Record Types

\{- name="Jones", salary=20300, age=26\};
val it =
\{age $=26$, name $=$ "Jones", salary $=20300\}$
: \{age : int, name : string, salary : int\}

- \{1="Jones", 2=20300,3=26\};
> val it = ("Jones", 20300, 26)
: string * int * int

Record Pattern Matching

- val emp =
\{name="Jones", salary=20300, age=26\};
> val emp =
\{age $=26$, name $=$ "Jones", salary $=20300\}$
: \{age : int, name : string, salary : int\}
- val \{name=n1,salary=s1,age=a1\} = ~ e m p ; ~
> val ni = "Jones" : string
val si = 20300 : int
val al = 26 : int
- val \{name=n1,salary=s1,...\} ~ = ~ e m p ; ~
> val ni = "Jones" : string
val si = 20300 : int
- val \{name,age,...\} ~ = ~ e m p ; ~
> val name = "Jones" : string val age = 26 : int

Record Types

type employee = \{name: string,
salary: int,
age: int\};
> type employee
fun tax (e: employee) = real(\#salary e) $* 0.22$

Or,
fun tax (\{salary,...\}: employee) = real(salary)*0.22;

Enumerated Types

Consider the King and his court:
datatype degree = Duke
| Marquis
| Earl
| Viscount
| Baron;
datatype person =
King
| Peer of degree*string*int
| Knight of string
| Peasant of string;

All constructors are distinct.

Functions on Datatypes

[King,
Peer (Duke, "Gloucester", 5),
Knight "Gawain",
Peasant "Jack Cade"];
val it = ... : person list
fun superior (King, Peer _) = true
| superior (King, Knight _) = true
| superior (King, Peasant _) = true
superior (Peer _,Knight _) = true
| superior (Peer _, Peasant _) = true
| superior (Knight _, Peasant _) = true
| superior _ = false;

Exceptions

Exceptions are raised when there is no matching pattern, when an overflow occurs, when a subscript is out of range, or some other run-time error occurs.

Exceptions can also be explicitly raised.
exception Failure;
exception BadVal of Int;
raise Failure
raise (BadVal 5)
E handle $P_{1} \Rightarrow E_{1}|\ldots| P_{n} \Rightarrow E_{n}$

Recursive Datatype

The built-in type operator of lists might be defined as follows:
infix :: ;
datatype 'a list = nil
| :: of 'a * 'a list;

Binary Trees:
datatype 'a tree = Lf
| Br of 'a * 'a tree * 'a tree;

$$
\begin{aligned}
& \operatorname{Br}(1, \operatorname{Br}(2, \\
& \operatorname{Br}(4, L f, L f), \\
&\operatorname{Br}(5, L f, L f)), \\
&\operatorname{Br}(3, L f, L f))
\end{aligned}
$$

Functions on Trees

Counting the number of branch nodes

$$
\begin{aligned}
\text { fun count } L f & =0 \\
\mid \text { count }(\operatorname{Br}(\mathrm{v}, \mathrm{t} 1, \mathrm{t} 2)) & = \\
1+\operatorname{count}(\mathrm{t} 1)+ & +\operatorname{count}(\mathrm{t} 2) ;
\end{aligned}
$$

val count = in : 'a tree -> int

Depth of a tree
fun depth Li

$$
=0
$$

\mid depth $(\operatorname{Br}(v, t 1, t 2))=$
1+Int.max(depth ti, depth th);
val depth = in : 'a tree -> int

Listing a Tree

Three different ways to list the data elements of a tree

Pre-Order

fun preorder Lf $=[]$
| preorder ($\operatorname{Br}(\mathrm{v}, \mathrm{t} 1, \mathrm{t} 2))=$
[v] @ preorder t1 @ preorder t2;

In-Order

fun inorder $\operatorname{Lf}=$
\quad | inorder $(\operatorname{Br}(v, t 1, t 2))=$ inorder t1 © [v] © inorder t2;

Post-Order

fun postorder Lf

$$
=[]
$$

| postorder ($\operatorname{Br}(v, t 1, t 2))=$ postorder t1 @ postorder t2 @ [v];

Multi-Branching Trees

To define a datatype of a tree where each node can have any number of children
datatype 'a mtree = Branch of 'a * ('a mtree) list;

To recursively define functions, we can use map. fun double $(\operatorname{Branch}(k, t s))=$ Branch(2*k, map double ts);

