
g g

Introduction to

Functional Programming

Anuj Dawar

Computer Laboratory

University of Cambridge

Lent Term 2000

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Texts

Main Text:

Paulson, L.C. (1996). ML for the Working

Programmer. Cambridge University Press (2nd

ed.).

Other Useful Reading:

Backus, J. (1978). Can programming be liberated

from the von Neumann style? Communications of

the ACM, vol. 21, pp. 613-641.

Barendregt, H.P. (1984). The Lambda Calculus:

its Syntax and Semantics. North-Holland.

Landin, P.J. (1966). The next 700 programming

languages. Communications of the ACM, vol. 9,

pp. 157-166.

Slides available (after the lecture) from:

www.cl.cam.ac.uk/~ad260/ifunprog.html

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Imperative and Declarative

In an imperative programming language, the

program provides a series of instructions (or

commands) to the machine.

Examples of such languages include

C, Pascal, Modula2, Java

In a declarative programming language, the

program (in principle) describes the

computational task.

Functional: ML, Scheme, Haskell,. . .

Logic: Prolog, Godel,. . .

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Programming Views

Imperative languages present a level of

abstraction above the machine, hiding some

details (memory addresses, registers, etc.)

Still, the view is machine-centred.

Declarative languages provide a still further level

of abstraction.

A style of programming that is more

programmer-centred.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Functional programming

In the functional programming style, the

computational task to be programmed is taken to

be a function (in the mathematical sense).

The job of the programmer is to describe this

function.

Implicit in the description is a method for

computing the function.

The function maps one domain (of inputs) to

another (of outputs).

These may be: integers; real numbers; lists;

strings; or even functions themselves

importance of types

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Commands and Expressions

In a typical imperative language, commands are

formed from assignments to variables:

x := E

by application of various control structures.

Sequencing

C1;C2

Conditionals

if B then C1 else C2

Looping

while B do C

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Expressions

A functional program is just an expression to be

evaluated.

An expression is built up from simpler expressions

by means of function applications.

E1 +E2

or

if B then E1 else E2

There are no explicit notions of variable

assignment, sequencing or control.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Example: the factorial

The factorial function can be written imperatively

in C as follows:

int fact(int n)

{ int x = 1;

while (n > 0)

{ x = x * n;

n = n - 1;

}

return x;

}

whereas it would be expressed in ML as a

recursive function:

fun fact n =

if n = 0 then 1

else n * fact(n - 1);

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Recursion

Recursive de�nition of functions is crucial to

functional programming.

There is no other mechanism for looping

Variables cannot be updated through assignment.

They get their values from function calls.

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Type Checking

ML provides type checking, which can help catch

many programming errors.

Types in ML may be polymorphic.

fun length [] = 0

| length (x::l) = 1 + length (l);

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Advantages

\Attack complexity with simple abstractions"

� Clarity

� Expressiveness

� Shorter Programs

� Security through type system

� Ease of reasoning

� Better modularity

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Disadvantages

� Input/Output

� Interactivity and continuously running

programs

� Speed/E�ciency

There is no reasonable \pure" functional language

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Brief History

� Lambda Calculus (Church 1936)

� LISP (McCarthy 1954)

� ISWIM (Landin 1966)

� ML (Milner et al., 1974), originally a Meta

Language for the LCF Theorem Prover.

� De�nition of Standard ML (Milner, Tofte and

Harper 1990)

� Revised de�nitiona and standard library

(1997)

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Rest of the Course

11 more lectures covering

� Basic Types in Standard ML

� Lists and Recursion

� Sorting

� Datatypes

� Higher Order Functions

� Speci�cation and Veri�cation

� Types and Type Inference

� Substantial case study

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Running ML

ML provides an interactive session.

Enter an expression. ML returns a value.

Moscow ML version 1.42 (July 1997)

Enter `quit();' to quit.

- (2*4) + 18;

> val it = 26 : int

- 2.0 * 2.0 * 3.14159;

> val it = 12.56636 : real

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000


