PSL notation

Previous notation PSL ASCII notation

PAQ P&Q

P=Q P->Q

-P \P (exclamation mark is negation)
XP next P

FP eventually! P (exclamation mark is not negation)
GP always P

[PUQ) P until! Q

[PW Q)] P until Q

skip true

R* R[*]

Ry ; Ry Ry : Ry

Ry ;skip; Ry Ry 5 Ry

Sequential Extended Regular Expressions (SEREs)

e Similar to ITL — but weaker

® On earlier slide: R[*], Ri: Ry, Ri; Ry
o Other SERE operators include
1 | Ry either Ry or Ry holds
Ry && R, both Ry and Ry hold for same number of cycles

Ry & Ry both Ry and Ry hold, but one may finish before the other

e Actually & is not primitive (braces { and } used for grouping)

{r1} & {r2} = {{r1} && {r2;truel*]1}} | {{r1;truel*]} *x {r2}}

e SEREs can be used to improve readability of formulas, compare:

always

(reqin -> next(ackout -> next(!abortin -> (ackin & next ackin))))
with
always {reqin;ackout;!abortin} |-> {ackin;ackin}

where PSL formulas r; |-> r, defined later

SEREs in HOL

e Syntax :

r == Atom(p) (Atomic formula)
[ mlm (Disjunction)
| 15 m (Concatenation)
| mo:m (Fusion: ITL’s chop)
| 11 && 1 (Length matching conjunction)
| r[%] (Repeat)

e Semantics:
(s ranges over states; w ranges over finite lists of states;
“head” denotes head of a list; |w| denotes the length;
infix “.” denotes concatenation)

Atom(p) = Aw. p(head w) A |w| =1

rilry = w.rw V row
oy re = Aw. Jw; we. w=wypwy A Ty W A o wsy
Ty = Aw. Jwy s wy. w=wr.s.awy A ri(wy.s) A ra(saws)

T && Ty = Aw. T w A rpw
r[x] = w. w={)V Jw

swpw =wpcceawp A rwp A es ATy

PSL Foundation Language (FL)

e Syntax:
[ = Atom(p) (Atomic formula)

| —=f (Negation)
[ AV E (Disjunction)
| next f (successor)
| {r}(f) (Suffix implication)
| {nr} 1> {n} (Suffix next implication)
| [fi until f (Until)

e Semantics
(simplified — no clocking, weak/strong distinction omitted):

Atom(p) = Ao. p(a(0))

—f — o ~(f o)

AV f =X fio V fro

next f = Xo. f(Tail 1 (o))

{r}(f) =M. Jwo . oc=ws ANrw AN fo

{ri} 1=>{r} =Xo. 3wy 0. o =wi.c’ A rpw = Jwy 0. 0 =wro” A 1y wy
[fi until fo] = Ao Fi. fo(Taili o) A Vj. j<i = fi(Tail j o)

e There is also an Optional Branching Extension (OBE)
o completely standard CTL: EX, E[-U-], EG etc.




Combining SEREs with LTL formulas SERE examples

e Formula {r}f means LTL formula f true after SERE r e How can we modify
¢ Example always {reqin;ackout;!abortin} |-> {ackin;ackin}
After a sequence in which req is asserted, followed four cycles later by an
assertion of grant, followed by a cycle in which abortin is not asserted,
we expect to see an assertion of ack some time in the future.

so that the two cycles of ackin start the cycle after !abortin?

e Two ways of doing this
e Can represent by

always {reqin;ackout;!abortin} |-> {true;ackin;ackin}
always {req; [*3];grant;!abortin}(eventually! ack)

always {reqin;ackout;!abortin} |=> {ackin;ackin}
e where eventually! is LTL future operator F, so:

® |=>is a defined operator
eventually! £ = [T U f] = [true until! f]

e N.B. suffix “!” denotes “strong” (13 1= G2k =y 1> {erue;r2)

o strong/weak distinction not covered here — important for dynamic checking

e gives semantics when simulator halts before an expected event occurs ® Note: true and T are synonyms
5 6
Examples of defined notations: consecutive repetition Fixed number of non-consecutive repetitions
e Define e Example
r[+] = {r;r(*1} Whenever we have a sequence of req followed by ack, we should see a
T false[*] if i=0 full transaction starting the following cycle. A full transaction starts with
r*i] = |

an assertion of the signal start_trans, followed by eight not necessarily

l_ {r;r;...;r} otherwise (i repetitions of r) consecutive data transfers, followed by the assertion of signal end trans.
rl*i. 3] = {r[*il} | {c+GE+DIF | ... | {[*j13 A data transfer is indicated by the assertion of signal data
[+] = true[+] e Can represent by
[*] = true[*]

always {req;ack} |=>

e Example {start_trans;{{!data[*];data}[*8];!datal*]};end_trans}

Whenever we have a sequence of req followed by ack, we should see a
full transaction starting the following cycle. A full transaction starts with
an assertion of the signal start trans, followed by one to eight consecu-
tive data transfers, followed by the assertion of signal end trans. A data
transfer is indicated by the assertion of signal data

e Define
b[= il = {Ib[*];b}[*il; b[*]
o Then have a nicer representation

always {req;ack} |=> {start_trans;data[*1..8];end_trans} always {req;ack} |=> {start_trans;data[= 8];end_trans}




Variable number of non-consecutive repetitions

e Example

Whenever we have a sequence of req followed by ack, we should see a full
transaction starting the following cycle. A full transaction starts with an
tion of the signal start_trans, followed by one to eight| not necessar-
ily consecutive data transfers, followed by the assertion of signal end trans.

ass

A data transfer is indicated by the assertion of signal data

e Define
bl=i..j] = {bl=il} | {bl= G+DI} | ... | {bl= j1}
e Then

always{req;ack} |=> {start_trans;datal= 1..8];end_trans}

e These examples are meant to illustrate how PSL/Sugar is much

more readable than raw CTL or LTL

Clocking

e Basic idea: b@clk abstracts b on rising edges of clk
e Can clock SEREs (r@clk) and formulas (f@clk)

e Can have several clocks

e Official semantics messy due to clocking

e Can ‘translate away’ clocks by pushing @clk inwards

e rules given in PSL manual
o roughly: beclk — {!clk[*];clk & b}

o Same idea as temporal abstraction: b at clk

10

Model checking PSL

e SEREs checked by generating a finite automaton

e recall: regular expressions can be recognised by finite automata
e these automata are called “satellites”

o FL checked using standard LTL methods
e OBE checked by standard CTL methods

e Can also check formula for runs of a simulator
e this is dynamic verification
o semantics handles possibility of finite paths — messy!

PSL layer structure

o Boolean layer has atomic predicates
e Temporal layer has LTL (FL) and CTL (OBE) properties

e Verification layer has commands for how to use properties

e e.g. assert, assume

assert always (!'enl & en2))
| | |
| | |
| | |--- Boolean layer
| |
| |—m—mmm temporal layer
|

|—m—mmmm verification layer

o Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware




PSL/Sugar summary

e Combines together LTL, ITL and CTL

e Regular expressions — SEREs

e LTL — Foundation Language formulas

e CTL — Optional Branching Extension

e Relatively simple set of primitives + definitional extension
e Boolean, temporal, verification, modelling layers

e Semantics for static and dynamic verification
(needs strong/weak distinction)

New Topic: Simulation or Event semantics

e HDLs use discrete event simulation
o changes to variables = threads enabled
e enabled threads executed non-deterministically
o execution of threads = more events

e Combinational thread:
always @(v; or --- or v,) v := E
e enabled by any change to vy, ..., v,
o Positive edge triggered sequential threads:
always @(posedge clk) v := E
o enabled by c/k changing to T
o Negative edge triggered sequential threads:
always @(negedge clk) v := F
« enabled by clk changing to F

Simulation

e Given
o a set of threads
o initial values for variables read or written by threads
e a sequence of input values
(inputs are variables not in LHS of assignments)

® simulation algorithm = a sequence of states

¥
Choose an enabled thread
Execute
until l
quiescent
then Execute the chosen thread
advance l
simulation
time Fire event controls to enable new threads

e Simulation is non-deterministic

Combinational threads in series

. |

e HDL-like specification:

always @(in) I := f(in) ..... thread T1
always @(l)) Iy := g(ly) ..... thread T2
always @(ly) out := h(ly) ..... thread T3

o Suppose in changes to v at simulation time ¢

T1 will become enabled and assign f(v) to [

if [)’s value changes then T2 will become enabled
(still simulation time t)
T2 will assign g(f(v)) to I,

o if Iy’s value changes then T will become enabled
(still simulation time t)

o T3 will assign h(g(f(v))) to out

simulation quiesces

(still simulation time t)

o Steps at same simulation time happen in §-time
(VHDL jargon)




Semantic gap

e Designers use HDLs and verify via simulation
e event semantics

e Formal verifiers use logic and verify via proof
e trace semantics
e Problem: show consistency between semantics

e Goal:
traces = sequences of quiescent simulation states

e Outline (see Section 4.4 of Notes for details):

first analyse sets of combinational threads
identify conditions for “non-looping”
simulation terminates = trace semantics

(partial correctness)

simulation always termininates“quiesces”
extend to sequential threads

(total correctness)

Trace defined by a simulation run

e Simulation defines a tree of states

Cycle 0

Cyclel | Cycle2

Cycle 3 ‘
input(0) input(l)  input(2)  input(d  input(4)
initial(0) state(0) ~ state(l)  state(2)  state(3)

e Inputs read at start of cycle

e State computed at end of cycle

e Traces = sequences of end-of-cycle states (example shown in red)
e Branching time

Sequential threads — event semantics

in — — out

clku

e Consider two Dtypes in series:

always @(posedge clk) | :=in
always @(posedge clk) out :=1

e If posedge clk:
e both threads become enabled
e race condition

e Right thread executed first:
e oul gets previous value of [
e then left thread executed
e so [ gets value input at in

o Left thread executed first:
e [ gets input value at in
e then right thread executed
e so out gets input value at in

19

Sequential threads — trace semantics

in — — out
T
o Trace semantics:
(Vt. I(t+1) = (Riseclkt — int | L) A

(Vt. out(t+1) = (Rise clkt — 1t | outt))

o Corresponds to right thread executed first
e How to ensure event and trace semantics agree?
o Method 1: use non-blocking assignments:
always Q@(posedge clk) | <= in;
always @(posedge clk) out <= [;

« non-blocking assignments (<=) in Verilog
o RHS of all non-blocking assignments first computed
o assignments done at end of simulation cycle

o Method 2: make simulation cycle VHDL-like

20




Verilog versus VHDL simulation cycles

e Verilog-like simulation cycle:
e |

A\
Choose an enabled thread
Execute
until |
quiescent v
then Execute the chosen thread
advance |
simulation v
time Fire event controls to enable new threads

I

e VHDL-like simulation cycle:

]

Execute Execute all enabled threads in parallel

until
quiescent

then
advance

simulation Fire event controls to enable new threads

time I

VHDL event semantics

in — — out

o Recall HDL:
always @(posedge clk) | := in
always @(posedge clk) out :=1

o If posedge clk:
e both threads become enabled
e VHDL semantics:

e both threads executed in parallel
e out gets previous value of [
e in parallel [ gets value input at in

e Now no race

o Event semantics matches trace semantics

Summary of dynamic versus static semantics

e Simulation (event) semantics different from trace semantics
e No standard event semantics (Verilog versus VHDL)
e Verilog: need non-blocking assignments

e VHDL semantics closer trace semantics

Summary of Specification I and II

e Software specification and verification

Hoare logic: partial and total correctness

proof by invariants and variants

mechanisation via VCs (WP or SP)

only nice for simple languages

can apply Hoare logic to behavioral view of hardware

e Higher order logic (HOL)

e unifying general logic

supports Hoare logic via embedding

supports temporal logics via embedding

can directly represent hardware behavior and structure (3, A)
hardware verification as pure logic proof

relating models: event vs trace vs RTL vs cycles

o Hardware specification and verification

automatic FV uses state machine models, fit nicely into HOL
reachable states calculated by iteration (fixed point)
symbolic representations: BDDs

model checking of properties (CTL, LTL, ITL, PSL)

event simulation used in industry

THE END - HAVE A GOOD VACATION!

24




