
Specification and Verification II

x Topic of course is the Specification and Verification of Hardware

x Assumes familiarity with Specification and Verification I

(which concerns software, particularly using Hoare logic)

x The two courses are really a single course

The notes contain general and background material for the course.

Some of the material in them may not be covered in the lectures.

Some details and examples are only presented in the lectures.

The examinable material is what is actually covered in the lectures

Starting today

x Hardware oriented Hoare logic examples

u apply Specification and Verification I ideas to hardware

x Modelling data

u words as numbers or as bit arrays

x Programs as hardware

u synthesis to state machines

x Compare program behaviour with hardware behaviour

u intermediate states visible

x Motivate temporal logic

u need to specify more than relationship between input and final result

Hoare Logic, Higher Order Logic and Temporal Logic

x Hoare logic can be used to verify programs in HDLs

x Hoare logic can be embedded in higher order logic

u see last part of Specification and Verification I

x Higher order logic will be used to represent hardware structures

x Temporal logic (see later):

u is used to specify properties

u can be embedded in higher order logic

x Hoare Logic is for data reasoning, temporal logic for time (control)

x Need to chose appropriate logic – all live inside higher order logic

x Goal: software and hardware modelled in same language

u programming languages get hardware features: SystemC

u hardware description languages get programming features: . . SystemVerilog

Hardware Oriented Programs

x Hoare logic can be used to verify hardware algorithms

u can reason about programs to develop hardware

u not yet ‘Industry Standard’ practice

u interesting research direction: applications to hardware/software co-design?

x Hoare logic ideas appear in some industrial methods

u Intel’s Symbolic Trajectory Evaluation (STE)

{stimulus} <hardware model> {response}

u Assertion Based Verification (ABV) for hardware

annotates HDL source with assertions

Hoare Logic applied to hardware algorithms

x Examples: addition and multiplication

x Initially natural numbers will represent words

u leads to messy details

u later a type of words is introduced

x We will multiply natural numbers a and b

u assume they can be represented with n bits

x Write ab to abbreviate a× b

x ai is i-th bit of the binary representation of a

(a0 being the least significant bit)

a = 2n−1an−1 + 2n−2an−2 + · · · + 20a0

hence
ab = (2n−1an−1 + 2n−2an−2 + · · · + 20a0)b

= 2n−1an−1b + 2n−2an−2b + · · · + 20a0b

= an−12
n−1b + an−22

n−2b + · · · + a02
0b

Binary multiplication algorithm

x Multiplying by 2 corresponds to:
u shifting one place to the left
u adding a 0 as the least significant bit

x Denote this operation by b 7→ b⌢0, then:
20b = b

21b = b⌢0
22b = b⌢00

...
2nb = b⌢ 0 · · · 0

︸ ︷︷ ︸

n 0s

x Recall: ab = an−12
n−1b + an−22

n−2b + · · · + a02
0b

x Thus product of a and b is given by the sum:
a0b

+ a1b⌢0
+ a2b⌢00
+ a3b⌢000

...

+ an−1b⌢0 · · · 0

u the ith row is either all zeros (if ai is 0)

u or b shifted i places to the left (if ai is 1)

x a, b need n-bits ⇒ product needs 2n bits

Extracting bits and subwords

x Let A[n] denote the n-th bit of the binary representation of A

x A[n] is a number 1 or 0

x A[0] is the least significant bit

x Thus:
A[n] = (A div 2n) mod 2

x Define A[m : n] to be the numerical value of the word comprising
bits n upto to m of A:







2m−nA[m] + 2m−n−1A[m−1] + · · · + 20A[n] if m > n

A[n] if m = n

0 if m < n

x Later we’ll represent words as bit-strings instead of as numbers

Hoare logic verification of a multiplier

x Add-shift multiplication program:

I := 0; PROD := 0;

WHILE I < N DO

BEGIN PROD := PROD + A[I] × (2I× B);

I := I + 1;

END

x Annotated Hoare specification:

{A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
I := 0; PROD := 0;

WHILE I < N DO {I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab}

BEGIN PROD := PROD + A[I] × (2I× B);

I := I + 1;

END

{PROD = a× b}

x Routine (not trivial) to verify using Hoare Logic

u reasoning about div and mod is horrible

Using FOR-commands instead of WHILE

⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
PROD := 0;

FOR I := 0 UNTIL N-1 DO

BEGIN PROD := PROD + A[I]×B;
B := 2×B;

END

{PROD = a× b}

x Program corresponds directly to hardware (i.e. more like HDL)

u three registers A, B and PROD

u initially PROD is set to 0

u A and B contain numbers to be multiplied

x I-th step of the multiplication:

u adding A[I]× B to PROD

u then shifting B one bit to the left (i.e. multiplying it by 2)

Textbook multiplier

x Simple textbook add-shift multiplier:

Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

x Optimised version of naive algorithm

x Can apply Hoare logic methods to verify correctness

u see notes for (horrible) details of Hoare-style proof

Words as bit-strings (see notes for full details)

x Distinguish words from numbers – different type
u Advantages: corresponds more to intuition – words have a size
u Disadvantage: can’t use off-the-shelf theory of arithmetic

x Size of a word is denoted by |w|

x nth bit of w denoted by w[n]

x w[m : n] denotes bits m to n of w

x The word corresponding to a bit b is Bw(b)

x Bv(b) is the number represented by bit b

x V(w) is the natural number represented by word w

x W n maps number m to the n-bit word representing it

x Concatenation of w1 with w2 denoted by w1⌢w2

x w{n←b} denotes a word such that w[n] = b and is identical to w at
all other bit positions (pad w with 0s at left if n ≥ |w|)

x The addition w1 ⊎ w2 of w1 and w2 is defined by:
w1 ⊎ w2 = W (max(|w1|, |w2|) + 1) (V(w1) + V(w2))

x b•w equals w if b = T and equals W |w| 0 if b = F

Words vs bits

x w[n : n] is the 1-bit word consisting of w[n]

x w[n] : bool

x w[n : n] : word

x Bits and 1-bit words are different types

x The word corresponding to a bit b is Bw(b)

x Thus: Bw(b)[0] = b

Representing Numbers

x Natural number: bn−1 · · · b0 represents

2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

x Integer: bn−1 · · · b0 represents

−2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

u this is the two’s complement representation

x V(w) is the natural number represented by a w

V(bn−1 · · · b0) = 2n−1×bn−1 + 2n−2×bn−2 + · · · + 20×b0

x Words can represent other values

u e.g. floating point numbers; opcodes

x Bv(b) is the number represented by b

Bv(T) = 1 and Bv(F) = 0

Arithmetic on bits and words

x The sum of bits a and b and a carry-in bit c

u is computed by a⊕ b⊕ c (where ⊕ is ‘exclusive or’)

u and the carry-out by (a ∧ b) ∨ (c ∧ (a⊕ b))

x This is verified by:

Bv(a⊕ b⊕ c) = (Bv(a) + Bv(b) + Bv(c)) mod 2

Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) = (Bv(a) + Bv(b) + Bv(c)) div 2

Verification by enumeration

x Sum:
a b c Bv(a⊕ b⊕ c) (Bv(a) + Bv(b) + Bv(c)) mod 2
1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 1
0 1 1 0 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0

x Carry:
a b c Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) (Bv(a) + Bv(b) + Bv(c)) div 2
1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

Verification of a ripple-carry adder of any size

one bit adder one bit adderCARRY F

A[n-1] B[n-1] A[0] B[0]

SUM[n-1] SUM[0]

. . .

x Let R be:

2IBv(CARRY) + V(SUM[I−1 : 0]) = V(A[I−1 : 0]) + V(B[I−1 : 0]) ∧
A = w1 ∧ B = w2

x Consider the following annotated specification:

{A = w1 ∧ B = w2 ∧ SUM = W N 0 ∧ CARRY = F ∧
|w1| ≤ N ∧ |w2| ≤ N ∧ N > 0}
FOR I := 0 UNTIL N-1 DO {R}
BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

{2NBv(CARRY) + V(SUM[N-1 : 0]) = V(A[N-1 : 0]) + V(B[N-1 : 0])
A = w1 ∧ B = w2}

x A, B are N-bit words, SUM, CARRY are truthvalues, I is an integer

x Proof horrible (omitted)

Word multiplication program

x Simple add-shift multiplication

x Annotated correctness specification:

{V(A) = a ∧ V(B) = b ∧ PROD = W(2N)0 ∧
|A| ≤ N ∧ |B| ≤ N ∧ N > 0}

FOR I:=0 UNTIL N-1 DO

{2IV(A[N-1 : I])b + V(PROD) = ab ∧ V(B) = 2Ib}
BEGIN

PROD := PROD ⊎ A[I]•B;

B := B⌢0

END

{V(PROD) = ab}

x Can generate VCs and prove them (horrible – omitted)

Topic shift: From programs to hardware (i.e. synthesis)

x Consider a ripple-carry adder

FOR I := 0 UNTIL N-1 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

x If a particular value of N is fixed, then the program can be unrolled
into the normal circuit for an adder.

x For example take N = 3 to get:

FOR I := 0 UNTIL 2 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

N=3 adder

x 3-bit adder:
FOR I := 0 UNTIL 2 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END
x Assuming initially CARRY = F; FOR-command unrolls to:

SUM[0]:=A[0]⊕B[0]⊕F;
CARRY:=(A[0]∧B[0])∨(F∧(A[0]⊕B[0]));
SUM[1]:=A[1]⊕B[1]⊕CARRY;
CARRY:=(A[1]∧B[1])∨(CARRY∧(A[1]⊕B[1]));
SUM[2]:=A[2]⊕B[2]⊕CARRY;
CARRY:=(A[2]∧B[2])∨(CARRY∧(A[2]⊕B[2]));

x Symbolically executing yields logic equations:
SUM[0]:=A[0]⊕B[0];
SUM[1]:=A[1]⊕B[1]⊕(A[0]∧B[0]);
SUM[2]:=A[2]⊕B[2]⊕

((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])));
CARRY :=(A[2]∧B[2])∨

(((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])))∧
(A[2]⊕B[2]));

Combinational logic

x Derived program is combinational logic:

SUM[0]:=A[0]⊕B[0];
SUM[1]:=A[1]⊕B[1]⊕(A[0]∧B[0]);
SUM[2]:=A[2]⊕B[2]⊕

((A[1]∧B[1])∨
((A[0]∧B[0])∧(A[1]⊕B[1])));

CARRY :=(A[2]∧B[2])
∨
(((A[1]∧B[1])∨

((A[0]∧B[0])∧(A[1]⊕B[1])))∧
(A[2]⊕B[2]));

x These are independent assignments

u boolean expressions for computing the values of SUM and CARRY directly in

terms of the A[0], A[1], A[2], B[0], B[1] and B[2]

x This process yields logic for adders of arbitrary (fixed) bit-widths

x Hoare Logic verifies any adder generated this way

What about non-combinational logic?

x Unrolling commands to combinational logic is sensible for the adder

x Less so for multipliers

u straightforward to unroll a multiplier into combinational logic

u but resulting Boolean expressions will be huge

u evaluating in one clock cycle likely to make the cycle time too slow

x Usually multipliers are sequential machines

u compute the product over a number of cycles

u might do the add and shift in a single cycle which would take N cycles

u might do add and shift on separate cycles, taking 2N shorter cycles

x Decision of whether to implement a particular function as combi-
national or sequential logic, and if sequential, how much to do each
cycle, is a decision which depends on engineering issues

Specifying cycles

x Abstract view of multiplier:

u computes a single state change

u from initial values of the registers

u to final values

x Adequate for functional correctness

u i.e. it does multiplication

x Less abstract views needed for timing analysis

HDLs and events

x HDLs allow operations to be scheduled to clock cycles

x Statements can be prefixed by @

u the symbol @ introduces an event control

x Multiplier that takes N cycles: R = CARRY⌢P⌢A

FOR I := 0 UNTIL N-1 DO

@R := (R[0]•B ⊎ R[2N-1:N])⌢R[N-1:1]
Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

x Multiplier that takes 2N cycles:

FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
@R := SUM⌢R[N-1:1]

END

x In Verilog, event controls can be more detailed

u @(posedge clk) or @(negedge clk)

Need more than Hoare Logic

x Programs with added event controls can still be reasoned about
using Floyd Hoare logic

u relation between initial and final state unchanged

u @’s just determine intermediate states at clock ticks

x Consider this silly program:
FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
B := ¬B;
@R := SUM⌢R[N-1:1];

B := ¬B;
END

x Same initial-final relation, but B oscillates

x Hoare specifications only deal with initial-final relation,
not intermediate states

x Temporal logic enables properties of intermediate states to be specified
u e.g. B stable (false for silly program above)

Division program from Specification and Verification I

x Division program:

R:=X;

Q:=0;

WHILE Y≤R DO

BEGIN R:=R-Y; Q:=Q+1 END

x Implemented as a machine

u registers X, Y, Q and R

u a subtracter and incrementer

u on each cycle: subtract Y from R; add 1 to Q

x Specification and Verification I:

u program executes once and stops (maybe)

x Specification and Verification II :

u program executes continuously

u body of loop executed as combinational logic

Our toy language becomes an HDL

x To emphasize the continuously-running nature of hardware,
recast division program as (where FOREVER is WHILE T DO):

FOREVER

IF Load=1

THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0

ELSE IF Y≤R THEN R:=R-Y; Q:=Q+1

ELSE DONE:=1

u In1, In2 and Load are inputs

whose value is determined by the environment (e.g. the user)

u X, Y, Q, R and DONE are registers

whose value is set by the program

x Environment sets the input Load to 1 to initialise registers

x To perform a division:

u Load is set to 0

u and held at this value until DONE=1

u so the environment must ensure that DONE=0 ⇒ Load=0

FOREVER C

x Each iteration step consists of
u Circuit C computes new values of registers from current values and inputs
u then updating the registers

IF Load=1
 THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0
 ELSE IF Y<=R
 THEN R:=R-Y; Q:=Q+1
 ELSE DONE:=1

R

Q

DONE

X

Y

Load

In1

In2

Programs as temporal statements

x Would like a generalised Hoare Logic specification:

⊢ {If environment ensures always that: DONE=0 ⇒ Load=0

and if Load is set to 1 when: In1 = x ∧ In2 = y}
FOREVER

IF Load=1

THEN X:=In1; Y:=In2; DONE:=0; R:=X; Q:=0

ELSE IF Y≤R THEN R:=R-Y; Q:=Q+1

ELSE DONE:=1

{Then x and y will be stored into X and Y

and on the next cycle DONE will be set to 0

and sometime later DONE will be be set to 1

and X and Y won’t change until DONE is set to 1

and when DONE goes to 1 we have: x = R + y×Q}

x Stuff in red needs Temporal Logic

Brief history of temporal logic

x 1950s: philosophers invent temporal logic (A.N. Prior of Oxford)

x 1970s: Burstall, Pnueli, Lamport use temporal logic for programs

x 1980s: Emerson, Clarke and other introduce model checking

x 1980s: hardware verification examples studied

x 1990s: model checking catches on:
Intel hires many logicians for P7 verification. Uses STE.
Currently developing higher order logic tools (reFLect).

x 1997: Amir Pnueli gets the Turing Award in recognition of his con-
tribution to the applications of temporal logic

x 2004: temporal notation for properties debated and standardised
u semantics: CTL versus LTL
u syntax: PSL and SVA ‘aligned’

x 2005 onwards: Assertion Based Verification (ABV) grows
u dynamic checking of properties by simulation (e.g. used at ARM)
u static checking by model checking

x 2008: Clarke, Emerson & Sifakis get Turing prize for model checking

x 2008: Clarke gets 2008 CADE Herbrand Award

x Note: work on formal methods leads to high prestige awards!

Rest of the course

x First look at ‘raw’ higher order logic for specification and verification

u temporal logic is a notation for specifying properties of traces

u first look at reasoning directly about traces in higher order logic

x Towards the end of the course we return to temporal logic

u look at its constructs

u semantics via a shallow embedding in higher order logic

u look at the ‘Industry Standard’ logic PSL

u overview some key ideas for model checking temporal logic properties

