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Texts

Main Text:

Paulson, L.C. (1996). ML for the Working

Programmer. Cambridge University Press (2nd

ed.).

Other Useful Reading:

Backus, J. (1978). Can programming be liberated

from the von Neumann style? Communications of

the ACM, vol. 21, pp. 613-641.

Barendregt, H.P. (1984). The Lambda Calculus:

its Syntax and Semantics. North-Holland.

Landin, P.J. (1966). The next 700 programming

languages. Communications of the ACM, vol. 9,

pp. 157-166.

Slides available (after the lecture) from:

www.cl.cam.ac.uk/~ad260/ifunprog.html
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Imperative and Declarative

In an imperative programming language, the

program provides a series of instructions (or

commands) to the machine.

Examples of such languages include

C, Pascal, Modula2, Java

In a declarative programming language, the

program (in principle) describes the

computational task.

Functional: ML, Scheme, Haskell,. . .

Logic: Prolog, Godel,. . .
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Programming Views

Imperative languages present a level of

abstraction above the machine, hiding some

details (memory addresses, registers, etc.)

Still, the view is machine-centred.

Declarative languages provide a still further level

of abstraction.

A style of programming that is more

programmer-centred.
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Functional programming

In the functional programming style, the

computational task to be programmed is taken to

be a function (in the mathematical sense).

The job of the programmer is to describe this

function.

Implicit in the description is a method for

computing the function.

The function maps one domain (of inputs) to

another (of outputs).

These may be: integers; real numbers; lists;

strings; or even functions themselves

importance of types
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Commands and Expressions

In a typical imperative language, commands are

formed from assignments to variables:

x := E

by application of various control structures.

Sequencing

C1;C2

Conditionals

if B then C1 else C2

Looping

while B do C

Anuj Dawar University of Cambridge Computer Lanboratory, January 25, 2000



g g

Expressions

A functional program is just an expression to be

evaluated.

An expression is built up from simpler expressions

by means of function applications.

E1 +E2

or

if B then E1 else E2

There are no explicit notions of variable

assignment, sequencing or control.
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Example: the factorial

The factorial function can be written imperatively

in C as follows:

int fact(int n)

{ int x = 1;

while (n > 0)

{ x = x * n;

n = n - 1;

}

return x;

}

whereas it would be expressed in ML as a

recursive function:

fun fact n =

if n = 0 then 1

else n * fact(n - 1);
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Recursion

Recursive de�nition of functions is crucial to

functional programming.

There is no other mechanism for looping

Variables cannot be updated through assignment.

They get their values from function calls.
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Type Checking

ML provides type checking, which can help catch

many programming errors.

Types in ML may be polymorphic.

fun length [] = 0

| length (x::l) = 1 + length (l);
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Advantages

\Attack complexity with simple abstractions"

� Clarity

� Expressiveness

� Shorter Programs

� Security through type system

� Ease of reasoning

� Better modularity
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Disadvantages

� Input/Output

� Interactivity and continuously running

programs

� Speed/E�ciency

There is no reasonable \pure" functional language
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Brief History

� Lambda Calculus (Church 1936)

� LISP (McCarthy 1954)

� ISWIM (Landin 1966)

� ML (Milner et al., 1974), originally a Meta

Language for the LCF Theorem Prover.

� De�nition of Standard ML (Milner, Tofte and

Harper 1990)

� Revised de�nitiona and standard library

(1997)
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Rest of the Course

11 more lectures covering

� Basic Types in Standard ML

� Lists and Recursion

� Sorting

� Datatypes

� Higher Order Functions

� Speci�cation and Veri�cation

� Types and Type Inference

� Substantial case study
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Running ML

ML provides an interactive session.

Enter an expression. ML returns a value.

Moscow ML version 1.42 (July 1997)

Enter `quit();' to quit.

- (2*4) + 18;

> val it = 26 : int

- 2.0 * 2.0 * 3.14159;

> val it = 12.56636 : real
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