
g g

More Curried Functions

- hd;

> val it = fn : 'a list -> 'a

- hd [op+,op-,op*,op div] (5,4);

> val it = 9 : int

Here the type of hd is:

(int*int -> int) list -> int*int -> int

An analogy can be made with nested arrays, as in

Pascal:

A: array [1..10] of

array [1..10] of real

. . .A[i][j]. . .

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

Generic Sorting

fun insort lessequal =

let fun ins (x,[]) = [x]

| ins (x,h::t)=

if lessequal(x,h) then x::h::t

else h::ins(x,t)

fun sort [] = []

| sort (x::l) = ins(x,sort l)

in sort end;

> val insort = fn :

('a * 'a -> bool) ->

('a list -> 'a list)

- insort (op<=) [5,3,5,7,2,9];

> val it = [2, 3, 5, 5, 7, 9] : int list

- insort (op>=) [5,3,5,7,2,9];

> val it = [9, 7, 5, 5, 3, 2] : int list

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

A Summation Functional

fun sum f 0 = 0.0

| sum f m = f(m-1) + sum f (m-1);

> val sum =

fn : (int -> real) -> int -> real

sum f m =

m�1X

i=0

f(i)

sum (sum f) m =

m�1X

i=0

i�1X

j=0

f(j)

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

Matrix Transpose

The map functional applies a function to every

element of a list

fun map f [] = []

| map f (h::t) = (f h)::(map f t);

Representing a matrix as a list of lists, the

following de�nes the transpose function.

fun transp ([]::_) = []

| transp rows =

(map hd rows)::

(transp (map tl rows));

fn : 'a list list -> 'a list list

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

Matrix Multiplication

The dot product of two vectors as a curried

function:

fun dotprod [] [] = 0.0

| dotprod (h1::t1) (h2::t2) =

h1*h2 + dotprod t1 t2;

Matrix multiplication:

fun matmult (Arows, Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end;

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

The Fold Functional

foldl and foldr are built-in functionals which

can be de�ned as:

fun foldl f e [] = e

| foldl f e (h::t) =

foldl f f(e,h) t;

fun foldr f e [] = e

| foldr f e (h::t) =

f(h, foldr f e t);

These can be used to give simple de�nitions of

many list functions

foldl op+ 0 sum

foldl (fn (_,n) => n+1) 0 length

foldr op:: xs ys ys@xs

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000



g g

Predicates

fun exists p [] = false

| exists p (h::t) = (p h) orelse

exists p t;

fn : ('a -> bool) -> 'a list -> bool

Determines whether there is any element in a list

that satis�es the predicate p.

fun filter p [] = []

| filter p (h::t) = if p h then

h::(filter p t)

else filter p t;

fn : ('a -> bool) -> 'a list -> 'a list

Anuj Dawar University of Cambridge Computer Lanboratory, February 3, 2000


