
g g

Record Types

{- name="Jones", salary=20300, age=26};

val it =

{age = 26, name = "Jones", salary = 20300}

: {age : int, name : string, salary : int}

- {1="Jones", 2=20300,3=26};

> val it = ("Jones", 20300, 26)

: string * int * int

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Record Pattern Matching

- val emp1 =

{name="Jones", salary=20300, age=26};

> val emp1 =

{age = 26, name = "Jones", salary = 20300}

: {age : int, name : string, salary : int}

- val {name=n1,salary=s1,age=a1}= emp1;

> val n1 = "Jones" : string

val s1 = 20300 : int

val a1 = 26 : int

- val {name=n1,salary=s1,...} = emp1;

> val n1 = "Jones" : string

val s1 = 20300 : int

- val {name,age,...} = emp1;

> val name = "Jones" : string

val age = 26 : int

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Record Types

type employee = {name: string,

salary: int,

age: int};

> type employee

fun tax (e: employee) =

real(#salary e)*0.22

Or,

fun tax ({salary,...}: employee) =

real(salary)*0.22;

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Enumerated Types

Consider the King and his court:

datatype degree = Duke

| Marquis

| Earl

| Viscount

| Baron;

datatype person =

King

| Peer of degree*string*int

| Knight of string

| Peasant of string;

All constructors are distinct.

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Functions on Datatypes

[King,

Peer(Duke, "Gloucester", 5),

Knight "Gawain",

Peasant "Jack Cade"];

val it = ... : person list

fun superior (King, Peer _) = true

| superior (King, Knight _) = true

| superior (King, Peasant _) = true

| superior (Peer _,Knight _) = true

| superior (Peer _, Peasant _) = true

| superior (Knight _, Peasant _) = true

| superior _ = false;

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Exceptions

Exceptions are raised when there is no matching

pattern, when an overow occurs, when a

subscript is out of range, or some other run-time

error occurs.

Exceptions can also be explicitly raised.

exception Failure;

exception BadVal of Int;

raise Failure

raise (BadVal 5)

E handle P1 => E1 | . . . | Pn => En

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Recursive Datatypes

The built-in type operator of lists might be

de�ned as follows:

infix :: ;

datatype 'a list = nil

| :: of 'a * 'a list;

Binary Trees:

datatype 'a tree =

Lf

| Br of 'a * 'a tree * 'a tree;

Br(1, Br(2, Br(4, Lf, Lf),

Br(5, Lf, Lf)),

Br(3, Lf, Lf))

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Functions on Trees

Counting the number of branch nodes

fun count Lf = 0

| count (Br(v,t1,t2)) =

1+count(t1)+count(t2);

val count = fn : 'a tree -> int

Depth of a tree

fun depth Lf = 0

| depth (Br(v,t1,t2)) =

1+Int.max(depth t1, depth t2);

val depth = fn : 'a tree -> int

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Listing a Tree

Three di�erent ways to list the data elements of a

tree

Pre-Order

fun preorder Lf = []

| preorder (Br(v,t1,t2))=

[v] @ preorder t1 @ preorder t2;

In-Order

fun inorder Lf = []

| inorder (Br(v,t1,t2))=

inorder t1 @ [v] @ inorder t2;

Post-Order

fun postorder Lf = []

| postorder (Br(v,t1,t2))=

postorder t1 @ postorder t2 @ [v];

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

g g

Multi-Branching Trees

To de�ne a datatype of a tree where each node

can have any number of children

datatype 'a mtree =

Branch of 'a * ('a mtree) list;

a

To recursively de�ne functions, we can use map.

fun double (Branch(k,ts)) =

Branch(2*k, map double ts);

Anuj Dawar University of Cambridge Computer Lanboratory, February 1, 2000

