = Bv(a[n+1]) + Bv(b[n+1]) + Bv(c))

Step continued

If:

(A = B) ∧ (C = D)

then it follows that (⇒)

(A + 2n+1C) = (B + 2n+1D)

hence:

∃c.

A
︷ ︸︸ ︷

(2n+1Bv(c) + V(sum[n : 0]) =
B

︷ ︸︸ ︷

V(a[n : 0]) + V(b[n : 0]) + Bv(cin)
∧

(2Bv(cout) + Bv(sum[n+1])
︸ ︷︷ ︸

C

= Bv(a[n+1]) + Bv(b[n+1]) + Bv(c)
︸ ︷︷ ︸

D

⇒ ∃c.

A
︷ ︸︸ ︷

2n+1Bv(c) + V(sum[n : 0]) +

2n+1C
︷ ︸︸ ︷

2n+12Bv(cout) + 2n+1Bv(sum[n+1])

=
B

︷ ︸︸ ︷

V(a[n : 0]) + V(b[n : 0]) + Bv(cin)
+ 2n+1Bv(a[n+1]) + 2n+1Bv(b[n+1]) + 2n+1Bv(c)

︸ ︷︷ ︸

2n+1D

= ∃c. (V(sum[n+1 : 0]) + 2n+2Bv(cout) = V(a[n+1 : 0]) + V(b[n+1 : 0]) + Bv(cin))

= (V(sum[n+1 : 0]) + 2n+2Bv(cout) = V(a[n+1 : 0]) + V(b[n+1 : 0]) + Bv(cin))

= Adder(n+1)(a, b, cin, sum, cout))

Sequential Devices

x Pure combinational adder:

Adder(n)(a, b, cin, sum, cout) ≡
(2n+1×Bv(cout) + V(sum[n : 0]) =

V(a[n : 0]) + V(b[n : 0]) + Bv(cin))

x a, b and sum range over words

x cin and cout range over bits (Booleans)

x Zero-delay adder:

Combinational Adder(n)(a, b, cin, sum, cout) ≡
∀t. Adder(n)(a(t), b(t), cin(t), sum(t), cout(t))

x a, b and sum range over functions from time to words

x cin and cout range over functions from time to bits

x Unit-delay adder:

Unit Delay Adder(n)(a, b, cin, sum, cout) ≡
∀t. Adder(n)(a(t), b(t), cin(t), sum(t+1), cout(t+1))

Textbook add-shift multiplier

x A standard add-shift multiplier:

Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

x This can be verified directly

x Verification can be done directly in HOL or using Hoare Logic

x HOL proof by induction on word size

u essence the of proofs (the invariant) are the same

u compare sections 1.8 and 2.7 of notes (only if you enjoy messy details)

An edge-triggered Dtype

x Register-transfer (RT) level:
u abstract level in which devices are viewed as sequential machines
u registers are modelled as unit-delay elements without explicit clock lines
u used for previous multipliers

x Trace level (N.B. not standard terminology):
u closer to HDL simulation timescale
u clocks explicit, edges modelled
u used for various degress of ‘temporal granularity’

x Dtype – a fine grain trace level example

Dtype

d

ck

q

1

Specification of Dtype

If

• the clock ck has a rising edge at time t1, and

• the next rising edge of ck is at t2, and

• the value at d is stable for c1 units of time before t1
(c1 is the setup time), and

• there are at least c2 units of time between t1 and t2
(c2 constrains the minimum clock period)

then

• the value at q will be stable from c3 units of time after t1 (c3 is the start time)
until c4 units of time after t2 (c4 is the finish time), and

• the value at q between the start and finish times will equal the value held stable at
d during the setup time.

d

q

ck
c
2

1

3 4c

c

c

t1 t2

2

Rising edges

Notes are confused!
x Page 43:

Rise1(f)(t) ≡ (f(t−1) = F) ∧ (f(t) = T)

x Page 65:

Rise2(f)(t) = ¬f(t) ∧ f(t+1)

x However:

∀f t. t > 0⇒ (Rise1(f)(t) = Rise2(f)(t−1))

∀f t. t ≥ 0⇒ (Rise2(f)(t) = Rise1(f)(t+1))

x In Accellera standard language PSL function Rise1 is called Rose

3

Some temporal operators in Higher Order Logic

x Define:

Next(t1, t2)(f) ≡ t1 < t2 ∧ f(t2) ∧ ∀t. t1 < t ∧ t < t2 ⇒ ¬f(t)

x Define:

Stable(t1, t2)(f) ≡ ∀t. t1 ≤ t ∧ t < t2⇒ (f(t)=f(t1))

x These are raw higher order logic not temporal logic
u various temporal logics are described later

4

Dtype specification

x Logic specification:

Dtype(c1, c2, c3, c4)(d, ck, q) ≡
∀t1 t2. Rise1(ck)(t1) ∧

Next(t1, t2)(Rise1(ck)) ∧
(t2−t1 > c2) ∧
Stable(t1−c1, t1+1)(d)
⇒
(Stable(t1+c3, t2+c4)(q) ∧ (q(t2) = d(t1)))

x c1, c2, c3 and c4 are timing constants
u value depends on how the device is fabricated

x Note that

Next(t1, t2)(Rise1(ck))

formed by applying

Next(t1, t2)

to the predicate

Rise1(ck)

5

Implementation

x Can implement Dtype using NAND-gates:

NAND

NAND3

NAND

NAND

NAND

NAND

d

ck

p1

p2

p3

p4

p5

q

•

••

•
•

• Unit delay model

NAND(i1, i2, o) ≡ ∀t. o(t+1) = ¬(i1(t) ∧ i2(t))

NAND3(i1, i2, i3, o) ≡ ∀t. o(t+1) = ¬(i1(t) ∧ i2(t) ∧ i3(t))

• Note: modelling at the fine-grain time level

6

Verification

x Dtype implementation in logic:

Dtype Imp(d, ck, q) ≡
∃p1 p2 p3 p4 p5.

NAND(p2, d, p1) ∧ NAND3(p3, ck, p1, p2) ∧
NAND(p4, ck, p3) ∧ NAND(p1, p3, p4) ∧
NAND(p3, p5, q) ∧ NAND(q, p2, p5)

x Correctness: find δ1, δ2, δ3 and δ4 and prove:

Dtype Imp(d, ck, q)⇒ Dtype(δ1, δ2, δ3, δ4)(d, ck, q)

x Hard!
. .

x Dtype is modelled at the trace level
u fine grain time
u explicit clock

7

A sequential RT level example: simple parity checker

x Input inp, an output out

x The nth output is T ⇔ an even number of T’s input

x PARITY f n iff an even number of T’s in f(1), . . . , f(n)

|- (∀f. PARITY f 0 = T) ∧

(∀n f. PARITY f (n+1) = if f(n+1) then ¬PARITY f n else PARITY f n)

x Specification of the parity checking device:

∀t. out t = PARITY inp t

x Signals modelled as functions from numbers (times) to booleans

x Specification can be written as an equation between functions:

out = PARITY inp

x Intuitively clear that specification will be satisfied if:

(out(0) = T) ∧
∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

x Intuition can be verified by proving:

∀inp out.

(out 0 = T) ∧ (∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t)

⇒
∀t. out t = PARITY inp t

8

Notation for writing proofs & how proof assistants work

x Write formula to be proved (the goal) above a dotted line

x Write assumptions (numbered) below the line

x For example, initially we start with no assumptions

∀inp out.
(out 0 = T) ∧
(∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t) ⇒
(∀t. out t = PARITY inp t)

x First step is to consider arbitrary inp and out and then to assume
the antecedents of the implication and try to prove the conclusion

∀t. out t = PARITY inp t

0. out 0 = T
1. ∀t. out (t+1) = if inp (t+1) then ¬(out t) else out t

x Proof assistants let users perform proof steps on proof states

x The proofs here are derived from the HOL4 system, but other tools
like ProofPower, Isabelle and PVS are based on related ideas

u details of proof state and proof steps differ
u in HOL and ProofPower proof steps are performed via ML functions
u Isabelle has a declarative interface, Isar, inspired by Mizar
u in Acl2 and PVS proof steps are performed via Lisp functions

9

A Proof by induction

x Start with the following proof state

∀inp out.
(out 0 = T) ∧
(∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t) ⇒
(∀t. out t = PARITY inp t)

x As on previous slide, consider arbitrary inp and out and then to
assume the antecedents of the implication

∀t. out t = PARITY inp t

0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

x Now do induction on t – this creates a proof state with two subgoals

out 0 = PARITY inp 0
------------------------------------ [the basis of the induction]
0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

out(t+1) = PARITY inp (t+1)
------------------------------------ [the step of the induction]
0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t
2. out t = PARITY inp t [induction hypothesis added to assumptions]

10

Next step: unfold definition of PARITY

x Recall definition of PARITY
|- (∀f. PARITY f 0 = T)
∧
∀n f. PARITY f (n+1) = if f(n+1) then ¬PARITY f n else PARITY f n

x Unfolding (rewriting with) the definition of PARITY in

out 0 = PARITY inp 0
------------------------------------ [the basis of the induction]
0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

out(t+1) = PARITY inp (t+1)
------------------------------------ [the step of the induction]
0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t
2. out t = PARITY inp t

x Yields

out 0 = T

0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

out(t+1) = if inp(t+1) then ¬PARITY inp t else PARITY inp t

0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t
2. out t = PARITY inp t

11

Goal now easily proved

x Proof state from last slide

out 0 = T

0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

out(t+1) = if inp(t+1) then ¬PARITY inp t else PARITY inp t

0. out 0 = T
1. ∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t
2. out t = PARITY inp t

x Basis: goal follows from assumption 0

x Step: substitute assumption 2 into assumption 1

x Call theorem just proved UNIQUENESS LEMMA

UNIQUENESS_LEMMA =

|- ∀inp out.

(out 0 = T) ∧

(∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t) ⇒

∀t. out t = PARITY inp t

12

Implementation

x Assume registers ‘power up’ storing F

x Thus the output at time 0 cannot be taken directly from a register
u because the output of the parity checker at time 0 is specified to be T

NOT

MUXONE

REG

MUX

REG

inp

out

l1 l2

l3 l4

l5

•

•

•

13

Components

|- ONE out = ∀t. out t = T

|- NOT(inp, out) = ∀t. out t = ¬(inp t)

|- MUX(sw,in1,in2,out) = ∀t. out t = if sw t then in1 t else in2 t

|- REG(inp,out) = ∀t. out t = if (t=0) then F else inp(t-1)

14

Implementation in HOL

NOT

MUXONE

REG

MUX

REG

inp

out

l1 l2

l3 l4

l5

•

•

•

|- PARITY_IMP(inp,out) =

∃l1 l2 l3 l4 l5.

NOT(l2,l1) ∧ MUX(inp,l1,l2,l3) ∧ REG(out,l2) ∧
ONE l4 ∧ REG(l4,l5) ∧ MUX(l5,l3,l4,out)

15

Verification

x The following theorem will eventually be proved:

|- ∀inp out. PARITY_IMP(inp,out) ⇒ ∀t. out t = PARITY inp t

x First prove a lemma (then theorem follows from UNIQUENESS LEMMA)

x The lemma (PARITY LEMMA):

∀inp out.
PARITY_IMP (inp,out) ⇒
(out 0 = T) ∧
∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

x First step: rewrite with component definitions, split conjunction

out 0 = T

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

out(t+1) = if inp(t+1) then ¬(out t) else out t

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

16

Proof continued

x Consider the t=0 case first

out 0 = T

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

x Easily follows (see stuff in blue)

x Now consider t+1 case

out(t+1) = if inp(t+1) then ¬(out t) else out t

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

x Goal is solved if left hand side, out(t+1), is expanded using 5

∀t. out t = if l5 t then l3 t else l4 t

x See next slide ...

17

Proof continued

x Use assumption 5 to expand blue term, but not red terms

out(t + 1) = if inp(t+1) then ¬out t else out t

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

x Result is

(if l5 (t+1) then l3 (t+1) else l4 (t+1)) =
(if inp(t+1) then ¬(out t) else out t)

0. ∀t. l1 t = ¬l2 t
1. ∀t. l3 t = if inp t then l1 t else l2 t
2. ∀t. l2 t = if t = 0 then F else out(t - 1)
3. ∀t. l4 t = T
4. ∀t. l5 t = if t = 0 then F else l4 (t - 1)
5. ∀t. out t = if l5 t then l3 t else l4 t

x Goal follows from assumptions with a bit of calculation

18

Combining lemmas

x Call lemma just proved PARITY LEMMA, so

PARITY_LEMMA =

|- ∀inp out.

PARITY_IMP (inp,out) ⇒

(out 0 = T) ∧

∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t

x Recall

UNIQUENESS_LEMMA =

|- ∀inp out.

(out 0 = T) ∧

(∀t. out(t+1) = if inp(t+1) then ¬(out t) else out t)

⇒

∀t. out t = PARITY inp t

x Hence by transitivity of ⇒

|- ∀inp out. PARITY_IMP (inp,out) ⇒ ∀t. out t = PARITY inp t

x PARITY IMP used abstract registers REG

x Next: make model more concrete by using clocked Dtype

19

Review

x Specification: ∀t. out t = PARITY inp t
x Equivalent equation between functions: out = PARITY inp

NOT

MUXONE

REG

MUX

REG

inp

PARITY

out

inp

out

l1 l2

l3 l4

l5

•

•

•

|- PARITY_IMP(inp,out) =

∃l1 l2 l3 l4 l5.

NOT(l2,l1) ∧ MUX(inp,l1,l2,l3) ∧ REG(out,l2) ∧

ONE l4 ∧ REG(l4,l5) ∧ MUX(l5,l3,l4,out)

x Verification: |- ∀inp out. PARITY_IMP (inp,out) ⇒ (out = PARITY inp)

20

An incorrect implementation of the parity checker

|- (∀f. PARITY f 0 = T)

∧

∀n f. PARITY f (n+1) = if f(n+1) then ¬PARITY f n else PARITY f n

x The following implementation doesn’t work

inp
|
| |--------| inp = F T F F T . . . inp = T T F F T . . .
| | |

|---------| | l1 = F F T T T . . . l1 = F T F F F . . .
| XOR | |
|---------| | l2 = F T T T F . . . l2 = T F F F T . . .

| |
l2 |------| l1 | out = T F F F T . . . out = F T T T F . . .

| | |
| |-----| | PARITY inp = T F F F T . . . PARITY inp = T F F F T . . .
	REG	

|-----|
NOT

|
out

21

Temporal refinement

x PARITY IMP used abstract registers REG

x Next: make model more concrete by using clocked Dtype

x Recall the (course grained) trace level model of a Dtype:

Del
i o ⊢ Del(i, o) = ∀t. o(t+1) = i t

�� HH

Dtype

⊲

d

ck

q

⊢ Dtype(ck, d, q) = ∀t. q(t+1) = (Rise ck t→ d t | q t)

⊢ Rise ck t = ¬ck(t) ∧ ck(t+1)

x Need a version of Dtype that powers up storing F

DtypeF(ck,d,q) = (q 0 = F) ∧ Dtype(ck,d,q)

22

Trace level version of the Parity device

DtypeF

MUX

ONE MUX

NOT

inp

ck

l1 l2

l4l3

l5

ck

out

DtypeF

DtypePARITY_IMP(ck,inp,out) =
∃l1 l2 l3 l4 l5.
NOT(l2,l1) ∧
MUX(inp,l1,l2,l3) ∧
DtypeF(ck,out,l2) ∧
ONE l4 ∧
DtypeF(ck,l4,l5) ∧
MUX(l5,l3,l4,out)

23

Formulating Correctness

x A mapping between time-scales:

-

-

clock ck: -

u u u u u u u u

u u u

concrete:
? ? ?

f f f

abstract:

x Define the temporal abstraction functions:

(s when P)(n) = value of s at the concrete time t when P true for nth time

⊢ Timeof P n = the concrete time t when P true for nth time

⊢ s when P = s ◦ (Timeof P)

x From Melham’s Theorem:

⊢ ∀ck. Inf(Rise ck)⇒

∀d q. DtypeF(ck, d, q)⇒ REG(d when (Rise ck), q when (Rise ck))

x Inf P means “P true infinitely often”

Inf P = ∀t. ∃ t′. t′ > t ∧ P t′

24

Digression on defining Timeof

x How do we define the temporal abstraction function:

⊢ Timeof P n = the concrete time tc such that P true for nth time

x What if there is no time such that P true for nth time
u for example, if P is never true

x Need to actually define:

⊢ Timeof P n = the time tc such that P true for nth time, if such a time exists

x But then what is Timeof P n if no such time exists?

25

Hilbert’s epsilon-operator to the rescue

x ǫx. t[x] is an epsilon-term

x The meaning of ǫx. t[x] is specified by an axiom:

∀P. (∃x. P x) ⇒ P (ǫx. P x)

x ǫx. t[x] denotes some value, v say, such that t[v], if ∃t. t[x]

x ǫx. t[x] denotes some arbitrary value if ∀t. ¬t[x]

u of the type of t[x]
u all types are assumed non-empty

x The ǫ-operator builds the Axiom of Choice into the logic

26

Definition of Timeof

x Recall the Next operator
Next t1 t2 sig = t1<t2 ∧ sig t2 ∧ ∀t. t1<t ∧ t<t2 ⇒ ¬(sig t)

x Define IsTimeof n sig t

to mean “t is when sig is true for the n-th time”

(IsTimeof 0 sig t = (sig t ∧ ∀t’. t’<t ⇒ ¬(sig t’)))

∧
(IsTimeof (n+1) sig t = ∃t’. IsTimeof n sig t’ ∧ Next t’ t sig)

x Define Timeof using ǫ-operator and IsTimeof

Timeof sig n = ǫt. IsTimeof n sig t

x IsTimeof and Timeof are higher-order total functions

27

Temporal abstraction

x Define f@ck to be signal f abstracted on rising edges of ck

|- f@ck = f when (Rise ck)

x Recall definition of REG

|- REG(inp,out) = ∀t. out t = if (t=0) then F else inp(t-1)

x It follows easily that

|- REG(inp,out) = (out 0 = F) ∧ Del(inp,out)

x The properties below also follow (why?)

|- Inf(Rise ck) ⇒ DtypeF(ck,d,q) ⇒ REG(d@ck, q@ck)

|- MUX(switch, i1, i2, out)

⇒
MUX(switch@ck, i1@ck, i2@ck, out@ck)

|- NOT(inp, out) ⇒ NOT(inp@ck, out@ck)

|- ONE out ⇒ ONE(out@ck)

x Hint: ⊢ ∀f. (∀x. P (x)) ⇒ (∀x. P (f(x))) take f = x 7→ x@ck

28

Cycle and trace versions

x Compare

|- PARITY_IMP(inp,out) =

∃l1 l2 l3 l4 l5.

NOT(l2,l1) ∧ MUX(inp,l1,l2,l3) ∧ REG(out,l2) ∧
ONE l4 ∧ REG(l4,l5) ∧ MUX(l5,l3,l4,out)

|- DtypePARITY_IMP(ck,inp,out) =

∃l1 l2 l3 l4 l5.

NOT(l2,l1) ∧ MUX(inp,l1,l2,l3) ∧ DtypeF(ck,out,l2) ∧
ONE l4 ∧ DtypeF(ck,l4,l5) ∧ MUX(l5,l3,l4,out)

x Hence by implications on previous slide

|- Inf(Rise ck)

⇒
DtypePARITY_IMP(ck,inp,out) ⇒ PARITY_IMP(inp@ck, out@ck)

u use (A⇒ B) ∧ (· · · A · · ·) ⇒ (· · · B · · ·)
u then use (A⇒ B) ∧ (∃l. A) ⇒ (∃l. B)
u then use (∃l. · · · l on ck · · ·) ⇒ (∃l. · · · l · · ·)

29

Trace level verification

x Proved earlier

|- ∀inp out. PARITY_IMP(inp,out) ⇒ ∀t. out t = PARITY inp t

x Specialising inp to inp@ck and out to out@cl

|- PARITY_IMP(inp@ck, out@ck)

⇒
∀t. (out@ck) t = PARITY (inp@ck) t

x From previous slide

|- Inf(Rise ck)

⇒
DtypePARITY_IMP(ck,inp,out) ⇒ PARITY_IMP(inp@ck, out@ck)

x Hence, by transitivity of ⇒

|- Inf(Rise ck)

⇒
DtypePARITY_IMP(ck,inp,out)

⇒
∀t. (out@ck) t = PARITY (inp@ck) t

x This is a typical correctness result using temporal abstraction

30

NEW TOPIC: modelling transistors

x Recall simple switch model of CMOS

h
s d

g

⊢ Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g

⊢ Ntran(g, s, d) = (g ⇒ (d = s))

g

⊢ Gnd g = (g = F)

p

m
⊢ Pwr p = (p = T)

x This is the so-called switch model of CMOS.

31

The simple adder example

x This example shows non-obvious examples can be analysed
Pwr

Gnd

p1

a

a

p1

p2

p4

p5

b

b

p0

p11

cin

p1

p1

cin

sum cout

b

b

a

b

b

a

p3

p6

p7

p9

p8

p10

p1

a

cin

cin

a

• • • • •

• •

•

•

• • • • • • • •

• ••

• • • • •

•

•

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦ ◦

◦

Add1(a,b,cin,sum,cout) =
∃p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11.
Ptran(p1,p0,p2) ∧ Ptran(cin,p0,p3) ∧ Ptran(b,p2,p3) ∧
Ptran(a,p2,p4) ∧ Ptran(p1,p3,p4) ∧ Ntran(a,p4,p5) ∧
Ntran(p1,p4,p6) ∧ Ntran(b,p5,p6) ∧ Ntran(p1,p5,p11) ∧
Ntran(cin,p6,p11) ∧ Ptran(a,p0,p7) ∧ Ptran(b,p0,p7) ∧
Ptran(a,p0,p8) ∧ Ptran(cin,p7,p1) ∧ Ptran(b,p8,p1) ∧
Ntran(cin,p1,p9) ∧ Ntran(b,p1,p10) ∧ Ntran(a,p9,p11) ∧
Ntran(b,p9,p11) ∧ Ntran(a,p10,p11) ∧ Pwr(p0) ∧
Ptran(p4,p0,sum) ∧ Ntran(p4,sum,p11) ∧ Gnd(p11) ∧
Ptran(p1,p0,cout) ∧ Ntran(p1,cout,p11)

|- Add1 (a,b,cin,sum,cout) = (2 * Bv cout + Bv sum = Bv a + Bv b + Bv cin)

32

Problems with simple switch model

x Compare

Gnd

p1

p3

o

i1

i2

p2

Pwr

Gnd

p1

p3

o

i1

i2

p2

Pwr

x Equivalent in simple switch model!

33

How transistors work

x Transistors conduct if there is a big enough voltage difference, VTH

say, between gate and source/drain

g

a b
only conducts well if Vg − Va ≥ VTH or Vg − Vb ≥ VTH

g

a b
only conducts well if Va − Vg ≥ VTH or Vb − Vg ≥ VTH

x If Vg = Va there is a voltage drop of about VTH

x Example: ‘hi’ is 5v, ‘low’ is 0v

5v

4v 3v

x Weak output may not be able to switch transistors

34

What happens in the Simple Switch Model

5v

4v 3v

x From the definitions

|- ∀p. Pwr p = (p = T)

|- ∀g a b. Ntran (g,a,b) = g ⇒ (a = b)

|- ∀out. Bad out =

∃l1 l2. Pwr l1 ∧ Ntran (l1,l1,l2) ∧ Ntran (l2,l2,out)

x It follows that

|- ∀out. Bad out = out

35

Consider two Xors when both inputs are F

x Compare

Gnd

p1

p3

o

i1

i2

p2

Pwr

Gnd

p1

p3

o

i1

i2

p2

Pwr

x Bad design has weak output
x Good design has strong output
x Need a better model to distinguish the designs

36

Difference switching model (Mike Fourman)

x Don’t identify boolean values and signal values

x Consider a type of values containing Hi, Lo and other values

g

a b

Ntran(g,a,b) = ((g=Hi) ∧ (a=Lo) ⇒ (b=Lo))

∧
((g=Hi) ∧ (b=Lo) ⇒ (a=Lo))

g

a b

Ptran(g,a,b) = ((g=Lo) ∧ (a=Hi) ⇒ (b=Hi))

∧
((g=Lo) ∧ (b=Hi) ⇒ (a=Hi))

37

More compact definitions

g

a b

Ntran(g,a,b) = (g=Hi) ⇒ ((a=Lo) = (b=Lo))

g

a b

Ptran(g,a,b) = (g=Lo) ⇒ ((a=Hi) = (b=Hi))

Pwr

out
this is now equivalent to ¬(out = Lo)

38

Good and bad Xors now distinguished

Gnd

p1

p3

o

i1

i2

p2

Pwr

Gnd

p1

p3

o

i1

i2

p2

Pwr

((i1=Hi) ∧ (i2=Hi) ⇒ (out = Lo)) ∧ ((i1=Hi) ∧ (i2=Hi) ⇒ (out = Lo)) ∧

((i1=Hi) ∧ (i2=Lo) ⇒ (out = Hi)) ∧ ((i1=Hi) ∧ (i2=Lo) ⇒ (out = Hi)) ∧

((i1=Lo) ∧ (i2=Hi) ⇒ ¬(out = Lo)) ∧ ((i1=Lo) ∧ (i2=Hi) ⇒ (out = Hi)) ∧

((i1=Lo) ∧ (i2=Lo) ⇒ ¬(out = Hi)) ((i1=Lo) ∧ (i2=Lo) ⇒ (out = Lo))

39

Earlier examples still work

Pwr

Gnd

p1

a

a

p1

p2

p4

p5

b

b

p0

p11

cin

p1

p1

cin

sum cout

b

b

a

b

b

a

p3

p6

p7

p9

p8

p10

p1

a

cin

cin

a

• • • • •

• •

•

•

• • • • • • • •

• ••

• • • • •

•

•

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦ ◦

◦

x Define

|- Strong v = ((v = Hi) ∨ (v = Lo))

|- (TBv Hi = 1) ∧ (TBv Lo = 0)

|- TAdd1Spec(a,b,cin,sum,cout) =
(2*(TBv cout) + TBv sum = TBv a + TBv b + TBv cin)

x Then it follows that

|- Strong a ∧ Strong b ∧ Strong cin
⇒
TAdd1Imp(a,b,cin,sum,cout) ⇒ TAdd1Spec(a,b,cin,sum,cout)

∧ Strong sum ∧ Strong cout

40

Sequential shift register

Pwr

Gnd

Pwr

Gnd

ph1 ph2

in out

inverter inverter
x Switch models only allow us to deduce

(ph1=Hi) ∧ (ph2=Hi) ⇒ ((in=Hi) ⇒ (out=Hi)) ∧ ((in=Lo) ⇒ (out=Lo))

x Actual behaviour is a shift register

u for simplicity threshold effects ignored in what follows

41

Phase 1: ph1=Hi and ph2=Lo

Pwr

Gnd

Pwr

Gnd

 Hi Lo

v
v ~v

42

Phase 2: ph1=Lo and ph2=Hi

Pwr

Gnd

Pwr

Gnd

Lo Hi

v
v ~v ~v

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi)
⇒
(out(t+1) = in t)

43

Phase 3: ph1=Hi and ph2=Lo

Pwr

Gnd

Pwr

Gnd

Hi Lo

w v
w ~w ~v

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi) ∧
(ph1(t+2) = Hi) ∧ (ph2(t+2) = Lo)
⇒
(out(t+2) = in t)

44

Phase 4: ph1=Lo and ph2=Hi

Pwr

Gnd

Pwr

Gnd

Lo Hi

w
w ~w ~w

(ph1(t+2) = Hi) ∧ (ph2(t+2) = Lo) ∧
(ph1(t+3) = Lo) ∧ (ph2(t+3) = Hi)
⇒
(out(t+3) = in(t+2))

45

Characterisation of behaviour

Pwr

Gnd

Pwr

Gnd

ph1 ph2

in out

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi)
⇒
(out(t+1) = in t)

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi) ∧
(ph1(t+2) = Hi) ∧ (ph2(t+2) = Lo)
⇒
(out(t+2) = in t)

x out(t+3) value follows by t 7→ t+2 in first property

46

Unidirectional sequential model

x Four values: Hi, Lo, Fl (‘floating’), X (unknown/error)

|- ¬(Hi = Lo) ∧ ¬(Lo = Hi) ∧
¬(Hi = Fl) ∧ ¬(Fl = Hi) ∧
¬(Lo = Fl) ∧ ¬(Fl = Lo)

|- Strong v = ((v = Hi) ∨ (v = Lo))

|- Float v = (v = Fl)

x Join operator: U

|- v1 U v2 = if Strong v1 ∧ Float v2

then v1 else

if Float v1 ∧ Strong v2

then v2 else

if Float v1 ∧ Float v2

then Fl else X

|- Join(i1,i2,out) = ∀t. out t = (i1 t) U (i2 t)

47

Signals are functions of time

U

i1

i2

out

|- Join(i1,i2,out) = ∀t. out t = (i1 t) U (i2 t)

|- Pwr out = ∀t. out t = Hi

|- Gnd out = ∀t. out t = Lo

i out

|- Cap(i,out) = ∀t. out t = if Strong(i t) then i t else

if t=0 then X else

if Float(i t) ∧ Strong(i(t-1)) then i(t-1)

else Fl

48

Unidirectional sequential transistor models

g

i out

|- Nswitch(g,i,out) = ∀t. out t = if g t = Hi then i t else

if (g t = Lo) ∨ (i t = Fl) then Fl

else X

g

i out

|- Pswitch(g,i,out) = ∀t. out t = if g t = Lo then i t else

if (g t = Hi) ∨ (i t = Fl) then Fl

else X

49

Sequential shift register model

Pwr

Gnd

Pwr

Gnd

ph1 ph2

i outU U
l1 l2

l3

l4

l6

l5

l7 l8 l9

l10

l11

l13

l12

|- ShiftReg(i,out,ph1,ph2) =

∃l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13.

Nswitch(ph1,i,l1) ∧ Cap(l1,l2) ∧

Pwr l3 ∧ Pswitch(l2,l3,l4) ∧ Nswitch(l2,l6,l5) ∧ Gnd l6 ∧

Join(l4,l5,l7) ∧ Nswitch(ph2,l7,l8) ∧ Cap(l8,l9) ∧

Pwr l10 ∧ Pswitch(l9,l10,l11) ∧ Nswitch(l9,l13,l12) ∧ Gnd l13 ∧

Join(l11,l12,out)

x Lots more state variables than in combinational switch model!

50

Correctness of sequential shift register model

Pwr

Gnd

Pwr

Gnd

ph1 ph2

i outU U
l1 l2

l3

l4

l6

l5

l7 l8 l9

l10

l11

l13

l12

|- ShiftReg(in,out,ph1,ph2) ∧ Strong(in t) ∧
(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi)
⇒
(out(t+1) = in t)

|- ShiftReg(in,out,ph1,ph2) ∧ Strong(in t) ∧
(ph1 t = Hi) ∧ (ph2 t = Lo) ∧
(ph1(t+1) = Lo) ∧ (ph2(t+1) = Hi) ∧
(ph1(t+2) = Hi) ∧ (ph2(t+2) = Lo)
⇒
(out(t+2) = in t)

51

A model of NMOS

x Need a new component: pullup

Pwr

i out

|- Pu(i,out) = ∀t. out t = if Float(i t) then Hi else i t

x If i is strong then out = i

x If i is floating then out = Hi

52

NMOS inverter

Pwr

Gnd

i
l1

l2

l3
out

|- Inv(i,out) =
∃l1 l2 l3.
Cap(i, l1) ∧ Gnd l2 ∧ Nswitch(l1,l2,l3) ∧ Pu(l3,out)

|- Inv(i,out)
⇒
((i t = Hi) ⇒ (out t = Lo)) ∧
((i t = Lo) ⇒ (out t = Hi)) ∧
((i(t+1) = Fl) ⇒ (((i t = Hi) ⇒ (out(t+1) = Lo))

∧
((i t = Lo) ⇒ (out(t+1) = Hi))))

53

Four phase NMOS shift register

out

ph1

ph2 ph4

ph1 ph3

ph3

i

|- FourPhaseShiftReg(i,out,ph1,ph2,ph3,ph4)
∧ Strong(i(t+1))
∧ (ph1 t =Hi) ∧ (ph2 t =Lo) ∧ (ph3 t =Lo) ∧ (ph4 t =Lo)
∧ (ph1(t+1)=Lo) ∧ (ph2(t+1)=Hi) ∧ (ph3(t+1)=Lo) ∧ (ph4(t+1)=Lo)
∧ (ph1(t+2)=Lo) ∧ (ph2(t+2)=Lo) ∧ (ph3(t+2)=Hi) ∧ (ph4(t+2)=Lo)
∧ (ph1(t+3)=Lo) ∧ (ph2(t+3)=Lo) ∧ (ph3(t+3)=Lo) ∧ (ph4(t+3)=Hi)
⇒
(out(t+3) = i(t+1))

54

Phase 1 (precharge internal node)

Colour scheme: Hi, Lo, Fl; threshold effects ignored

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧ (ph3 t = Lo) ∧ (ph4 t = Lo)

55

Phase 2 (input Lo, retain precharge)

Colour scheme: Hi, Lo, Fl and dotted means precharge

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+1)=Lo) ∧ (ph2(t+1)=Hi) ∧ (ph3(t+1)=Lo) ∧ (ph4(t+1)=Lo)

(i(t+1) = Lo)

56

Phase 3 (precharge out, internal node retains value)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+2)=Lo) ∧ (ph2(t+2)=Lo) ∧ (ph3(t+2)=Hi) ∧ (ph4(t+2)=Lo)

(out(t+2) = Hi)

57

Phase 4 (kill precharge)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+3)=Lo) ∧ (ph2(t+3)=Lo) ∧ (ph3(t+3)=Lo) ∧ (ph4(t+3)=Hi)

(out(t+3) = Lo)

58

Phase 1 (precharge internal node)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1 t = Hi) ∧ (ph2 t = Lo) ∧ (ph3 t = Lo) ∧ (ph4 t = Lo)

x out retains previous value

59

Phase 2 (input Hi, kill precharge)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+1)=Lo) ∧ (ph2(t+1)=Hi) ∧ (ph3(t+1)=Lo) ∧ (ph4(t+1)=Lo)

(i(t+1) = Hi)

60

Phase 3 (precharge out, internal node retains value)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+2)=Lo) ∧ (ph2(t+2)=Lo) ∧ (ph3(t+2)=Hi) ∧ (ph4(t+2)=Lo)

61

Phase 4 (out retains precharge)

out

ph1

ph2 ph4

ph1 ph3

ph3

i

(ph1(t+3)=Lo) ∧ (ph2(t+3)=Lo) ∧ (ph3(t+3)=Lo) ∧ (ph4(t+3)=Hi)

out(t+3) = Hi

62

Four phase NMOS shift register model

out

ph1

ph2 ph4

ph1 ph3

ph3

i

U U

|- FourPhaseShiftReg(i,out,ph1,ph2,ph3,ph4) =

∃l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11.

Nswitch(ph1,ph1,l1) ∧ Nswitch(i,l3,l2) ∧ Nswitch(ph2,ph1,l3) ∧
Join(l1,l2,l4) ∧ Cap(l4,l5) ∧ Cap(l5,l6) ∧ Cap(l6,l7) ∧
Nswitch(ph3,ph3,l8) ∧ Nswitch(l7,l10,l9) ∧ Nswitch(ph4,ph3,l10) ∧
Join(l8,l9,l11) ∧ Cap(l11,out)

63

Conclusions

x Simple switch model good for sanity checking
u won’t catch threshold errors
u purely combinational

x Threshold switch model catches threshold errors
u proofs a bit harder (not much)

x Sequential models of dubious electrical validity
u but they can sanity check functional correctness of designs
u can handle subtle circuits

φ3

out

in

φ4

φ1

φ3

φ2

φ1

p

|- FourPhaseShiftReg(in,out,ph1,ph2,ph3,ph4)

∧ Strong(in(t+1))

∧ (ph1 t =Hi) ∧ (ph2 t =Lo) ∧ (ph3 t =Lo) ∧ (ph4 t =Lo)

∧ (ph1(t+1)=Lo) ∧ (ph2(t+1)=Hi) ∧ (ph3(t+1)=Lo) ∧ (ph4(t+1)=Lo)

∧ (ph1(t+2)=Lo) ∧ (ph2(t+2)=Lo) ∧ (ph3(t+2)=Hi) ∧ (ph4(t+2)=Lo)

∧ (ph1(t+3)=Lo) ∧ (ph2(t+3)=Lo) ∧ (ph3(t+3)=Lo) ∧ (ph4(t+3)=Hi)

⇒ (out(t+3) = in(t+1))

64

An earlier slide on Hoare logic for hardware

x Would like a generalised Hoare Logic specification:

⊢ {If environment ensures always that: DONE=0 ⇒ Load=0

and if Load is set to 1 when: In1 = x ∧ In2 = y}
FOREVER

IF Load=1

THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0

ELSE IF Y≤R THEN R:=R-Y; Q:=Q+1

ELSE DONE:=1

{Then x and y will be stored into X and Y

and on the next cycle DONE will be set to 0

and sometime later DONE will be be set to 1

and X and Y won’t change until DONE is set to 1

and when DONE goes to 1 we have: x = R + y×Q}

x Stuff in red needs Temporal Logic

65

Specification and Verification II

DONE SO FAR:

x Higher-order logic used directly for specification and verification

u various abstraction levels from transistors to high-level behaviour

COMING NEXT:

x Temporal logic

u various constructs and time models: CTL, LTL

u the ‘Industry Standard’ logic PSL

u semantics via a shallow embedding in higher order logic

u overview key ideas for model checking temporal logic properties

x Simulation (Verilog, VHDL) compared with formal verification

66

Aside: finding bugs versus providing assurance

Formal verification based debugging Proof of correctness
proof failure ⇒ bugs proof success ⇒ assurance
practical for real code expensive and often impractical
unsound models OK needs high fidelity models
unsafe implementation methods OK important to use trustworthy tools

x A bug is a bug no matter how found!

x Assurance mainly supported by certification agencies

u safety and security critical systems

x Companies (Intel, AMD, MS) mostly use FV for debugging

x A current research goal:
adapt bug-finding verification methods for correctness assurance

u validate models used for debugging

u deductive (hence sound) implementations of known verification methods

67

NEW TOPIC: Model Checking

x Models as state transition systems

x Reachability properties

x Counterexamples (used for debugging)

x Binary Decision Diagrams – BDDs

x Symbolic reachability checking

x A general property language: CTL

x Semantics in HOL (shallow embedding)

x Examples of CTL properties

x Overview of model checking (explicit state and symbolic)

x Linear Temporal Logic (LTL)

x Expressibility, CTL*

x Interval Temporal Logic (ITL)

x Accellera Property Specification Language (Sugar/PSL)

68

Models are expressed as State Transition Systems

• Set of states: type states

• Set of initial states: predicate B

– B : states→bool

– B s means s is an initial state

• State transition relation: R

– R : states× states→bool

– R(s, s′) means s′ a successor to s

69

R defines a branching time model

initial state states after
one step

states after
two steps

70

Example: single state machine

• State transition function: δ

δ : states× inputs→states

• Define state transition relation:

R(s, s′) = ∃inp. s′ = δ(s, inp)

• Deterministic machine:

– non-deterministic transition relation

– existential quantification over inputs

– so called “input non-determinism”

71

Example: n machines in parallel

• Assume n state variables

– states = states1 × · · · × statesn

– ~v = (v1, . . . , vn)

• Assume n transition functions

δi : states× inputs→statesi (1 ≤ i ≤ n)

• Note: each machine δi reads all inputs and states

• An R-step is a non-deterministically chosen step of one machine

R(~v,~v ′) =
∃inp.
v′1 = δ1(~v, inp) ∧ v′2 = v2 ∧ · · · ∧ v′n = vn

∨
v′1 = v1 ∧ v′2 = δ2(~v, inp) ∧ · · · ∧ v′n = vn

∨
...
∨
v′1 = v1 ∧ v′2 = v2 ∧ · · · ∧ v′n = δn(~v, inp)

• Asynchronous parallel composition

72

Explicit state property checking

x Goal: check some property P holds of all reachable states

u e.g. P (s) means s has no errors

x Represent sets of states somehow

x Start with S0 = {s | B s}

x Iteratively compute with Sn+1 = Sn ∪ {s | ∃u. u ∈ Sn ∧ R(u, s)}

x Note S0 ⊆ S1 ⊆ S2 ⊆ · · ·

u if finite number of states then eventually reach an n such that Sn = Sn+1

u so Sn is set of reachable states

x Now check P (s) for every reachable s (i.e. for every s ∈ Sn)

73

Symbolic approach: representing sets as formulas

• Set {b1, b2, . . . , bn} represented by formula v = b1 ∨ v = b2 ∨ . . . ∨ v = bn

– b1, b2, . . . , bn are truth-values (i.e. T or F)

– v is a boolean variable

– b ∈ {b1, b2, . . . , bn} if and only if ⊢ (v = b1 ∨ v = b2 ∨ . . . ∨ v = bn)[b/v]

• A set of states

{(b11, . . . , b1m), . . . , (bn1, . . . , bnm)}

is represented by a formula with m boolean variables:

(v1 = b11 ∧ . . . ∧ vm = b1m) ∨ . . . ∨ (v1 = bn1 ∧ . . . ∧ vm = bnm)

• To test if (b1, . . . , bm) is in the set,
just evaluate the formula with v1 = b1, . . ., vm = bm, i.e. evaluate:
((v1 = b11∧. . .∧vm = b1m)∨. . .∨(v1 = bn1∧. . .∧vm = bnm))[(b1, . . . , bm)/(v1, . . . , vm)]

74

Transition relations as Boolean Formulas

x Part of a handshake circuit
(model at cycle level – registers are unit delays)

dackdreq
q0

q0bar
a0

or0
a1

x Primed variables (dreq’,q0’,dack’) represent ‘next state’

x Transition relation is:

(q0’ = dreq) ∧ (dack’ = dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

x Transition relation equivalent to:

(q0’ = dreq) ∧ (dack’ = dreq ∧ (q0 ∨ dack))

x Define RRECEIVER by:

RRECEIVER((dreq,q0,dack),(dreq’,q0’,dack’)) =

(q0’ ⇔ dreq) ∧ (dack’ ⇔ dreq ∧ (q0 ∨ dack))

x dreq’ unconstrained, hence non-determinism

75

Symbolic reachability: sets of states are formulas

• Condition for a state s to be reachable

in one R-step from a state in B

∃u. B u ∧ R(u, s)

• Define ReachBy n R B to be set of states reachable in at most n steps:

⊢ ReachBy 0 R B s = B s

⊢ ReachBy (n+1) R B s =
ReachBy n R B s
∨
∃u. ReachBy n R B u ∧ R(u, s)

• Reachable states are states reachable in a finite number of steps:

⊢ Reach R B s = ∃n. ReachBy n R B s

• Key property (equality between predicates represents set equality):

⊢ (ReachBy n R B = ReachBy (n+1) R B)
⇒
(Reach R B = ReachBy n R B)

76

Represent formulas as Binary Decision Diagrams

• Reduced Ordered Binary Decision Diagrams (ROBDDs or BDDs

for short) are a data-structure for representing Boolean formulas

• Key features:

– canonical (given a variable ordering)

– efficient to manipulate

• Variables: v = if v then 1 else 0 and ¬v = if v then 0 else 1

• Example: BDDs of variable v and ¬v

0 1

v

0 1

v

• Example: BDDs of v1 ∧ v2 and v1 ∨ v2

0 1

v1

v2

01

v1

v2

77

More BDD examples

• BDD of v1 = v2

0 1

v1

v2 v2

• BDD of v1 6= v2

0 1

v1

v2 v2

78

BDD of a transition relation

• BDDs of

(v1′ = (v1 = v2)) ∧ (v2′ = (v1⊕ v2))

with two different variable orderings

0 1

v1

v2 v2

v1’ v1’

v2’ v2’

01

v1’

v1 v1

v2v2 v2 v2

v2’ v2’

x Exercise: draw BDD of RRECEIVER

79

Standard BDD operations

• If formulas f1, f2 represents sets s1, s2, respectively
then f1 ∧ f2, f1 ∨ f2 represent s1 ∩ s2, s1 ∪ s2 respectively

• Standard algorithms can compute boolean operation on BDDs.

• If f(x) represents {x | B(x)} and g(s, s′) represents {(s, s′) | R(s, s′)}
then ∃u. f(u) ∧ g(u, s) represents {s | ∃u. R(u, s)}

• Exist algorithm to compute BDD of ∃u. h(u, v) from BDD of h(u, v)

– BDD of ∃u. h(u, v) is BDD of h(T, v) ∨ h(F, v)

• Given a BDD representing formula f with free variables v1, . . ., vn

there exists an algorithm to find truth-values b1, . . ., bn

such that if v1 = b1, . . ., vn = bn then f evaluates to T

– b1, . . ., bn is a satisfying assignment (solution to SAT problem)

– f[(b1, . . . , bn)/(v1, . . . , vn)] evaluates to T

– used for counterexample generation (see later)

80

Reachable States via BDDs

• Represent R(s, s′) and B s as BDDs

• Iteratively compute BDDs of S0 s, S1 s, S2 s etc:

S0 s = B s
S1 s = S0 s ∨ ∃u. S0 u ∧ R(u, s)
S2 s = S1 s ∨ ∃u. S1 u ∧ R(u, s)

...
Sn+1 s = Sn s ∨ ∃u. Sn u ∧ R(u, s)

• BDD of ∃u. Si u ∧ R(u, s) computed by:

∃u. (Si s)[u/s] ∧ R(s, s′)[(u, s)/(s, s′)]

efficient using standard BDD algorithms

(renaming, then conjuction, then existential quantification)

• At each iteration check Sn+1 s = Sn s efficient using BDDs ,

when Sn+1 s = Sn s can conclude

Reach R B s = Sn s

hence have computed BDD of Reach R B s

81

Example BDD optimisation: disjunctive partitioning

δ

δ

δ

x

y

z

x

y

z

• Transition relation (asynchronous interleaving semantics):

R(x, y, z), (x′, y′, z′)) =
(x′ = δx(x, y, z) ∧ y′ = y ∧ z′ = z) ∨
(x′ = x ∧ y′ = δy(x, y, z) ∧ z′ = z) ∨
(x′ = x ∧ y′ = y ∧ z′ = δz(x, y, z))

82

Avoiding building big BDDs

• Transition relation for three machines in parallel

R(x, y, z), (x′, y′, z′)) =
(x′ = δx(x, y, z) ∧ y′ = y ∧ z′ = z) ∨
(x′ = x ∧ y′ = δy(x, y, z) ∧ z′ = z) ∨
(x′ = x ∧ y′ = y ∧ z′ = δz(x, y, z))

• Recall:

ReachBy (n+1) R B s
= ReachBy n R B s ∨
∃u. ReachBy n R B u ∧ R(u, s)

• With s = (x, y, z) it can be shown (see next slide):

ReachBy (n+1) R B (x, y, z)
= ReachBy n R B (x, y, z) ∨

(∃x. ReachBy n R B (x, y, z) ∧ x = δx(x, y, z)) ∨
(∃y. ReachBy n R B (x, y, z) ∧ y = δy(x, y, z)) ∨
(∃z. ReachBy n R B (x, y, z) ∧ z = δz(x, y, z))

• R(u, s) not a subterm: ‘early quantification’, ‘disjunctive partitioning’

83

More Details (Exercise: check the logic below)

Let Ry(x, y, z) abbreviate ReachBynRB(x, y, z) then:

∃xy z.ReachBynRB(x, y, z) ∧ R((x, y, z), (x, y, z))

= ∃xy z.Ry(x, y, z) ∧ R((x, y, z), (x, y, z))

= ∃xy z.Ry(x, y, z) ∧ ((x = δx(x, y, z) ∧ y = y ∧ z = z)∨
(x = x ∧ y = δy(x, y, z) ∧ z = z)∨
(x = x ∧ y = y ∧ z = δz(x, y, z)))

= (∃xy z.Ry(x, y, z) ∧ x = δx(x, y, z) ∧ y = y ∧ z = z)∨
(∃xy z.Ry(x, y, z) ∧ x = x ∧ y = δy(x, y, z) ∧ z = z)∨
(∃xy z.Ry(x, y, z) ∧ x = x ∧ y = y ∧ z = δz(x, y, z))

= (∃xy z.Ry(x, y, z) ∧ x = δx(x, y, z) ∧ y = y ∧ z = z)∨
(∃xy z.Ry(x, y, z) ∧ x = x ∧ y = δy(x, y, z) ∧ z = z)∨
(∃xy z.Ry(x, y, z) ∧ x = x ∧ y = y ∧ z = δz(x, y, z))

= ((∃x.Ry(x, y, z) ∧ x=δx(x, y, z)) ∧ (∃y.y=y) ∧ (∃z. z=z))∨
((∃x.x=x) ∧ (∃y.Ry(x, y, z) ∧ y=δy(x, y, z)) ∧ (∃z. z=z))∨
((∃x.x=x) ∧ (∃y.y=y) ∧ (∃z.Ry(x, y, z) ∧ z=δz(x, y, z)))

= (∃x.Ry(x, y, z) ∧ x = δx(x, y, z))∨
(∃y.Ry(x, y, z) ∧ y = δy(x, y, z))∨
(∃z.Ry(x, y, z) ∧ z = δz(x, y, z))

84

Verification and Counterexamples

• Typical safety question:

– is Q true in all reachable states?

– i.e. is Reach R B s ⇒ Q s true?

• Compute BDD of Reach R B s ⇒ Q s

• Formula is true if BDD is the single node 1

– because T represented by a unique BDD (canonical property)

• If BDD is not 1 can get counterexample

85

Generating Counterexample Traces

BDD algorithms can find satisfying assignments (SAT)
. .

• Suppose Reach R B s ⇒ Q s is not true

• Must exist s satisfying Reach R B s ∧ ¬Q s

• Find counterexample algorithm:

– iteratively generate BDDs of ReachBy i R B s (i = 0, 1, . . .)

– at each stage check if ReachBy i R B s ∧ ¬(Q s) satisfiable

– hence find first n and, using SAT, a state sn such that
(ReachBy n R B s ∧ ¬(Q s)) [sn/s]

i.e.
ReachBy n R B sn ∧ ¬(Q sn)

• Then use BDD SAT to get sn−1 where
(ReachBy (n−1)RB s ∧ R (s, sn)) [sn−1/s]

i.e.
ReachBy (n−1)RBsn−1 ∧ R (sn−1, sn)

• Iteratively trace backwards to get sn, . . . , s0 where for 0 < i ≤ n:

ReachBy (i−1)RBsi−1 ∧ R (si−1, si)

• Can sometimes apply partitioning, so BDD of R not needed

86

Example (from an exam)

Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling
any switch will automatically toggle all its immediate neighbours. For
example, toggling switch 5 will also toggle switches 2, 4, 6 and 8, and
toggling switch 6 will also toggle switches 3, 5 and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to
represent the behavior of the array of switches

(b) You are given the problem of getting from an initial state in which
even numbered switches are on and odd numbered switches are off,
to a final state in which all the switches are off.
Write down predicates on your state space that characterises the
initial [2 marks] and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of
switches to toggle to get from the initial to final state. [6 marks]
You are not expected to actually solve the problem, but only to
explain how to represent it in terms of model checking.

87

Solution

The state space can consist of the set of vectors

(v0,v1,v2,v3,v4,v5,v6,v7,v8)

where the boolean variable vi represents switch number i+1,
and is true if and only if switch i+1 is T.

A transition relation Trans is then defined by:

Trans((v0,v1,v2,v3,v4,v5,v6,v7,v8),(v0’,v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’))
= ((v0’=¬v0)∧(v1’=¬v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧

(v5’=v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 1)
∨ ((v0’=¬v0)∧(v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 2)
∨ ((v0’=v0)∧(v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 3)
∨ ((v0’=¬v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)) (toggle switch 4)
∨ ((v0’=v0)∧(v1’=¬v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=¬v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)) (toggle switch 5)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=¬v8)) (toggle switch 6)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=¬v7)∧(v8’=v8)) (toggle switch 7)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧

(v5’=v5)∧(v6’=¬v6)∧(v7’=¬v7)∧(v8’=¬v8)) (toggle switch 8)
∨ ((v0’=v0)∧(v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧

(v5’=¬v5)∧(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)) (toggle switch 9)

88

Predicates Init, Final characterising the initial and final states,

respectively, are defined by:

Init(v0,v1,v2,v3,v4,v5,v6,v7,v8) =

¬v0 ∧ v1 ∧ ¬v2 ∧ v3 ∧ ¬v4 ∧ v5 ∧ ¬v6 ∧ v7 ∧ ¬v8

Final(v0,v1,v2,v3,v4,v5,v6,v7,v8) =

¬v0 ∧ ¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8

Model checkers can find counter-examples to properties, and sequences

of transitions from an initial state to a counter-example state. Thus

we could use a model checker to find a trace to a counter-example to

the property that ¬Final(v0,v1,v2,v3,v4,v5,v6,v7,v8).

89

Properties

x Reach R B s ⇒ Q s means Q true in all reachable states

x Might want to verify other properties, e.g:

1. DeviceEnabled is always true somewhere along every path starting
anywhere (i.e. it holds infinitely often along every path)

2. From any state it is possible to get to a state for which Restart
holds

3. Ack is true on all paths sometime between i units of time later
and j units of time later.

x CTL is a logic for expressing such properties

x Exist efficient algorithms for checking them

x Model checking:

u check property in a model

u Emerson, Clarke & Sifakis, early 1980s – Turing award 2008

u used in industry (e.g. IBM’s RuleBase tool)

x Language wars: CTL vs LTL, PSL vs SVA

90

Concrete example

x Consider circuit below:

dackdreq
q0

q0bar
a0

or0
a1

clk

x Input: dreq, registers: q0, dack

x Timing Diagram:

dreq

dack

If dreq rises, then it continues high, until it is acknowledged by a rise on dack.

If dreq falls, then it will continue low until dack false.

91

Paths and computations

initial state states after
one step

states after
two steps

• Properties can asserted about complete computation trees (CTL)

• Properties can be asserted just about paths (LTL)

92

Paths, branching time and linear time

x Let R have type α× α→bool

u R is a transition relation

u α ranges (intuitively) over states

x An R-path is a function σ : num→α such that: ∀t. R(σ(t), σ(t+1))

x Path(R, s)σ means σ is an R-path from s

Path(R, s)σ = (σ(0)=s) ∧ ∀t. R(σ(t), σ(t+1))

. .

x CTL is a branching time logic

u properties may hold along all paths – A

u properties may hold along some paths – E

x LTL is a linear time logic

u only properties along all paths – no path quantifiers

93

Computation Tree Logic (CTL)

x Syntax of CTL well-formed formulas:

wff ::= Atom(p) (Atomic formula)
| ¬wff (Negation)
| wff 1 ∧ wff 2 (Conjunction)
| wff 1 ∨ wff 2 (Disjunction)
| wff 1 ⇒ wff 2 (Implication)
| AXwff (All successors)
| EXwff (Some successors)
| A[wff 1 U wff 2] (Until – along all paths)
| E[wff 1 U wff 2] (Until – along some path)

x Atomic formulas p are properties of states

u sometimes just write “p” rather than “Atom(p)”

x General CTL formulas P are properties of models

94

Semantics of CTL (shallow embedding)

x A model is a pair (R, s) — a transition relation and an initial state

x Define:

Atom(p) = λ(R, s). p(s)

¬P = λ(R, s). ¬(P (R, s))

P ∧ Q = λ(R, s). P (R, s) ∧ Q(R, s)

P ∨ Q = λ(R, s). P (R, s) ∨ Q(R, s)

P ⇒ Q = λ(R, s). P (R, s) ⇒ Q(R, s)

AXP = λ(R, s). ∀s′. R(s, s′) ⇒ P (R, s′)

EXP = λ(R, s). ∃s′. R(s, s′) ∧ P (R, s′)

A[P U Q] = λ(R, s). ∀σ. Path(R, s)σ
⇒
∃i. Q(R, σ(i))
∧
∀j. j < i ⇒ P (R, σ(j))

E[P U Q] = λ(R, s). ∃σ. Path(R, s)σ
∧
∃i. Q(R, σ(i))
∧
∀j. j < i ⇒ P (R, σ(j))

95

The defined operator AF

x Define AFP = A[T U P]

x AFP is true if P holds somewhere along every R-path – P is inevitable

AFP
= A[T U P]

= λ(R, s).
∀σ.
Path(R, s)σ
⇒
∃i. P (R, σ(i)) ∧ ∀j. j < i ⇒ T(R, σ(j))

= λ(R, s).
∀σ.
Path(R, s)σ
⇒
∃i. P (R, σ(i))

96

The defined operator EF

x Define EFP = E[T U P]

x EFP is true if P holds somewhere along some R-path
– i.e. P potentially holds

EFP
= E[T U P]

= λ(R, s).
∃σ.
Path(R, s)σ
∧
∃i. P (R, σ(i)) ∧ ∀j. j < i ⇒ T(R, σ(j))

= λ(R, s).
∃σ.
Path(R, s)σ
∧
∃i. P (R, σ(i))

97

The defined operator AG

x Define AGP = ¬EF(¬P)

x AGP is true if P holds everywhere along every R-path

AGP = ¬EF(¬P)

= λ(R, s). (¬EF(¬P))(R, s)

= λ(R, s). ¬(∃σ. Path(R, s)σ ∧ ∃i. (¬P)(R, σ(i)))

= λ(R, s). ¬(∃σ. Path(R, s)σ ∧ ∃i. ¬P (R, σ(i)))

= λ(R, s). ∀σ. ¬(Path(R, s)σ ∧ ∃i. ¬P (R, σ(i)))

= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ¬(∃i. ¬P (R, σ(i)))

= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ∀i. ¬¬P (R, σ(i))

= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ∀i. P (R, σ(i))

= λ(R, s). ∀σ. Path(R, s)σ ⇒ ∀i. P (R, σ(i))

x AGP means P true at all reachable states

x AG(Atom p)(R, s) ≡ ∀s′. Reach R (λx. x=s) s′ ⇒ p(s′)

98

The defined operator EG

x EGP is true if P holds everywhere along some R-path

EGP = ¬AF(¬P)

= λ(R, s). (¬AF(¬P))(R, s)

= λ(R, s). ¬(∀σ. Path(R, s)σ ⇒ ∃i. (¬P)(R, σ(i)))

= λ(R, s). ¬(∀σ. Path(R, s)σ ⇒ ∃i. ¬P (R, σ(i)))

= λ(R, s). ∃σ. ¬(Path(R, s)σ ⇒ ∃i. ¬P (R, σ(i)))

= λ(R, s). ∃σ. Path(R, s)σ ∧ ¬(∃i. ¬P (R, σ(i)))

= λ(R, s). ∃σ. Path(R, s)σ ∧ ∀i. ¬¬P (R, σ(i))

= λ(R, s). ∃σ. Path(R, s)σ ∧ ∀i. P (R, σ(i))

99

The defined operator A[PWQ]

x A[PWQ] is a ‘partial correctness’ version of A[PUQ]

x It is true if along a path if

u P always holds along the path

u Q holds sometime on the path, and until it does P holds

x Define

A[PWQ]

= ¬E[(P∧¬Q)U(¬P∧¬Q)]
= λ(R, s). (¬E[(P∧¬Q)U(¬P∧¬Q)])(R, s)
= λ(R, s). ¬(E[(P∧¬Q)U(¬P∧¬Q)])(R, s)
= λ(R, s).
¬(∃σ. Path(R, s)σ

∧
∃i. (¬P∧¬Q)(R, σ(i))
∧
∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

x Exercise: understand the next three slides

100

A[PWQ] continued (1)

x Continuing:

λ(R, s).
¬(∃σ. Path(R, s)σ

∧
∃i. (¬P∧¬Q)(R, σ(i)) ∧ ∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. ¬(Path(R, s)σ

∧
∃i. (¬P∧¬Q)(R, σ(i)) ∧ ∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
¬(∃i. (¬P∧¬Q)(R, σ(i)) ∧ ∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. ¬(¬P∧¬Q)(R, σ(i)) ∨ ¬(∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

101

A[PWQ] continued (2)

x Continuing:

λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. ¬(¬P∧¬Q)(R, σ(i)) ∨ ¬(∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. ¬(∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

∨
¬(¬P∧¬Q)(R, σ(i))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. (∀j. j < i ⇒ P (R, σ(j)) ∧ ¬Q(R, σ(j)))

⇒
P (R, σ(i)) ∨Q(R, σ(i))

x Exercise: does this correspond to earlier description of A[PWQ]?

u this exercise illustrates the subtlety of writing CTL!

102

A[PWF] = AG P

x From last slide:

A[PWQ]
= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. (∀j. j < i ⇒ P (R, σ(j)) ∧ ¬Q(R, σ(j)))

⇒
P (R, σ(i)) ∨Q(R, σ(i))

x Set Q to be F:

A[PWF]
= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. (∀j. j < i ⇒ P (R, σ(j)) ∧ ¬F(R, σ(j)))

⇒
P (R, σ(i)) ∨ F(R, σ(i))

x Simplify:

A[PWF]
= λ(R, s). ∀σ. Path(R, s)σ ⇒ ∀i. (∀j. j < i ⇒ P (R, σ(j))) ⇒ P (R, σ(i))

x By induction on i:

A[PWF] = λ(R, s). ∀σ. Path(R, s)σ ⇒ ∀i. P (R, σ(i))

x Exercise: describe the property specified by A[TWQ]

103

Example of current research

TCAD Newsletter - March 2010 Issue
Placing you one click away from the best new CAD research!

Regular Papers
==============

Zheng, H.; "Compositional Reachability Analysis for Efficient Modular
Verification of Asynchronous Designs"

Abstract: Compositional verification is essential to address state
explosion in model checking. Traditionally, an over-approximate
context is needed for each individual component in a system for sound
verification. This may cause state explosion for the intermediate
results as well as inefficiency for abstraction refinement. This paper
presents an opposite approach, a compositional reachability method,
which constructs the state space of each component from an
under-approximate context gradually until a counter-example is found
or a fixpoint in state space is reached. This method has an additional
advantage in that counter-examples, if there are any, can be found
much earlier, thus leading to faster verification. Furthermore, this
modular verification framework does not require complex compositional
reasoning rules. The experimental results indicate that this method is
promising.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5419238&isnumber=5419222

1

Summary of CTL operators (primitive + defined)

x CTL formulas:

Atom(p) (Atomic formula - p : states→bool)

¬P (Negation)

P ∧ Q (Conjunction)

P ∨ Q (Disjunction)

P ⇒ Q (Implication)

AXP (All successors)

EXP (Some successors)

AFP (Somewhere – along all paths)

EFP (Somewhere – along some path)

AGP (Everywhere – along all paths)

EGP (Everywhere – along some path)

A[P U Q] (Until – along all paths)

E[P U Q] (Until – along some path)

A[P W Q] (Unless – along all paths)

E[P W Q] (Unless – along some path)

x Say ‘P holds’ if P (R, s) for all initial states s

2

Example CTL formulas

x EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds but Ready

does not hold

x AG(Req ⇒ AFAck)

If a request Req occurs, then it will eventually be acknowl-
edged by Ack

x AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path
starting anywhere: i.e. DeviceEnabled holds infinitely often
along every path

x AG(EFRestart)

From any state it is possible to get to a state for which Restart

holds

3

More CTL examples (1)

x AG(Req ⇒ A[Req U Ack])

If a request Req occurs, then it continues to hold, until it is
eventually acknowledged

x AG(Req ⇒ AX(A[¬Req U Ack]))

Whenever Req is true either it must become false on the next
cycle and remains false until Ack, or Ack must become true on
the next cycle

Exercise: is the AX necessary?

x AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack will eventually
become true and until it does Req will remain true

Exercise: is the AX necessary?

4

More CTL examples (2)

x AG[Enabled ⇒ AG[Start ⇒ A[¬Waiting U Ack]]]

If Enabled is ever true then if Start is true in any subsequent
state then Ack will eventually become true, and until it does
Waiting will be false

x AG[¬Req1 ∧ ¬Req2

⇒
A[¬Req1 ∧ ¬Req2 U (Start ∧ ¬Req2)]]

Whenever Req1 and Req2 are false, they remain false until Start

becomes true with Req2 still false

x AG[Req ⇒ AX(Ack ⇒ AF ¬Req)]

If Req is true and Ack becomes true one cycle later, then even-
tually Req will become false

5

Some abbreviations

x AXi P ≡ AX(AX(· · · (AX P) · · ·))
︸ ︷︷ ︸

i instances of AX
P is true on all paths i units of time later

x ABFi..j P ≡

AXi (P ∨ AX(P ∨ · · · AX(P ∨ AX P) · · ·))
︸ ︷︷ ︸

j − i instances of AX

P is true on all paths sometime between i units of time later
and j units of time later

x AG[Req ⇒ AX[Ack1 ∧ ABF1..6(Ack2 ∧ A[Wait U Reply])]]

One cycle after Req, Ack1 should become true, and then Ack2

becomes true 1 to 6 cycles later and then eventually Reply

becomes true, but until it does Wait holds from the time of
Ack2

x More abbreviations in the ‘Industry Standard’ language PSL

6

CTL model checking algorithm

x A model is a relation R

x A property is a CTL formula P

x Model checking: given CTL formula P compute {s | P (R, s)}

x P (R, s0) true if and only if s0 ∈ {s | P (R, s)}

x Assume set of states to be finite
(infinite state model checking possible for some models)

x Already seen how to model check reachability
AG(Atom p)(R, s) ≡ ∀s′. Reach R (Eq s) s′ ⇒ p(s′)

so can model check AG of atomic properties – compute:
{s′ | Reach R (Eq s) s′ ⇒ p(s′)},

e.g. via BDD of
Reach R (Eq s) s′ ⇒ p(s′)

7

Checking EF Atom(p)

EF(Atom p)(R, s) if p holds along some path starting at s

x Mark all the states satisfying p

x Repeatedly mark all the states which have at least one marked
successor until no change

x {s | EF(Atom p)(R, s)} computed by generating:

S0 = {s | (Atom p)(R, s)}
= {s | p(s)}

Si+1 = Si ∪ {s | ∃s
′. R(s, s′) ∧ s′ ∈ Si}

x EF(Atom p) is true in marked states and false in unmarked states

x Algorithm similar for AF(Atom p):
repeatedly mark all the states which have all successors marked

x To check AF EF (Atom p):

u apply EF algorithm

u starting with resulting marking apply AF algorithm

8

Recall handshake example

x Part of a handshake circuit

dackdreq
q0

q0bar
a0

or0
a1

x Transition relation:

(q0’ = dreq) ∧ (dack’ = dreq ∧ (q0 ∨ dack))

x Define RRECEIVER by:

RRECEIVER((dreq,q0,dack),(dreq’,q0’,dack’)) =

(q0’ ⇔ dreq) ∧ (dack’ ⇔ dreq ∧ (q0 ∨ dack))

x Primed variables (dreq’,q0’,dack’) represent ‘next state’

x dreq’ unconstrained, hence non-determinism

9

Model checking RECEIVER

x Possible states for RECEIVER:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes state

dreq = b2 ∧ q0 = b1 ∧ dack = b0

x Graph of the transition relation:

000 100 110 111

101

011

001

010

0

1

123

3

3

3

x i above a state indicates membership of Si

(defined below)

10

Example: EF(dreq ∧ q0 ∧ dack)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

x Define:

P = Atom(λb2b1b0. b2 ∧ b1 ∧ b0)

P (RRECEIVER, b2b1b0) = b2 ∧ b1 ∧ b0

x Define:

S0 = {b2b1b0 | P (RRECEIVER, b2b1b0)}

Si+1 = Si ∪ {s | ∃s
′. R(s, s′) ∧ s′ ∈ Si}

= Si ∪ {b2b1b0 | ∃b
′
2b
′
1b
′
0. (b′1 = b2) ∧ (b′0 = b2 ∧ (b1 ∨ b0)) ∧ b′2b

′
1b
′
0 ∈ Si}

11

Checking EF(dreq ∧ q0 ∧ dack)

000 100 110 111

101

011

001

010

0

1

123

3

3

3

x Recall:

S0 = {b2b1b0 | P (RRECEIVER, b2b1b0)}

Si+1 = Si ∪ {b2b1b0 | ∃b
′
2b
′
1b
′
0. (b′1 = b2) ∧ (b′0 = b2 ∧ (b1 ∨ b0)) ∧ b′2b

′
1b
′
0 ∈ Si}

x Compute:

S0 = {111}

S1 = {111} ∪ {101, 110}

= {111, 101, 110}

S2 = {111, 101, 110} ∪ {100}

= {111, 101, 110, 100}

S3 = {111, 101, 110, 100} ∪ {000, 001, 010, 011}

= {111, 101, 110, 100, 000, 001, 010, 011}

Si = S3 (i > 3)
x Hence ∀s. EF(Atom(λ(dreq, q0, dack). dreq ∧ q0 ∧ dack))(RRECEIVER, s)

12

Symbolic model checking

x Represent sets of states with BDDs

x Represent Transition relation with a BDD

x If BDDs of P (R, s) , Q(R, s) are known, then BDDs of

¬P (R, s)

P (R, s) ∧ Q(R, s)

P (R, s) ∨ Q(R, s)

P (R, s) ⇒ Q(R, s)

can be computed using standard BDD algorithms

x If BDDs of P (R, s) , Q(R, s) are known, then BDDs of

AXP (R, s), EXP (R, s), A[P U Q](R, s), E[P U Q](R, s)

computed using fairly straightforward algorithms (see textbooks)

x Model checking CTL generalises iteration for reachable states (AG)

13

History of Model checking

x CTL model checking invented by Emerson, Clarke and Sifakis

x Use of BDDs to represent and compute sets of states is called
symbolic model checking

x Independently discovered by several people:

Clarke & McMillan

Coudert, Berthet & Madre

Pixley

x SMV (McMillan) is a popular symbolic model checker

http://www.cs.cmu.edu/~modelcheck/smv.html (original)

http://www.kenmcmil.com/smv.html (Cadence extension by McMillan)

http://nusmv.irst.itc.it/ (new implementation)

x Other temporal logics

u Linear temporal logic (LTL): easier to use, more complicated to check

u CTL*: combines CTL and LTL (also harder to check)

u Industrial languages PSL and SVA designed to be ‘engineer friendly’

14

Expressibility of CTL

x Consider the property

“on every path there is a point after which p is always true on that path ”

x Consider

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

x Property true, but cannot be expressed in CTL
u would need something like AF P
u where P is something like “property p true from now on”
u but in CTL P must start with a path quantifier A or E
u so cannot talk about current path, only about all or some paths
u AF AG (Atom p) is false (consider path s0s0s0· · ·)

15

Linear Temporal Logic (LTL)

x CTL property is a predicate on a state in a tree: P (R, s)

x LTL property is a predicate on a path: P (σ)

x Syntax of LTL well-formed formulae:

wff ::= Atom(p) (Atomic formula)
| ¬wff (Negation)
| wff 1 ∨ wff 2 (Disjunction)
| Xwff (successor)
| Fwff (sometimes)
| Gwff (always)
| [wff 1 U wff 2] (Until)

x Note: no path quantifiers A or E

16

Semantics of LTL (shallow embedding)

x Define Tail m σ = λn. σ(n+m)

x Define:

Atom(p) = λσ. p(σ(0))

¬P = λσ. ¬(P σ)

P ∨ Q = λσ. P σ ∨ Q σ

XP = λσ. P (Tail 1 σ)

FP = λσ. ∃m. P (Tail m σ)

GP = λσ. ∀m. P (Tail m σ)

[P U Q] = λσ. ∃i. Q(Tail i σ) ∧ ∀j. j < i ⇒ P (Tail j σ)

x Example:

X(Atom(p))(σ) = Atom(p)(Tail 1 σ) = p(Tail 1 σ 0) = p(σ(0+1)) = p(σ(1))

17

FG

x FGP is true if there is a point after which P is always true

FGP (σ)

= F(G(P))(σ)

= ∃m1. (G(P))(Tail m1 σ)

= ∃m1. ∀m2. P (Tail m2 (Tail m1 σ))

= ∃m1. ∀m2. P (Tail (m1+m2) σ)

x Recall:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

x LTL can express things that CTL can’t express

18

CTL can express things that LTL can’t express

x AG(EF P) says:

“from every state it is possible to get to a state for which P holds”

x Can’t say this in LTL (proof omitted)

x Consider disjunction:

“along every path there is a state from which P will hold forever

or

from every state it is possible to get to a state for which P holds”

x Can’t say this in either CTL or LTL! (proof omitted)

x CTL* combines CTL and LTL and can express this property

19

CTL*

x Two kinds of formulas: state formulas (swff) & path formulas (pwff)
u state formulas are true of a state s in a tree R λ(R, s) like CTL
u path formulas are true of a path σ through a tree R λ(R, σ) like LTL

x Defined mutually recursively

swff ::= Atom(p) (Atomic formula)
| ¬swff (Negation)
| swff 1 ∨ swff 2 (Disjunction)
| Apwff (All paths)
| Epwff (Some paths)

pwff ::= PathForm(swff) (Every state formula is a path formula)
| ¬pwff (Negation)
| pwff 1 ∨ pwff 2 (Disjunction)
| Xpwff (Successor)
| Fpwff (Sometimes)
| Gpwff (Always)
| [pwff 1 U pwff 2] (Until)

x CTL is CTL* restricted with X, F, G, [–U–] preceded by A or E

x LTL consists of CTL* formulas of form Apwff ,
where the only state formulas in pwff are atomic

x Selection of primitives above arbitrary: ∨, ¬, X, U, E enough

20

CTL* semantics

x Combining state semantics of CTL with path semantics of LTL:

Atom(p) = λ(R, s). p(s)

¬S = λ(R, s). ¬(S(R, s))

S1 ∨ S2 = λ(R, s). S1(R, s) ∨ S2(R, s)

AP = λ(R, s). ∀σ. Path(R, s)σ ⇒ P (R, σ)

EP = λ(R, s). ∃σ. Path(R, s)σ ∧ P (R, σ)

PathForm(S) = λ(R, σ). S(R, σ(0))

¬P = λ(R, σ). ¬(P (R, σ))

P1 ∨ P2 = λ(R, σ). P1(R, σ) ∨ P2(R, σ)

XP = λ(R, σ). P (R, Tail 1 σ)

FP = λ(R, σ). ∃m. P (R, Tail m σ)

GP = λ(R, σ). ∀m. P (R, Tail m σ)

[P1 U P2] = λ(R, σ). ∃i. P2(R, Tail i σ) ∧ ∀j. j < i ⇒ P1(R, Tail j σ)

x Note semantics of state and path formulas have different types
u λ(R, s) versus λ(R, σ)

x Semantics looks simpler if we assume R fixed

21

Simplified CTL* semantics (textbook semantics)

x Let Path s σ abbreviate Path(R, s)σ, then:

Atom(p) = λs. p(s)

¬S = λs. ¬(S s)

S1 ∨ S2 = λs. S1 s ∨ S2 s

AP = λs. ∀σ. Path s σ ⇒ P σ

EP = λs. ∃σ. Path s σ ∧ P σ

PathForm(S) = λσ. S(p(0))

¬P = λσ. ¬(Pσ)

P1 ∨ P2 = λσ. P1 σ ∨ P2 σ

XP = λσ. P (Tail 1 σ)

FP = λσ. ∃m. P (Tail m σ)

GP = λσ. ∀m. P (Tail m σ)

[P1 U P2] = λσ. ∃i. P2(Tail i σ) ∧ ∀j. j < i ⇒ P1(Tail j σ)

22

Fairness

x May want to assume a component or the environment is ‘fair’

x Example 1: fair arbiter
the arbiter doesn’t ignore one of its requests forever

u not every request need be granted
u want to exclude infinite number of requests and no grant

x Example 2: reliable channel
no message continuously transmitted but never received

u not every message need be received
u want to exclude an infinite number of sends and no receive

x Want if P holds infinitely often along a path then so does Q

x In LTL is expressible as G(F P) ⇒ G(F Q)

x Can’t say this in CTL
u why not – what’s wrong with AG(AF P) ⇒ AG(AF Q)?
u in CTL* expressible as A(G(F P) ⇒ G(F Q))
u fair CTL model checking is implemented in the model checking algorithm
u fair LTL just needs a fairness assumption like G(F P) ⇒ · · ·

x Fairness is a tricky and subtle subject
u several notions or fairness: ‘weak fairness’, ‘strong fairness’ etc
u exist whole books on fairness

23

Propositional modal µ-calculus

x Modal µ-calculus is an even more powerful property language

x Has fixed-point operators
u both maximal and minimal fixed points
u model checking consists of calculating fixed points
u many logics (e.g. CTL*) can be translated into µ-calculus

x Strictly stronger than CTL*
u expressibility in µ-calculus strictly increases as allowed nesting increases
u need fixed point operators nested 2 deep for CTL*

x The µ-calculus is very non-intuitive to use!

u intermediate code rather than a practical property language
u nice meta-theory and algorithms, but terrible usability!

24

Interval Temporal Logic (ITL)

x ITL specifies properties of intervals

x An interval is a sequence of states with a beginning and an end

x Useful for talking about ‘transactions’

x ITL specifies properties of finite intervals not infinte traces

x Has an executable subset called Tempura suitable for simulation

x Developed by Ben Moszkowski at Stanford then here at Cambridge

x Moszkowski is now at De Montford University

25

ITL (simplified and with expressions omitted)

x Syntax of ITL well-formed formulae:

wff ::= Atom(p) (Atomic formula)
| true (Truth)
| ¬wff (Negation)
| wff 1 ∨ wff 2 (Disjunction)
| skip (interval with exactly two states)
| wff 1 ; wff 2 (Chop)
| wff ∗ (Repeat)

x Semantics (properties are predicates on intervals):

Atom(p) = λ〈s0 · · · sn〉. p(s0)

true = λ〈s0 · · · sn〉. T

¬P = λ〈s0 · · · sn〉. ¬(P 〈s0 · · · sn〉)

P ∨ Q = λ〈s0 · · · sn〉. P 〈s0 · · · sn〉 ∨ Q〈s0 · · · sn〉

skip = λ〈s0 · · · sn〉. n = 1

P ; Q = λ〈s0 · · · sn〉. ∃k. k ≤ n ∧ P 〈s0 · · · sk〉 ∧ Q〈sk · · · sn〉

P∗ = λ〈s0 · · · sn〉.
∃w1 · · · wl. 〈s0 · · · sn〉 = w1 · · ·wl ∧ P w1 ∧ · · · ∧ P wl

26

Examples of ITL

Abbreviation Meaning

P1;P2 P1 holds then P2 holds (overlapping state)

P1;skip;P2 P1 holds then P2 holds (no overlapping state)

skip;P P true on the next state

true;P P sometimes true

¬true;¬P P always true

27

Too many logics: CTL, LTL, CTL*, ITL, . . .

x Large variety of separate logics

x Can be viewed as idioms in higher order logic

x Can model complete hardware systems in higher order logic

x Can model programming languages and logics in higher order logic

x Why not dump ad hoc languages and just work in logic?

u specialized logics support specialized specification and verification methods

u compact assertions developed for specific applications

28

Assertion-based verification (ABV)

x Claimed that assertion based verification:

“is likely to be the next revolution in hardware design verification”

x Basic idea:
u document designs with formal properties
u check properties using both simulation (dynamic) and model checking (static)

x Accellera organisation and IEEE are specifying languages

x Frequently used acronyms
PSL: Property Specification Language

OVL: Open Verification Library (Verilog modules)

OVA: Open Vera Language

SVA: System Verilog Assertions

SVL: System Verilog assertion Library (SVA version of OVL)

x Problem: too many languages
u PSL from Accellera Formal Verification Technical Committee
u OVA/SVA from Accellera SystemVerilog Assertion Committee
u OVL from Accellera Open Verification Library Technical Commitee
u all Accellera committees + some new IEEE committees!

x PSL and OVA/SVA have been ‘aligned’

x OVL is a checker library for dynamic property verification
u currently VHDL, Verilog and PSL versions
u eventually PSL version golden and others derived maybe

29

IBM’s Sugar and Accellera’s PSL

x Sugar 1 is the property language of IBM’s RuleBase model checker

x Sugar 1 is CTL plus Sugar Extended Regular Expressions (SEREs)

x SEREs are ITL-like constructs
x Accellera ran a competition to select a ‘standard’ property language

x Finalists were IBM’s Sugar 2 and Motorola’s CBV

u Intel/Synopsys ForSpec eliminated earlier

(apparently industry politics involved)

x Sugar 2 is based on LTL rather than CTL
u has CTL constructs called “Optional Branching Extension” (OBE)
u has clocking constructs for temporal abstraction

x Accellera purged “Sugar” from it property language
u the word “Sugar” was too associated with IBM
u language renamed to PSL
u SEREs now Sequential Extended Regular Expressions

x People lobby to make PSL more like ForSpec (align with SVA)

30

PSL notation

Previous notation PSL ASCII notation

P ∧ Q P & Q

P ⇒ Q P -> Q

¬P !P (exclamation mark is negation)

XP next P

FP eventually! P (exclamation mark is not negation)
GP always P

[P U Q] P until! Q

[P W Q] P until Q

skip true

R* R[*]

R1 ; R2 R1 : R2

R1 ;skip; R2 R1 ; R2

1

Sequential Extended Regular Expressions (SEREs)

x Similar to ITL – but weaker

x On earlier slide: R[*], R1:R2, R1;R2

x Other SERE operators include

R1 | R2 either R1 or R2 holds

R1 && R2 both R1 and R2 hold for same number of cycles

R1 & R2 both R1 and R2 hold, but one may finish before the other

x Actually & is not primitive (braces { and } used for grouping)

{r1} & {r2} = {{r1} && {r2;true[*]}} | {{r1;true[*]} ** {r2}}

x SEREs can be used to improve readability of formulas, compare:

always

(reqin -> next(ackout -> next(!abortin -> (ackin & next ackin))))

with

always {reqin;ackout;!abortin} |-> {ackin;ackin}

where PSL formulas r1 |-> r2 defined later

2

SEREs in HOL

x Syntax :

r ::= Atom(p) (Atomic formula)
| r1 | r2 (Disjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion: ITL’s chop)
| r1 && r2 (Length matching conjunction)
| r [∗] (Repeat)

x Semantics:
(s ranges over states; w ranges over finite lists of states;
“head” denotes head of a list; infix “.” denotes concatenation)

Atom(p) = λw. p(head w)

r1 | r2 = λw. r1 w ∨ r2 w

r1 ; r2 = λw. ∃w1 w2. w = w1.w2 ∧ r1 w1 ∧ r2 w2

r1 : r2 = λw. ∃w1 s w2. w = w1.s.w2 ∧ r1(w1.s) ∧ r2(s.w2)

r1 && r2 = λw. r1 w ∧ r2 w

r[∗] = λw. w = 〈〉 ∨ ∃w1 · · · wl. w = w1. · · · .wl ∧ r w1 ∧ · · · ∧ r wl

3

PSL Foundation Language (FL)

x Syntax:

f ::= Atom(p) (Atomic formula)
| ¬f (Negation)
| f1 ∨ f2 (Disjunction)
| next f (successor)
| {r}(f) (Suffix implication)
| {r1} |-> {r2} (Suffix next implication)
| [f1 until f2] (Until)

x Semantics
(simplified – no clocking, weak/strong distinction omitted):

Atom(p) = λσ. p(σ(0))

¬f = λσ. ¬(f σ)

f1 ∨ f2 = λσ. f1 σ ∨ f2 σ

next f = λσ. f(Tail 1 (σ))

{r}(f) = λσ. ∃w σ′. σ = w.σ′ ∧ r w ∧ f σ′

{r1} |-> {r2} = λσ. ∃w1 σ′. σ = w1.σ
′ ∧ r1 w1 ⇒ ∃w2 σ′′. σ′ = w2.σ

′′ ∧ r2 w2

[f1 until f2] = λσ. ∃i. f2(Tail i σ) ∧ ∀j. j < i ⇒ f1(Tail j σ)

x There is also an Optional Branching Extension (OBE)
u completely standard CTL: EX, E[–U–], EG etc.

4

Combining SEREs with LTL formulas

x Formula {r}f means LTL formula f true after SERE r

x Example

After a sequence in which req is asserted, followed four cycles later by an

assertion of grant, followed by a cycle in which abortin is not asserted,

we expect to see an assertion of ack some time in the future.

x Can represent by

always {req;[*3];grant;!abortin}(eventually! ack)

x where eventually! is LTL future operator F, so:

eventually! f = [T U f] = [true until! f]

x N.B. suffix “!” denotes “strong”
u strong/weak distinction not covered here – important for dynamic checking
u gives semantics when simulator halts before an expected event occurs

5

SERE examples

x How can we modify

always {reqin;ackout;!abortin} |-> {ackin;ackin}

so that the two cycles of ackin start the cycle after !abortin?

x Two ways of doing this

always {reqin;ackout;!abortin} |-> {true;ackin;ackin}

always {reqin;ackout;!abortin} |=> {ackin;ackin}

x |=> is a defined operator

{r1} |=> {r2} = {r1} |-> {true;r2}

x Note: true and T are synonyms

6

Examples of defined notations: consecutive repetition

x Define

r[+] = {r;r[*]}
__
| false[*] if i=0

r[*i] = |
| {r;r;...;r} otherwise (i repetitions of r)__

r[*i..j] = {r[*i]} | {r[*(i+1)]} | ... | {r[*j]}

[+] = true[+]

[*] = true[*]

x Example

Whenever we have a sequence of req followed by ack, we should see a

full transaction starting the following cycle. A full transaction starts with

an assertion of the signal start trans, followed by one to eight consecu-

tive data transfers, followed by the assertion of signal end trans. A data

transfer is indicated by the assertion of signal data

always {req;ack} |=> {start_trans;data[*1..8];end_trans}

7

Fixed number of non-consecutive repetitions

x Example

Whenever we have a sequence of req followed by ack, we should see a

full transaction starting the following cycle. A full transaction starts with

an assertion of the signal start trans, followed by eight not necessarily

consecutive data transfers, followed by the assertion of signal end trans.

A data transfer is indicated by the assertion of signal data

x Can represent by

always {req;ack} |=>

{start_trans;{{!data[*];data}[*8];!data[*]};end_trans}

x Define

b[= i] = {!b[*];b}[*i];!b[*]

x Then have a nicer representation

always {req;ack} |=> {start_trans;data[= 8];end_trans}

8

Variable number of non-consecutive repetitions

x Example

Whenever we have a sequence of req followed by ack, we should see a full

transaction starting the following cycle. A full transaction starts with an

assertion of the signal start trans, followed by one to eight not necessar-

ily consecutive data transfers, followed by the assertion of signal end trans.

A data transfer is indicated by the assertion of signal data

x Define

b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

x Then

always{req;ack} |=> {start_trans;data[= 1..8];end_trans}

x These examples are meant to illustrate how PSL/Sugar is much
more readable than raw CTL or LTL

9

Clocking

x Basic idea: b@clk abstracts b on rising edges of clk

x Can clock SEREs (r@clk) and formulas (f@clk)

x Can have several clocks
x Official semantics messy due to clocking

x Can ‘translate away’ clocks by pushing @clk inwards
u rules given in PSL manual
u roughly: b@clk −→ {!clk[*];clk & b}

x Same idea as temporal abstraction: b at clk

10

Model checking PSL

x SEREs checked by generating a finite automaton
u recall: regular expressions can be recognised by finite automata
u these automata are called “satellites”

x FL checked using standard LTL methods

x OBE checked by standard CTL methods

x Can also check formula for runs of a simulator
u this is dynamic verification
u semantics handles possibility of finite paths – messy!

11

PSL layer structure

x Boolean layer has atomic predicates

x Temporal layer has LTL (FL) and CTL (OBE) properties

x Verification layer has commands for how to use properties
u e.g. assert, assume

assert always (!en1 & en2))

| | |

| | |

| | |--- Boolean layer

| |

| |-------------- temporal layer

|

|-------------------- verification layer

x Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware

12

PSL/Sugar summary

x Combines together LTL, ITL and CTL

x Regular expressions – SEREs

x LTL – Foundation Language formulas

x CTL – Optional Branching Extension

x Relatively simple set of primitives + definitional extension

x Boolean, temporal, verification, modelling layers

x Semantics for static and dynamic verification
(needs strong/weak distinction)

13

New Topic: Simulation or Event semantics

x HDLs use discrete event simulation
u changes to variables ⇒ threads enabled
u enabled threads executed non-deterministically
u execution of threads ⇒ more events

x Combinational thread:

always @(v1 or · · · or vn) v := E

u enabled by any change to v1, . . ., vn

x Positive edge triggered sequential threads:

always @(posedge clk) v := E

u enabled by clk changing to T

x Negative edge triggered sequential threads:

always @(negedge clk) v := E

u enabled by clk changing to F

14

Simulation

x Given
u a set of threads
u initial values for variables read or written by threads
u a sequence of input values

(inputs are variables not in LHS of assignments)

x simulation algorithm ⇒ a sequence of states

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

x Simulation is non-deterministic

15

Combinational threads in series

f g hin out
l l1 2

x HDL-like specification:

always @(in) l1 := f(in) thread T1

always @(l1) l2 := g(l1) thread T2

always @(l2) out := h(l2) thread T3

x Suppose in changes to v at simulation time t

u T1 will become enabled and assign f(v) to l1
u if l1’s value changes then T2 will become enabled

(still simulation time t)
u T2 will assign g(f(v)) to l2
u if l2’s value changes then T will become enabled

(still simulation time t)
u T3 will assign h(g(f(v))) to out
u simulation quiesces

(still simulation time t)

x Steps at same simulation time happen in δ-time

(VHDL jargon)

16

Semantic gap

x Designers use HDLs and verify via simulation
u event semantics

x Formal verifiers use logic and verify via proof
u trace semantics

x Problem: show consistency between semantics

x Goal:

traces = sequences of quiescent simulation states

x Outline (see Section 4.4 of Notes for details):
u first analyse sets of combinational threads
u identify conditions for “non-looping”
u simulation terminates ⇒ trace semantics (partial correctness)
u simulation always termininates“quiesces” (total correctness)
u extend to sequential threads

17

Trace defined by a simulation run

x Simulation defines a tree of states

Cycle 0 Cycle 1 Cycle 2 Cycle 3

input(1)
state(0)

input(0) input(2)
state(1)

input(3)
state(2)

input(4)
state(3)initial(0)

x Inputs read at start of cycle
x State computed at end of cycle
x Traces = sequences of end-of-cycle states (example shown in red)
x Branching time

18

Sequential threads – event semantics

in

clk

l
out

x Consider two Dtypes in series:

always @(posedge clk) l := in

always @(posedge clk) out := l

x If posedge clk:
u both threads become enabled
u race condition

x Right thread executed first:
u out gets previous value of l
u then left thread executed
u so l gets value input at in

x Left thread executed first:
u l gets input value at in
u then right thread executed
u so out gets input value at in

19

Sequential threads – trace semantics

in

clk

l
out

x Trace semantics:

(∀t. l(t+1) = (Rise clk t → in t | l t)) ∧

(∀t. out(t+1) = (Rise clk t → l t | out t))

x Corresponds to right thread executed first

x How to ensure event and trace semantics agree?

x Method 1: use non-blocking assignments:

always @(posedge clk) l <= in;

always @(posedge clk) out <= l;

u non-blocking assignments (<=) in Verilog
u RHS of all non-blocking assignments first computed
u assignments done at end of simulation cycle

x Method 2: make simulation cycle VHDL-like

20

Verilog versus VHDL simulation cycles

x Verilog-like simulation cycle:

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

x VHDL-like simulation cycle:

Execute all enabled threads in parallel

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

21

VHDL event semantics

in

clk

l
out

x Recall HDL:

always @(posedge clk) l := in

always @(posedge clk) out := l

x If posedge clk:
u both threads become enabled

x VHDL semantics:
u both threads executed in parallel
u out gets previous value of l
u in parallel l gets value input at in

x Now no race
x Event semantics matches trace semantics

22

Summary of dynamic versus static semantics

x Simulation (event) semantics different from trace semantics

x No standard event semantics (Verilog versus VHDL)

x Verilog: need non-blocking assignments

x VHDL semantics closer trace semantics

23

Summary of Specification I and II

x Software specification and verification
u Hoare logic: partial and total correctness
u proof by invariants and variants
u mechanisation via VCs (WP or SP)
u only nice for simple languages
u can apply Hoare logic to behavioral view of hardware

x Higher order logic (HOL)
u unifying general logic
u supports Hoare logic via embedding
u supports temporal logics via embedding
u can directly represent hardware behavior and structure (∃, ∧)
u hardware verification as pure logic proof
u relating models: event vs trace vs RTL vs cycles

x Hardware specification and verification
u automatic FV uses state machine models, fit nicely into HOL
u reachable states calculated by iteration (fixed point)
u symbolic representations: BDDs
u model checking of properties (CTL, LTL, ITL, PSL)
u event simulation used in industry

. .

THE END - HAVE A GOOD VACATION!

24

	Hardware Verification Method
	Limitations of the Method
	Why Formal Specification?
	Why Formal Specification?
	Formal Specification in HOL
	Specification Examples
	Specification Examples
	Specification of the Sampler
	Composing Behaviours
	Hiding Internal Structure
	Shallow embedding of Verilog
	Formulating Correctness
	Hiererchical Verification
	Hierarchical Design---Advantages
	A Simple Correctness Proof
	CMOS Primitives
	Design Model and Correctness
	The Correctness Proof
	The Correctness Proof continued
	Scope of the Method
	Another Example
	Defining the Model: types
	Defining the Model: recursive definition
	Defining the Model: ${sf �lack Add1}$
	Defining the Model
	Formulation of Correctness
	Temporal Abstraction
	Formulating Correctness
	Formulating Correctness
	Industry use of theorem proving
	Summary

