
PSL notation

Previous notation PSL ASCII notation

P ∧ Q P & Q

P ⇒ Q P -> Q

¬P !P (exclamation mark is negation)

XP next P

FP eventually! P (exclamation mark is not negation)
GP always P

[P U Q] P until! Q

[P W Q] P until Q

skip true

R* R[*]

R1 ; R2 R1 : R2

R1 ;skip; R2 R1 ; R2
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Sequential Extended Regular Expressions (SEREs)

x Similar to ITL – but weaker

x On earlier slide: R[*], R1:R2, R1;R2

x Other SERE operators include

R1 | R2 either R1 or R2 holds

R1 && R2 both R1 and R2 hold for same number of cycles

R1 & R2 both R1 and R2 hold, but one may finish before the other

x Actually & is not primitive (braces { and } used for grouping)

{r1} & {r2} = {{r1} && {r2;true[*]}} | {{r1;true[*]} ** {r2}}

x SEREs can be used to improve readability of formulas, compare:

always

(reqin -> next(ackout -> next(!abortin -> (ackin & next ackin))))

with

always {reqin;ackout;!abortin} |-> {ackin;ackin}

where PSL formulas r1 |-> r2 defined later
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SEREs in HOL

x Syntax :

r ::= Atom(p) (Atomic formula)
| r1 | r2 (Disjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion: ITL’s chop)
| r1 && r2 (Length matching conjunction)
| r [∗] (Repeat)

x Semantics:
(s ranges over states; w ranges over finite lists of states;
“head” denotes head of a list; |w| denotes the length;
infix “.” denotes concatenation)

Atom(p) = λw. p(head w) ∧ |w| = 1

r1 | r2 = λw. r1 w ∨ r2 w

r1 ; r2 = λw. ∃w1 w2. w = w1.w2 ∧ r1 w1 ∧ r2 w2

r1 : r2 = λw. ∃w1 s w2. w = w1.s.w2 ∧ r1(w1.s) ∧ r2(s.w2)

r1 && r2 = λw. r1 w ∧ r2 w

r[∗] = λw. w = 〈〉 ∨ ∃w1 · · · wl. w = w1. · · · .wl ∧ r w1 ∧ · · · ∧ r wl

3

PSL Foundation Language (FL)

x Syntax:

f ::= Atom(p) (Atomic formula)
| ¬f (Negation)
| f1 ∨ f2 (Disjunction)
| next f (successor)
| {r}(f ) (Suffix implication)
| {r1} |-> {r2} (Suffix next implication)
| [f1 until f2] (Until)

x Semantics
(simplified – no clocking, weak/strong distinction omitted):

Atom(p) = λσ. p(σ(0))

¬f = λσ. ¬(f σ)

f1 ∨ f2 = λσ. f1 σ ∨ f2 σ

next f = λσ. f(Tail 1 (σ))

{r}(f) = λσ. ∃w σ′. σ = w.σ′ ∧ r w ∧ f σ′

{r1} |-> {r2} = λσ. ∃w1 σ′. σ = w1.σ
′ ∧ r1 w1 ⇒ ∃w2 σ′′. σ′ = w2.σ

′′ ∧ r2 w2

[f1 until f2] = λσ. ∃i. f2(Tail i σ) ∧ ∀j. j < i ⇒ f1(Tail j σ)

x There is also an Optional Branching Extension (OBE)
u completely standard CTL: EX, E[–U–], EG etc.
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Combining SEREs with LTL formulas

x Formula {r}f means LTL formula f true after SERE r

x Example

After a sequence in which req is asserted, followed four cycles later by an

assertion of grant, followed by a cycle in which abortin is not asserted,

we expect to see an assertion of ack some time in the future.

x Can represent by

always {req;[*3];grant;!abortin}(eventually! ack)

x where eventually! is LTL future operator F, so:

eventually! f = [T U f] = [true until! f]

x N.B. suffix “!” denotes “strong”
u strong/weak distinction not covered here – important for dynamic checking
u gives semantics when simulator halts before an expected event occurs
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SERE examples

x How can we modify

always {reqin;ackout;!abortin} |-> {ackin;ackin}

so that the two cycles of ackin start the cycle after !abortin?

x Two ways of doing this

always {reqin;ackout;!abortin} |-> {true;ackin;ackin}

always {reqin;ackout;!abortin} |=> {ackin;ackin}

x |=> is a defined operator

{r1} |=> {r2} = {r1} |-> {true;r2}

x Note: true and T are synonyms
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Examples of defined notations: consecutive repetition

x Define

r[+] = {r;r[*]}
__
| false[*] if i=0

r[*i] = |
| {r;r;...;r} otherwise (i repetitions of r)__

r[*i..j] = {r[*i]} | {r[*(i+1)]} | ... | {r[*j]}

[+] = true[+]

[*] = true[*]

x Example

Whenever we have a sequence of req followed by ack, we should see a

full transaction starting the following cycle. A full transaction starts with

an assertion of the signal start trans, followed by one to eight consecu-

tive data transfers, followed by the assertion of signal end trans. A data

transfer is indicated by the assertion of signal data

always {req;ack} |=> {start_trans;data[*1..8];end_trans}
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Fixed number of non-consecutive repetitions

x Example

Whenever we have a sequence of req followed by ack, we should see a

full transaction starting the following cycle. A full transaction starts with

an assertion of the signal start trans, followed by eight not necessarily

consecutive data transfers, followed by the assertion of signal end trans.

A data transfer is indicated by the assertion of signal data

x Can represent by

always {req;ack} |=>

{start_trans;{{!data[*];data}[*8];!data[*]};end_trans}

x Define

b[= i] = {!b[*];b}[*i];!b[*]

x Then have a nicer representation

always {req;ack} |=> {start_trans;data[= 8];end_trans}
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Variable number of non-consecutive repetitions

x Example

Whenever we have a sequence of req followed by ack, we should see a full

transaction starting the following cycle. A full transaction starts with an

assertion of the signal start trans, followed by one to eight not necessar-

ily consecutive data transfers, followed by the assertion of signal end trans.

A data transfer is indicated by the assertion of signal data

x Define

b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

x Then

always{req;ack} |=> {start_trans;data[= 1..8];end_trans}

x These examples are meant to illustrate how PSL/Sugar is much
more readable than raw CTL or LTL
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Clocking

x Basic idea: b@clk abstracts b on rising edges of clk

x Can clock SEREs (r@clk) and formulas (f@clk)

x Can have several clocks
x Official semantics messy due to clocking

x Can ‘translate away’ clocks by pushing @clk inwards
u rules given in PSL manual
u roughly: b@clk −→ {!clk[*];clk & b}

x Same idea as temporal abstraction: b at clk
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Model checking PSL

x SEREs checked by generating a finite automaton
u recall: regular expressions can be recognised by finite automata
u these automata are called “satellites”

x FL checked using standard LTL methods

x OBE checked by standard CTL methods

x Can also check formula for runs of a simulator
u this is dynamic verification
u semantics handles possibility of finite paths – messy!
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PSL layer structure

x Boolean layer has atomic predicates

x Temporal layer has LTL (FL) and CTL (OBE) properties

x Verification layer has commands for how to use properties
u e.g. assert, assume

assert always (!en1 & en2))

| | |

| | |

| | |--- Boolean layer

| |

| |-------------- temporal layer

|

|-------------------- verification layer

x Modelling layer has HDL constructs
for specifying inputs and auxiliary hardware
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PSL/Sugar summary

x Combines together LTL, ITL and CTL

x Regular expressions – SEREs

x LTL – Foundation Language formulas

x CTL – Optional Branching Extension

x Relatively simple set of primitives + definitional extension

x Boolean, temporal, verification, modelling layers

x Semantics for static and dynamic verification
(needs strong/weak distinction)
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New Topic: Simulation or Event semantics

x HDLs use discrete event simulation
u changes to variables ⇒ threads enabled
u enabled threads executed non-deterministically
u execution of threads ⇒ more events

x Combinational thread:

always @(v1 or · · · or vn) v := E

u enabled by any change to v1, . . ., vn

x Positive edge triggered sequential threads:

always @(posedge clk) v := E

u enabled by clk changing to T

x Negative edge triggered sequential threads:

always @(negedge clk) v := E

u enabled by clk changing to F
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Simulation

x Given
u a set of threads
u initial values for variables read or written by threads
u a sequence of input values

(inputs are variables not in LHS of assignments)

x simulation algorithm ⇒ a sequence of states

Choose  an  enabled  thread

Execute  the  chosen  thread

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time

 

x Simulation is non-deterministic
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Combinational threads in series

f g hin out
l l1 2

x HDL-like specification:

always @(in) l1 := f(in) . . . . . thread T1

always @(l1) l2 := g(l1) . . . . . thread T2

always @(l2) out := h(l2) . . . . . thread T3

x Suppose in changes to v at simulation time t

u T1 will become enabled and assign f(v) to l1
u if l1’s value changes then T2 will become enabled

(still simulation time t)
u T2 will assign g(f(v)) to l2
u if l2’s value changes then T will become enabled

(still simulation time t)
u T3 will assign h(g(f(v))) to out
u simulation quiesces

(still simulation time t)

x Steps at same simulation time happen in δ-time

(VHDL jargon)

16



Semantic gap

x Designers use HDLs and verify via simulation
u event semantics

x Formal verifiers use logic and verify via proof
u trace semantics

x Problem: show consistency between semantics

x Goal:

traces = sequences of quiescent simulation states

x Outline (see Section 4.4 of Notes for details):
u first analyse sets of combinational threads
u identify conditions for “non-looping”
u simulation terminates ⇒ trace semantics (partial correctness)
u simulation always termininates“quiesces” (total correctness)
u extend to sequential threads
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Trace defined by a simulation run

x Simulation defines a tree of states

Cycle 0 Cycle 1 Cycle 2 Cycle 3

input(1)
state(0)

input(0) input(2)
state(1)

input(3)
state(2)

input(4)
state(3)initial(0)

x Inputs read at start of cycle
x State computed at end of cycle
x Traces = sequences of end-of-cycle states (example shown in red)
x Branching time
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Sequential threads – event semantics

in

clk

l
out

x Consider two Dtypes in series:

always @(posedge clk) l := in

always @(posedge clk) out := l

x If posedge clk:
u both threads become enabled
u race condition

x Right thread executed first:
u out gets previous value of l
u then left thread executed
u so l gets value input at in

x Left thread executed first:
u l gets input value at in
u then right thread executed
u so out gets input value at in
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Sequential threads – trace semantics

in

clk

l
out

x Trace semantics:

(∀t. l(t+1) = (Rise clk t → in t | l t)) ∧

(∀t. out(t+1) = (Rise clk t → l t | out t))

x Corresponds to right thread executed first

x How to ensure event and trace semantics agree?

x Method 1: use non-blocking assignments:

always @(posedge clk) l <= in;

always @(posedge clk) out <= l;

u non-blocking assignments (<=) in Verilog
u RHS of all non-blocking assignments first computed
u assignments done at end of simulation cycle

x Method 2: make simulation cycle VHDL-like
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Verilog versus VHDL simulation cycles

x Verilog-like simulation cycle:

Choose  an  enabled  thread

Execute  the  chosen  thread

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time

 

x VHDL-like simulation cycle:

Execute  all  enabled  threads  in  parallel

 Fire  event  controls  to  enable  new  threads

  Execute
    until
 quiescent
    then
  advance
simulation
     time
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VHDL event semantics

in

clk

l
out

x Recall HDL:

always @(posedge clk) l := in

always @(posedge clk) out := l

x If posedge clk:
u both threads become enabled

x VHDL semantics:
u both threads executed in parallel
u out gets previous value of l
u in parallel l gets value input at in

x Now no race
x Event semantics matches trace semantics
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Summary of dynamic versus static semantics

x Simulation (event) semantics different from trace semantics

x No standard event semantics (Verilog versus VHDL)

x Verilog: need non-blocking assignments

x VHDL semantics closer trace semantics
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Summary of Specification I and II

x Software specification and verification
u Hoare logic: partial and total correctness
u proof by invariants and variants
u mechanisation via VCs (WP or SP)
u only nice for simple languages
u can apply Hoare logic to behavioral view of hardware

x Higher order logic (HOL)
u unifying general logic
u supports Hoare logic via embedding
u supports temporal logics via embedding
u can directly represent hardware behavior and structure (∃, ∧)
u hardware verification as pure logic proof
u relating models: event vs trace vs RTL vs cycles

x Hardware specification and verification
u automatic FV uses state machine models, fit nicely into HOL
u reachable states calculated by iteration (fixed point)
u symbolic representations: BDDs
u model checking of properties (CTL, LTL, ITL, PSL)
u event simulation used in industry

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THE END - HAVE A GOOD VACATION!
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