
Logic and Proof

Computer Science Tripos Part IB
Michaelmas Term

Lawrence C Paulson
Computer Laboratory

University of Cambridge

lcp@cl.cam.ac.uk

Copyright c© 1999 by Lawrence C. Paulson

Contents

1 Introduction and Learning Guide 1

2 Propositional Logic 2

3 Proof Systems for Propositional Logic 11

4 Ordered Binary Decision Diagrams 18

5 First-order Logic 20

6 Formal Reasoning in First-Order Logic 27

7 Clause Methods for Propositional Logic 32

8 Skolem Functions and Herbrand’s Theorem 40

9 Unification 47

10 Applications of Unification 56

11 Modal Logics 63

12 Tableaux-Based Methods 68

i

ii

1

1 Introduction and Learning Guide

This course gives a brief introduction to logic, with emphasis on the resolution
method of theorem-proving. Formal logic is used for specifying and verifying
computer systems and (sometimes) for representing knowledge in Artificial Intel-
ligence programs.

The course describes unification, which underlies the resolution method and
Prolog. Unification has other applications, such as type checking in ML. This
material is clearly relevant for the Prolog programming course. Its treatment of
logic should be helpful for understanding courses such as Proving Programs. Try
to avoid getting bogged down in the details of how the various proof methods
work, since you must also acquire an intuitive feel for logical reasoning.

The course follows the classic text

C.-L. Chang and R. C.-T. Lee,Symbolic Logic and Mechanical
Theorem Proving(Academic Press, 1973)

For more modern treatments, see

Antony Galton,Logic for Information Technology(Wiley, 1990)

Steve Reeves and Michael Clarke,Logic for Computer Science
(Addison-Wesley, 1990)

Also relevant is

Melvin Fitting, First-Order Logic and Automated Theorem Proving
(Springer, 1990)

Many of these books are out of print, but there will be some copies in College
libraries.

There are numerous exercises in these notes, and they are suitable for supervi-
sion purposes. Old examination questions forFoundations of Logic Programming
(the former name of this course) are still relevant:

• 98 paper 5 question 10: OBDDs, sequent calculus, etc. (Lect. 4)

• 98 paper 6 question 10: modal logic (Lect. 11); resolution (Lect. 10)

• 97 paper 5 question 10: first-order logic (Lect. 5)

• 97 paper 6 question 10: sequent rules for quantifiers (Lect. 6)

• 96 paper 5 question 10: sequent calculus (Lect. 3, 6, 11)

• 96 paper 6 question 10: Davis-Putnam versus Resolution (Lect. 10)

2 2 PROPOSITIONAL LOGIC

• 95 paper 5 question 9: OBBDs (Lect. 4)

• 95 paper 6 question 9: outline logics; sequent calculus (Lect. 3, 6, 11)

• 94 paper 5 question 9: Resolution versus Prolog (Lect. 10)

• 94 paper 6 question 9: Herbrand models (Lect. 8)

• 94 paper 6 question 9: Most general unifiers and resolution (Lect. 10)

• 93 paper 3 question 3: Resolution and Prolog (Lect. 10)

Acknowledgements. Reuben Thomas pointed out numerous errors in a previ-
ous version of these notes. Ross Younger made detailed suggestions. Thanks also
to Thomas Forster and Steve Payne.

2 Propositional Logic

Propositional logic deals with truth values and the logical connectives ‘and,’ ‘or,’
‘not,’ etc. It has no variables of any kind and is unable to express anything but the
simplest mathematical statements. It is studied because it is simple and because
it is the basis of more powerful logics. Most of the concepts in propositional
logic have counterparts in first-order logic. A logic comprises asyntax, which is a
formal notation for writing assertions and asemantics, which gives a meaning to
assertions. Itsproof theorygives syntactic—and therefore mechanical—methods
for reasoning about assertions.

2.1 Syntax of propositional logic

We take for granted a set of propositional symbolsP, Q, R, . . . , including the
truth valuest and f. A formula consisting of a propositional symbol is called
atomic.

Formulæ are constructed from atomic formulæ using the logical connectives

¬ (not)
∧ (and)
∨ (or)
→ (implies)
↔ (if and only if)

2.2 Semantics 3

These are listed in order of precedence;¬ is highest. We shall suppress need-
less parentheses, writing, for example,

(((¬P) ∧ Q) ∨ R)→ ((¬P) ∨ Q) as ¬P ∧ Q ∨ R→ ¬P ∨ Q.

In the ‘metalanguage’ (these notes), the lettersA, B, C, . . . stand for arbitrary
formulæ. The lettersP, Q, R, . . . stand for atomic formulæ.

Some authors use⊃ for the implies symbol and≡ for if-and-only-if.

2.2 Semantics

Propositional Logic is a formal language. Each formula has a meaning (or se-
mantics) — eithert or f — relative to the meaning of the propositional symbols it
contains. The meaning can be calculated using the standard truth tables.

A B ¬A A∧ B A∨ B A→ B A↔ B
t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

By inspecting the table, we can see thatA→ B is equivalent to¬A∨ B and that
A ↔ B is equivalent to(A→ B) ∧ (B → A). (The latter is also equivalent to
¬(A⊕ B), where⊕ is exclusive or.)

Note that we are usingt andf in two distinct ways: as symbols on the printed
page, and as the truth values themselves. In this simple case, there should be no
confusion. When it comes to first-order logic, we shall spend some time on the
distinction between symbols and their meanings.

We now make some definitions that will be needed throughout the course.

Definition 1 An interpretation, or truth assignment, for a set of formulæ is a
function from its set of propositional symbols to{t, f}.

An interpretationsatisfiesa formula if the formula evaluates tot under the
interpretation.

A setSof formulæ isvalid (or atautology) if every interpretation forSsatisfies
every formula inS.

A set Sof formulæ issatisfiable(or consistent) if there is some interpretation
for S that satisfies every formula inS.

A setSof formulæ isunsatisfiable(or inconsistent) if it is not satisfiable.
A set S of formulæentails A if every interpretation that satisfies all elements

of S, also satisfiesA. Write S |= A.
FormulæA andB areequivalent, A ' B, providedA |= B andB |= A.

4 2 PROPOSITIONAL LOGIC

It is usual to writeA |= B instead of{A} |= B. We may similarly identify a
one-element set with a formula in the other definitions.

Note that|= and' are not logical connectives but relations between formulæ.
They belong not to the logic but to the metalanguage: they are symbols we use to
discuss the logic. They therefore have lower precedence than the logical connec-
tives. No parentheses are needed inA∧ A ' A because the only possible reading
is (A∧ A) ' A. We may not writeA∧ (A ' A) becauseA ' A is not a formula.

In propositional logic, a valid formula is also called atautology. Here are
some examples of these definitions.

• The formulæA→ A and¬(A∧ ¬A) are valid for every formulaA.

• The formulæP andP ∧ (P→ Q) are satisfiable: they are both true under
the interpretation that mapsP andQ to t. But they are not valid: they are
both false under the interpretation that mapsP and Q to f.

• The formula¬A is unsatisfiable for every valid formulaA. This set of
formulæ is unsatisfiable:{P, Q,¬P ∨ ¬Q}

Exercise 1 Is the formulaA→ ¬A satisfiable? Is it valid?

2.3 Applications of propositional logic

Hardware design is the obvious example. Propositional logic is used to minimize
the number of gates in a circuit, and to show the equivalence of combinational
circuits. There now exist highly efficient tautology checkers, such as OBDDs
(Ordered Binary Decision Diagrams), which have been used to verify complex
combinational circuits. This is an important branch of hardware verification.

Chemical synthesis is a more offbeat example.1 Under suitable conditions, the
following chemical reactions are possible:

HCl+ NaOH→ NaCl+ H2O

C+O2→ CO2

CO2+ H2O→ H2CO3

Show we can make H2CO3 given supplies of HCl, NaOH, O2, and C.
Chang and Lee formalize the supplies of chemicals as four axioms and prove

that H2CO3 logically follows. The idea is to formalize each compound as a propo-

1Chang and Lee, page 21, as amended by Ross Younger

2.4 Equivalences 5

sitional symbol and express the reactions as implications:

HCl ∧ NaOH→ NaCl∧ H2O

C∧O2→ CO2

CO2 ∧ H2O→ H2CO3

Note that this involves an ideal model of chemistry. What if the reactions
can be inhibited by the presence of other chemicals? Proofs about the real world
alwaysdepend upon general assumptions. It is essential to bear these in mind
when relying on such a proof.

2.4 Equivalences

Note thatA ↔ B and A ' B are different kinds of assertions. The formula
A ↔ B refers to some fixed interpretation, while the metalanguage statement
A ' B refers to all interpretations. On the other hand,|= A↔ B means the same
thing asA ' B. Both are metalanguage statements, andA ' B is equivalent to
saying that the formulaA↔ B is a tautology.

Similarly, A → B and A |= B are are different kinds of assertions, while
|= A→ B andA |= B mean the same thing. The formulaA→ B is a tautology
if and only if A |= B.

Here is a listing of some of the more basic equivalences of propositional logic.
They provide one means of reasoning about propositions, namely by transforming
one proposition into an equivalent one. They are also needed to convert proposi-
tions into various normal forms.

idempotency laws

A∧ A ' A

A∨ A ' A

commutative laws

A∧ B ' B ∧ A

A∨ B ' B ∨ A

associative laws

(A∧ B) ∧ C ' A∧ (B ∧ C)

(A∨ B) ∨ C ' A∨ (B ∨ C)

6 2 PROPOSITIONAL LOGIC

distributive laws

A∨ (B ∧ C) ' (A∨ B) ∧ (A∨ C)

A∧ (B ∨ C) ' (A∧ B) ∨ (A∧ C)

de Morgan laws

¬(A∧ B) ' ¬A∨ ¬B

¬(A∨ B) ' ¬A∧ ¬B

definitions of connectives

A↔ B ' (A→ B) ∧ (B→ A)

¬A ' A→ f

A→ B ' ¬A∨ B

more negation laws

¬(A→ B) ' A∧ ¬B

¬(A↔ B) ' ¬(A)↔ B ' A↔ (¬B)

simplification

A∧ f ' f

A∧ t ' A

A∨ f ' A

A∨ t ' t

¬¬A ' A

A∨ ¬A ' t

A∧ ¬A ' f

Propositional logic enjoys a principle of duality: for every equivalenceA ' B
there is another equivalenceA′ ' B′, whereA′, B′ are derived fromA, B by ex-
changing∧ with ∨ andt with f. Before applying this rule, remove all occurrences
of→ and↔, since they implicitly involve∧ and∨.

Exercise 2 Verify some of the equivalences using truth tables.

2.5 Normal forms 7

2.5 Normal forms

The language of propositional logic is redundant: many of the connectives can
be defined in terms of others. By repeatedly applying certain equivalences, we
can transform a formula into anormal form. A typical normal form eliminates
certain connectives entirely, and uses others in a restricted manner. The restricted
structure makes the formula easy to process, although the normal form may be
exponentially larger than the original formula. Most normal forms are unreadable,
although Negation Normal Form is not too bad.

Definition 2 A literal is an atomic formula or its negation. LetK , L, L ′, . . .
stand for literals.

A maxtermis a literal or a disjunction of literals.
A mintermis a literal or a conjunction of literals.
A formula is inNegation Normal Form(NNF) if the only connectives in it are

∧, ∨, and¬, where¬ is only applied to atomic formulæ.
A formula is inConjunctive Normal Form(CNF) if it has the formA1∧ · · · ∧

Am, where eachAi is maxterm.
A formula is inDisjunctive Normal Form(DNF) if it has the formA1 ∨ · · · ∨

Am, where eachAi is a minterm.

An atomic formula likeP is in all the normal forms NNF, CNF, and DNF. The
formula

(P ∨ Q) ∧ (¬P ∨ Q) ∧ R

is in CNF. To get an example of a DNF formula, exchange∧ and∨ above. Every
formula in CNF or DNF is also in NNF, but the NNF formula

((¬P ∧ Q) ∨ R) ∧ P

is neither CNF nor DNF.
One advantage of NNF is that it reveals the true nature of a formula. For

example, converting¬(A → B) to NNF yields A ∧ ¬B. This reveals that the
original formula was effectively a conjunction.

2.6 Translation to normal form

Every formula can be translated into an equivalent formula in NNF, CNF, or DNF
by means of the following steps.

8 2 PROPOSITIONAL LOGIC

Step 1. Eliminate↔ and→ by repeatedly applying the following equivalences:

A↔ B ' (A→ B) ∧ (B→ A)

A→ B ' ¬A∨ B

Step 2. Push negations in until they apply only to atoms, repeatedly replacing
by the equivalences

¬¬A ' A

¬(A∧ B) ' ¬A∨ ¬B

¬(A∨ B) ' ¬A∧ ¬B

At this point, the formula is in Negation Normal Form.

Step 3. To obtain CNF, push disjunctions in until they apply only to literals.
Repeatedly replace by the equivalences

A∨ (B ∧ C) ' (A∨ B) ∧ (A∨ C)

(B ∧ C) ∨ A ' (B ∨ A) ∧ (C ∨ A)

Note that the second replacement is the same distributive law with the operands
reversed (using the commutative law).

Step 4. Simplify the resulting CNF by deleting any maxterm that contains both
P and¬P, since it is equivalent tot. Also delete any maxterm that includes
another maxterm (meaning, every literal in the latter is also present in the former).
This is correct becauseA ∧ (A ∨ B) ' A. Finally, two maxterms of the form
P ∨ A and¬P ∨ A can be replaced byA, thanks to the equivalence

(P ∨ A) ∧ (¬P ∨ A) ' A.

This simplification is related to the resolution rule, which we shall study later.
Since∨ is commutative, saying ‘a maxterm of the formA∨ B’ refers to any

possible way of arranging the literals into two parts. This includesA ∨ f, since
one of those parts may be empty and the empty disjunction is false. So in the last
simplification above, two maxterms of the formP and¬P can be replaced byf.

Steps 3’ and 4’. To obtain DNF, apply instead the other distributive law:

A∧ (B ∨ C) ' (A∧ B) ∨ (A∧ C)

(B ∨ C) ∧ A ' (B ∧ A) ∨ (C ∧ A)

Exactly the same simplifications can be performed for DNF as for CNF, exchang-
ing the roles of∧ and∨.

2.7 Tautology checking using CNF 9

2.7 Tautology checking using CNF

Here is a method of proving theorems in propositional logic. To proveA, reduce
it to CNF. If the simplified CNF formula ist then A is valid because each trans-
formation preserves logical equivalence. And if the CNF formula is nott, thenA
is not valid.

To see why, suppose the CNF formula isA1 ∧ · · · ∧ Am. If A is valid then
eachAi must also be valid. WriteAi asL1 ∨ · · · ∨ Ln, where theL j are literals.
We can make an interpretationI that falsifies everyL j , and therefore falsifiesAi .
Define I such that, for every propositional letterP,

I (P) =
{

t if L j is P for some j

f if L j is¬P for some j

This definition is legitimate because there cannot exist literalsL j andLk such that
L j is¬Lk; if there did, then simplification would have deleted the disjunctionAi .

The powerful OBDD method is related to this CNF method. It uses an if-then-
else data structure, an ordering on the propositional letters, and some standard
algorithmic techniques (such as hashing) to gain efficiency.

Example 1 Start with

P ∨ Q→ Q ∨ R

Step 1, eliminate→, gives

¬(P ∨ Q) ∨ (Q ∨ R)

Step 2, push negations in, gives

(¬P ∧ ¬Q) ∨ (Q ∨ R)

Step 3, push disjunctions in, gives

(¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

Simplifying yields

(¬P ∨ Q ∨ R) ∧ t

¬P ∨ Q ∨ R

The interpretationP 7→ t, Q 7→ f, R 7→ f falsifies this formula, which is equiv-
alent to the original formula. So the original formula is not valid.

10 2 PROPOSITIONAL LOGIC

Example 2 Start with

P ∧ Q→ Q ∧ P

Step 1, eliminate→, gives

¬(P ∧ Q) ∨ Q ∧ P

Step 2, push negations in, gives

(¬P ∨ ¬Q) ∨ (Q ∧ P)

Step 3, push disjunctions in, gives

(¬P ∨ ¬Q ∨ Q) ∧ (¬P ∨ ¬Q ∨ P)

Simplifying yieldst ∧ t, which ist. Both conjuncts are valid since they contain a
formula and its negation. ThusP ∧ Q→ Q ∧ P is valid.

Example 3 Peirce’s law is another example. Start with

((P→ Q)→ P)→ P

Step 1, eliminate→, gives

¬(¬(¬P ∨ Q) ∨ P) ∨ P

Step 2, push negations in, gives

(¬¬(¬P ∨ Q) ∧ ¬P) ∨ P

((¬P ∨ Q) ∧ ¬P) ∨ P

Step 3, push disjunctions in, gives

(¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

Simplifying again yieldst. Thus Peirce’s law is valid.
There is a dual method of refutingA (proving inconsistency). To refuteA,

reduce it to DNF, sayA1 ∨ · · · ∨ Am. If A is inconsistent then so is eachAi .
SupposeAi is L1 ∧ · · · ∧ Ln, where theL j are literals. If there is some literalL ′
such that theL j include bothL ′ and¬L ′, thenAi is inconsistent. If not then there
is an interpretation that verifies everyL j — and soAi .

To prove A, we can use the DNF method to refute¬A. The steps are ex-
actly the same as the CNF method because the extra negation swaps every∨ and
∧. Gilmore implemented a theorem prover based upon this method in 1960 (see
Chang and Lee, page 62).

11

Exercise 3 Each of the following formulæ is satisfiable but not valid. Exhibit an
interpretation that makes the formula true and another interpretation that makes
the formula false.

A→ B

¬(A∨ B ∨ C)

A∨ B→ A∧ B

¬(A∧ B) ∧ ¬(B ∨ C) ∧ (A∨ C)

Exercise 4 Convert of the following propositional formulæ into Conjunctive
Normal Form and also into Disjunctive Normal Form. For each formula, state
whether it is valid, satisfiable, or unsatisfiable; justify each answer.

(A→ B) ∧ (B→ A)

((A∧ B) ∨ C) ∧ (¬((A∨ C) ∧ (B ∨ C)))

¬(A∨ B ∨ C) ∨ ((A∧ B) ∨ C)

¬(A∨ B→ C) ∧ (A→ C) ∧ (B→ C)

Exercise 5 Using ML or Lisp, define data structures for representing proposi-
tions and interpretations. Write a function to test whether or not a proposition
holds under an interpretation (both supplied as arguments). Write a function to
convert a proposition to Negation Normal Form.

3 Proof Systems for Propositional Logic

We can verify any tautology by checking all possible interpretations, using the
truth tables. This is asemanticapproach, since it appeals to the meanings of the
connectives.

The syntacticapproach is formal proof: generating theorems, or reducing a
conjecture to a known theorem, by applying syntactic transformations of some
sort. We have already seen a proof method based on CNF. Most proof methods
are based on axioms and inference rules.

What about efficiency? Deciding whether a propositional formula is satisfiable
is an NP-complete problem (Aho, Hopcroft and Ullman 1974, pages 377–383).
Thus all approaches are likely to be exponential in the length of the formula.

3.1 A Hilbert-style proof system

Here is a simple proof system for propositional logic. The following definitions
apply to this section only! There are countless similar proof systems. They are
often calledHilbert-styleafter the logician David Hilbert, although they existed
before him.

12 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

Note thatA→ (B→ A) is a tautology. Call it Axiom K. Also,

(A→ (B→ C))→ ((A→ B)→ (A→ C))

is a tautology. Call it Axiom S. The Double-Negation Law¬¬A → A, is a
tautology. Call it Axiom DN.

These axioms are more properly calledaxiom schemes, since we assume all
instances of them that can be obtained by substituting formulæ forA, B andC.

Let us define the other logical connectives in terms of implication:

¬A
def= A→ f

A∨ B
def= ¬A→ B

A∧ B
def= ¬(¬A∨ ¬B)

WheneverA→ B and A are both valid, it follows thatB is valid. We write
this as the inference rule

A→ B A
B.

This rule is traditionally called Modus Ponens. Together with Axioms K, S,
and DN and the definitions, it suffices to prove all tautologies of (classical) propo-
sitional logic.2 However, this formalization of propositional logic is inconvenient
to use. For example, try provingA→ A!

A variant of this proof system replaces the Double-Negation Law by the Con-
trapositive Law:

(¬B→ ¬A)→ (A→ B)

Another formalization of propositional logic consists of the Modus Ponens
rule plus the following axioms:

A∨ A→ A

B→ A∨ B

A∨ B→ B ∨ A

(B→ C)→ (A∨ B→ A∨ C)

HereA∧ B andA→ B are defined in terms of¬ and∨.

2If the Double-Negation Law is omitted, only the intuitionistic tautologies are provable. This
axiom system is connected with the combinatorsSandK and theλ-calculus.

3.2 Gentzen’s Natural Deduction Systems 13

3.2 Gentzen’s Natural Deduction Systems

Natural proof systems do exist. Natural deduction, devised by Gerhard Gentzen,
is based upon three principles:

1. Proof takes place within a varying context of assumptions.

2. Each logical connective is defined independently of the others. (This is
possible because item 1 eliminates the need for tricky uses of implication.)

3. Each connective is defined byintroductionandeliminationrules.

For example, theintroductionrule for∧ describes how to deduceA∧ B:

A B
A∧ B

(∧i)

Theeliminationrules for∧ describe what to deducefrom A∧ B:

A∧ B
A

(∧e1) A∧ B
B

(∧e2)

The elimination rule for→ says what to deduce fromA→ B. It is just Modus
Ponens:

A→ B A
B

(→e)

The introduction rule for→ says thatA → B is proved by assumingA and
deriving B:

[A]....
B

A→ B
(→i)

For simple proofs, this notion of assumption is pretty intuitive. Here is a proof of
the formulaA∧ B→ A:

[A∧ B]
A

(∧e1)

A∧ B→ A
(→i)

The key point is that rule(→i) dischargesits assumption: the assumption could
be used to proveA from A ∧ B, but is no longer available once we conclude
A∧ B→ A.

14 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

The introduction rules for∨ are straightforward:

A
A∨ B

(∨i 1) B
A∨ B

(∨i 2)

The elimination rule says that to show someC from A∨ B there are two cases to
consider, one assumingA and one assumingB:

A∨ B

[A]....
C

[B]....
C

C
(∨e)

The scope of assumptions can get confusing in complex proofs. Let us switch
attention to the sequent calculus, which is similar in spirit but easier to use.

3.3 The sequent calculus

Thesequent calculusresembles natural deduction, but it makes the set of assump-
tions explicit. Thus, it is more concrete.

A sequenthas the form0⇒1, where0 and1 are finite sets of formulæ.3

These sets may be empty. The sequent

A1, . . . , Am⇒ B1, . . . , Bn

is true if A1 ∧ . . . ∧ Am implies B1 ∨ . . . ∨ Bn. In other words, we assume that
each ofA1, . . . , Am are true and try to show that at least one ofB1, . . . , Bn is
true.

A basicsequent is one in which the same formula appears on both sides, as in
P, B⇒ B, R. This sequent is true because, if all the formulæ on the left side are
true, then in particularB is; so, least one right-side formula (B again) is true. Our
calculus therefore regards all basic sequents as proved.

Every basic sequent might be written in the form{A} ∪ 0⇒{A} ∪1, where
A is the common formula and0 and1 are the other left- and right-side formulæ,
respectively. The sequent calculus identifies the one-element set{A} with its ele-
mentA and denotes union by a comma. Thus, the correct notation for the general
form of a basic sequent isA, 0⇒ A,1.

Sequent rules are almost always used backward. We start with the sequent that
we would like to prove and, working backwards, reduce it to simpler sequents in
the hope of rendering them trivial. The forward direction would be to start with
known facts and derive new facts, but this approach tends to generate random
theorems rather than ones we want.

3With minor changes, sequents can instead be lists or multisets.

3.3 The sequent calculus 15

Sequent rules are classified asright or left, indicating which side of the
⇒ symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to elimina-
tion rules.

The sequent calculus analogue of(→i) is the rule

A, 0⇒1, B
0⇒1, A→ B

(→r)

Working backwards, this rule breaks down some implication on the right side
of a sequent;0 and1 stand for the sets of formulæ that are unaffected by the
inference. The analogue of the pair(∨i 1) and(∨i 2) is the single rule

0⇒1, A, B
0⇒1, A∨ B

(∨r)

This breaks down some disjunction on the right side, replacing it by both dis-
juncts. Thus, the sequent calculus is a kind of multiple-conclusion logic. Figure 1
summarises the rules.

basic sequent: A, 0⇒ A,1
Negation rules:

0⇒1, A
¬A, 0⇒1

(¬l)
A, 0⇒1

0⇒1,¬A
(¬r)

Conjunction rules:

A, B, 0⇒1

A∧ B, 0⇒1
(∧l)

0⇒1, A 0⇒1, B
0⇒1, A∧ B

(∧r)

Disjunction rules:

A, 0⇒1 B, 0⇒1

A∨ B, 0⇒1
(∨l)

0⇒1, A, B
0⇒1, A∨ B

(∨r)

Implication rules:

0⇒1, A B, 0⇒1

A→ B, 0⇒1
(→l)

A, 0⇒1, B
0⇒1, A→ B

(→r)

Figure 1: Sequent Rules for Propositional Logic

To illustrate the use of multiple formulæ on the right, let us prove the classical
theorem(A→ B)∨ (B→ A). Working backwards (or upwards), we reduce this

16 3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

formula to a basic sequent:

A, B⇒ B, A
A⇒ B, B→ A

(→r)

⇒ A→ B, B→ A
(→r)

⇒ (A→ B) ∨ (B→ A)
(∨r)

The basic sequent has a line over it to emphasize that it is provable.
This example is typical of the sequent calculus: start with the desired theorem

and apply rulesbackwardsin a fairly arbitrary manner. This yields a surprisingly
effective proof procedure.

Here is part of a proof of the distributive lawA∨(B∧C) ' (A∨B)∧(A∨C):

(A⇒ A, B
B,C⇒ A, B

B ∧ C⇒ A, B
(∧l)

A∨ (B ∧ C)⇒ A, B
(∨l)

A∨ (B ∧ C)⇒ A∨ B
(∨r)

similar
A∨ (B ∧ C)⇒ (A∨ B) ∧ (A∨ C)

(∧r)

The second, omitted proof tree provesA∨ (B ∧ C)⇒ A∨ C similarly.
Finally, here is a failed proof of the invalid formulaA∨ B→ B ∨ C.

A⇒ B,C B⇒ B,C
A∨ B⇒ B,C

(∨l)

A∨ B⇒ B ∨ C
(∨r)

⇒ A∨ B→ B ∨ C
(→r)

The sequentA⇒ B,C has no line over it because it is not valid! The interpreta-
tion A 7→ t, B 7→ f, C 7→ f falsifies it. We have already seen this as Example 1
(page 9).

Structuralrules concern sequents in general rather than particular connectives.
Theweakeningrules allow additional formulas to be inserted on the left or right
side. Obviously, if0⇒1 holds then the sequent continues to hold after further
assumptions or goals are added:

0⇒1

A, 0⇒1
(weaken:l)

0⇒1

0⇒1, A
(weaken:r)

Exchangerules allow formulas in a sequent to be re-ordered. We don’t need them
because our sequents are sets rather than lists. Contraction rules allow formulas
to be used more than once:

A, A, 0⇒1

A, 0⇒1
(contract:l)

0⇒1, A, A
0⇒1, A

(contract:r)

3.3 The sequent calculus 17

Because the sets{A} and {A, A} are identical, we don’t need contraction rules
either. Moreover, it turns out that we almost never need to use a formula more
than once. Exceptions are∀x A (when it appears on the left) and∃x A (when it
appears on the right).

Thecut ruleallows the use of lemmas. Some formulaA is proved in the first
premise, and assumed in the second premise. A famous result, thecut-elimination
theorem, states that this rule is not required. All uses of it can be removed from
any proof, but the proof could get exponentially larger.

0⇒1, A A, 0⇒1

0⇒1
(cut)

This special case of cut may be easier to understand. We prove lemmaA from 0

and useA and0 together to reach the conclusionB.

0⇒ B, A A, 0⇒ B
0⇒ B

Since0 contains as much information asA, it is natural to expect that such lem-
mas should not be necessary, but the cut-elimination theorem is quite hard to
prove.

Note On the Thor directory/group/clteach/lcp/Logic there is a sim-
ple theorem prover calledfolderol.ML . It can prove easy first-order theorems
using the sequent calculus, and outputs a summary of each proof. The file begins
with very basic instructions describing how to run it. The filetestsuite.ML
contains further instructions and numerous examples.

Exercise 6 Prove the following sequents:

¬¬A⇒ A

A∧ B⇒ B ∧ A

A∨ B⇒ B ∨ A

Exercise 7 Prove the following sequents:

(A∧ B) ∧ C⇒ A∧ (B ∧ C)

(A∨ B) ∧ (A∨ C)⇒ A∨ (B ∧ C)

¬(A∨ B)⇒¬A∧ ¬B

18 4 ORDERED BINARY DECISION DIAGRAMS

4 Ordered Binary Decision Diagrams

A binary decision tree represents a propositional formulæ by binary decisions,
namely if-then-else expressions over the propositional letters. (In the relevant
literature, propositional letters are calledvariables.) A tree may contain much
redundancy; a binary decisiondiagramis a directed graph, sharing identical sub-
trees. Anorderedbinary decision diagram (OBDD) is based upon giving an or-
dering< to the variables: they must be tested in order. Further refinements ensure
that each propositional formula is mapped to a unique OBDD, for a given order-
ing.

An OBDD representation must satisfy the following conditions:

• ordering: if P is tested beforeQ, thenP < Q
(thus in particular,P cannot be tested more than once on a single path)

• uniqueness: identical subgraphs are stored only once
(to do this efficiently, hash each node by its variable and pointer fields)

• irredundancy: no test leads to identical subgraphs in thet andf cases
(thanks to uniqueness, redundant tests can be detected by comparing point-
ers)

Because the OBDD representation of each formula is unique, it is called a
canonical form. Canonical forms usually lead to good algorithms — for a start,
you can test whether two things are equivalent by comparing their canonical
forms.

The OBDD form of any tautology ist. Similarly, that of any inconsistent
formula isf. To check whether two formulæ are logically equivalent, convert both
to OBDD form and then — thanks to uniqueness — simply compare the pointers.

A recursive algorithm converts a formula to an OBDD. All the logical connec-
tives can be handled directly, including→ and↔. (Exclusive ‘or’ is also used,
especially in hardware examples.) The expensive transformation ofA↔ B into
(A→ B) ∧ (B→ A) is completely unnecessary.

Here is how to convert a conjunctionA∧ A′ to an OBDD.

1. Recursively convertA andA′ to OBDDsZ andZ′.

2. Check for trivial cases. IfZ = Z′ (pointer comparison) then the result is
Z; if either operand isf, then the result isf; if either operand ist, then the
result is the other operand.

3. In the general case, letZ =
P
� @

X Y
andZ′ =

P′
� @

X′ Y′
. There are

three possibilities:

19

(a) If P = P′ then recursively build the OBDD
P
� @

X ∧ X′ Y ∧ Y′
.

This means convertX ∧ X′ andY ∧ Y′ to OBDDsU andU ′, then
attempt to construct a new decision node fromP to them. The usual
simplifications are done. IfU = U ′ then the resulting OBDD for
the conjunction isU . If an identical decision node fromP to (U,U ′)
has been created previously, then that existing node is used instead of
creating a new one.

(b) If P < P′ then recursively build the OBDD
P
� @

X ∧ Z′ Y ∧ Z′
.

(c) If P > P′ then recursively build the OBDD
P′
� @

Z ∧ X′ Z ∧ Y′
.

Other connectives are treated similarly; they differ only in the trivial cases.

The negation of the OBDD
P
� @

X Y
is

P
� @

¬X ¬Y
. In essence we copy the

OBDD, and when we reach the leaves, exchanget andf.
During this processing, the same input (consisting of a connective and two

OBDDs) may be transformed into an OBDD repeatedly. Efficient implementa-
tions therefore have an additional hash table, which associates inputs to the cor-
responding OBDDs. The result of every transformation is stored in the hash table
so that it does not have to be computed again.

For more details, please see Bryant (1992), part of which is attached as an
appendix to these notes. Section 3.1 describes a construction method that can be
done using pencil and paper. In essence, the idea goes like this:

• Draw the two OBDDs to be combined by a connective such as∧.

• Label the nodes of the first oneA1, . . . , Am and of the second oneB1, . . . ,
Bn.

• Draw the graph that results from merging the two OBDDs while respecting
the variable ordering. Each node of the new graph will have a label of
the form Ai Bj , and will be a decision on the earlier of the two Boolean
variables.

• Apply the connective to the zeroes and ones in the leaves.

• Simplify the new OBDD by deleting redundant nodes.

You will need to read Section 3.1 of Bryant (1992) in order to understand this
method properly.

20 5 FIRST-ORDER LOGIC

Exercise 8 Compute the OBDD for each of the following formulæ, taking the
variables as alphabetically ordered:

P ∧ Q→ Q ∧ P

¬(P ∨ Q) ∨ P

P ∨ Q→ P ∧ Q

¬(P ∧ Q)↔ (P ∨ R)

Exercise 9 Verify the following equivalences using OBDDs:

(P ∧ Q) ∧ R' P ∧ (Q ∧ R)

(P ∨ Q) ∨ R' P ∨ (Q ∨ R)

P ∨ (Q ∧ R) ' (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ' (P ∧ Q) ∨ (P ∧ R)

Exercise 10 Verify the following equivalences using OBDDs:

¬(P ∧ Q) ' ¬P ∨ ¬Q

(P↔ Q)↔ R' P↔ (Q↔ R)

(P ∨ Q)→ R' (P→ R) ∧ (Q→ R)

5 First-order Logic

First-order logic (FOL) extends propositional logic to allow reasoning about the
members (such as numbers) of some non-empty universe. It uses the quantifiers
∀ (‘for all’) and ∃ (‘there exists’). First-order logic has variables ranging over
‘individuals,’ but not over functions or predicates; such variables are found in
second- or higher-order logic.

5.1 Syntax of first-order Logic

Termsstand for individuals whileformulæstand for truth values. We assume there
is an infinite supply ofvariablesx, y, . . . that range over individuals. Afirst-order
languagespecifies symbols that may appear in terms and formulæ. A first-order
languageL contains, for alln ≥ 0, a set ofn-placefunction symbolsf , g, . . .
andn-placepredicate symbolsP, Q, These sets may be empty, finite, or
infinite.

Constant symbolsa, b, . . . are simply 0-place function symbols. Predicate
symbols are also calledrelation symbols. Prolog programmers refer to function
symbols asfunctors.

5.2 Examples of statements in first-order logic 21

Definition 3 The termst , u, . . . of a first-order language are defined recursively
as follows:

• A variable is a term.

• A constant symbol is a term.

• If t1, . . . , tn are terms and f is an n-place function symbol then
f (t1, . . . , tn) is a term.

Definition 4 The formulæA, B, . . . of a first-order language are defined recur-
sively as follows:

• If t1, . . . , tn are terms andP is an n-place predicate symbol then
P(t1, . . . , tn) is a formula (called anatomic formula).

• If A andB are formulæ then¬A, A∧ B, A∨ B, A→ B, A↔ B are also
formulæ.

• If x is a variable andA is a formula then∀x A and∃x A are also formulæ.

Brackets are used in the conventional way for grouping. Terms and formulæ are
tree-like data structures, not strings.

The quantifiers∀x A and∃x A bind tighter than the binary connectives; thus
∀x A ∧ B is equivalent to(∀x A) ∧ B. Sometimes you will see an alternative
quantifier syntax,∀x . A and∃x . B, which binds looser than the binary connec-
tives; thus∀x . A ∧ B is equivalent to∀x . (A ∧ B). The dot is the giveaway; be
careful!

Nested quantifications such as∀x ∀y A are abbreviated to∀xy A.

Example 4 A language for arithmetic might have the constant symbols 0, 1, 2,
. . . , and function symbols+, −, ×, /, and the predicate symbols=, <, >,
We informally may adopt an infix notation for the function and predicate symbols.
Terms include 0 and(x + 3)− y; formulæ includey = 0 andx + y < y+ z.

5.2 Examples of statements in first-order logic

Here are some sample formulæ with a rough English translation. English is easier
to understand but is too ambiguous for long derivations.

All professors are brilliant:

∀x (professor(x)→ brilliant(x))

22 5 FIRST-ORDER LOGIC

The income of any banker is greater than the income of any bedder:

∀xy(banker(x) ∧ bedder(y)→ income(x) > income(y))

Note that> is a 2-place relation symbol. The infix notation is simply a convention.
Every student has a supervisor:

∀x (student(x)→ ∃y supervises(y, x))

This does not preclude a student having several supervisors.
Every student’s tutor is a member of the same College:

∀xy(student(x) ∧ college(y) ∧member(x, y)→ member(tutor(x), y))

The use of a function ‘tutor’ incorporates the assumption that every student has
exactlyonetutor.

A mathematical example:there exist infinitely many Pythagorean triples:

∀n∃i jk (i > n ∧ i 2+ j 2 = k2)

Here the superscript 2 refers to the squaring function. Equality (=) is just another
relation symbol (satisfying suitable axioms) but there are many special techniques
for it.

First-order logic assumes a non-empty domain: thus∀x P(x) implies∃x P(x).
If the domain could be empty, even∃x t could fail to hold. Note also that
∀x ∃y y2 = x is true if the domain is the complex numbers, and is false if the
domain is the integers or reals. We determine properties of the domain by assert-
ing the set of statements it must satisfy.

There are many other forms of logic.Many-sorted first-order logicassigns
types to each variable, function symbol and predicate symbol, with straight-
forward type checking; types are calledsorts and denote non-empty domains.
Second-order logicallows quantification over functions and predicates. It can
express mathematical induction by

∀P [P(0) ∧ ∀k (P(k)→ P(k+ 1))→ ∀n P(n)],

using quantification over the unary predicateP. In second-order logic, these func-
tions and predicates must themselves be first-order, taking no functions or pred-
icates as arguments.Higher-order logicallows unrestricted quantification over
functions and predicates of any order. The list of logics could be continued indef-
initely.

5.3 Formal semantics of first-order logic 23

5.3 Formal semantics of first-order logic

Let us rigorously define the meaning of formulæ. An interpretation of a language
maps its function symbols to actual functions, and its relation symbols to actual
relations. For example, the predicate symbol ‘student’ could be mapped to the set
of all students currently enrolled at the University.

Definition 5 Let L be a first-order language. AninterpretationI of L is a pair
(D, I). HereD is a nonempty set, thedomainor universe. The operationI maps
symbols to individuals, functions or sets:

• if c is a constant symbol (ofL) then I [c] ∈ D

• if f is ann-place function symbol thenI [f] ∈ Dn → D (which means
I [f] is ann-place function onD)

• if P is ann-place relation symbol thenI [P] ⊆ Dn (which meansI [P] is
ann-place relation onD)

There are various ways of talking about the values of variables under an inter-
pretation. One way is to ‘invent’ a constant symbol for every element ofD. More
natural is to represent the values of variables using an environment, known as a
valuation.

Definition 6 A valuation V of L over D is a function from the variables ofL
into D. Write IV [t] for the value oft with respect toI andV , defined by

IV [x]
def= V(x) if x is a variable

IV [c]
def= I [c]

IV [f (t1, . . . , tn)]
def= I [f](IV [t1], . . . , IV [tn])

Write V{a/x} for the valuation that mapsx to a and is otherwise the same
asV . Typically, we modify a valuation one variable at a time. This is a semantic
analogue of substitution for the variablex.

5.4 What is truth?

We now can define truth itself. (First-order truth, that is!) This formidable defi-
nition formalizes the intuitive meanings of the connectives. Thus it almost looks
like a tautology. It effectively specifies each connective by English descriptions.
Valuations help specify the meanings of quantifiers. Alfred Tarski first defined
truth in this manner.

24 5 FIRST-ORDER LOGIC

Definition 7 Let A be a formula. Then for an interpretationI = (D, I) write
|=I,V A to mean ‘A is true inI underV .’ This is defined by cases on the con-
struction of the formulaA:

|=I,V P(t1, . . . , tn) if I [P](IV [t1], . . . , IV [tn]) holds (that is, the
actual relationI [P] holds of the values of the arguments)

|=I,V t = u if IV [t] equalsIV [u] (if = is a predicate symbol of the
language, then we insist that it really denotes equality)

|=I,V ¬B if |=I,V B does not hold

|=I,V B ∧ C if |=I,V B and|=I,V C

|=I,V B ∨ C if |=I,V B or |=I,V C

|=I,V B→ C if |=I,V B does not hold or|=I,V C

|=I,V B↔ C if |=I,V B and|=I,V C both hold or neither hold

|=I,V ∃x B if there existsm ∈ D such that|=I,V{m/x} B holds (that
is, B holds whenx has the valuem)

|=I,V ∀x B if for all m ∈ D we have that|=I,V{m/x} B holds

The cases for∧, ∨,→ and↔ follow the propositional truth tables.
Write |=I A provided|=I,V A for all V . Clearly, if A is closed (contains no

free variables) then its truth is independent of the valuation. IfA contains free
variablesx1, . . . , xn then these in effect are universally quantified:

|=I A if and only if |=I ∀x1 · · · ∀xn A

The definitions of valid, satisfiable, etc. carry over almost verbatim from Sec-
tion 2.2.

Definition 8 An interpretationI satisfiesa formula if|=I A holds.
A setSof formulæ isvalid if every interpretation ofSsatisfies every formula

in S.
A set Sof formulæ issatisfiable(or consistent) if there is some interpretation

of S that satisfies every formula inS.
A set S of formulæ isunsatisfiable(or inconsistent) if it is not satisfiable.

(Each interpretation falsifies some formula ofS.)
A modelof a setSof formulæ is an interpretation that satisfies every formula

in S. We also consider models that satisfy a single formula.

Unlike in propositional logic, models can be infinite and there can be an in-
finite number of models. There is no chance of proving validity by checking all
models. We must rely on proof.

5.4 What is truth? 25

Example 5 The formulaP(a)∧¬P(b) is satisfiable. Consider the interpretation
with D = {0,1} and I defined by

I [a] = 0

I [b] = 1

I [P] = {0}
On the other hand,P(x) ∧ ¬P(y) is unsatisfiable. Its free variables are taken to
be universally quantified, so it is equivalent to∀xy(P(x) ∧ ¬P(y)).

The formula(∃x P(x))→ P(c) holds in the interpretation(D, I) whereD =
{0,1}, I [P] = {0}, and I [c] = 0. (ThusP(x) means ‘x equals 0’ andc denotes
0.) If we modify this interpretation by makingI [c] = 1 then the formula no longer
holds. Thus it is satisfiable but not valid.

The formula(∀x P(x)) → (∀x P(f (x))) is valid, for let(D, I) be an inter-
pretation. If∀x P(x) holds in this interpretation thenP(x) holds for allx ∈ D,
thus I [P] = D. The symbol f denotes some actual functionI [f] ∈ D → D.
SinceI [P] = D and I [f](x) ∈ D for all x ∈ D, formula∀x P(f (x)) holds.

The formula∀xy x = y is satisfiable but not valid; it is true in every domain
that consists of exactly one element. (The empty domain is not allowed in first-
order logic.)

Example 6 Let L be the first-order language consisting of the constant 0 and
the (infix) 2-place function symbol+. An interpretationI of this language is any
non-empty domainD together with valuesI [0] and I [+], with I [0] ∈ D and
I [+] ∈ D × D→ D. In the languageL we may express the following axioms:

x + 0= x

0+ x = x

(x + y)+ z= x + (y+ z)

(Remember, free variables in effect are universally quantified, by the definition of
|=I A.) One model of these axioms is the set of natural numbers, provided we
give 0 and+ the obvious meanings. But the axioms have many other models.4

Below, let A be some set.

1. The set of all strings (in ML say) letting 0 denote the empty string and+
string concatenation.

2. The set of all subsets ofA, letting 0 denote the empty set and+ union.

3. The set of functions inA→ A, letting 0 denote the identity function and+
composition.

4Models of these axioms are calledmonoids.

26 5 FIRST-ORDER LOGIC

Exercise 11 To test your understanding of quantifiers, consider the following
formulæ:everybody loves somebodyvs there is somebody that everybody loves:

∀x ∃y loves(x, y) (1)

∃y∀x loves(x, y) (2)

Does (1) imply (2)? Does (2) imply (1)? Consider both the informal meaning and
the formal semantics defined above.

Exercise 12 Describe a formula that is true in precisely those domains that con-
tain at leastm elements. (We say itcharacterisesthose domains.) Describe a
formula that characterises the domains containing at mostm elements.

Exercise 13 Let = be a 2-place predicate symbol, which we write using infix
notation: for instance,x = y rather than= (x, y). Consider the following ax-
ioms:

∀x x = x (1)

∀xy(x = y→ y = x) (2)

∀xyz(x = y ∧ y = z→ x = z) (3)

Let the universe be the set of natural numbers,N = {0,1,2, . . . }. Which axioms
hold if I [=] is

• the empty relation,φ?

• the universal relation,{(x, y) | x, y ∈ N}?
• the relation{(x, x) | x ∈ N}?
• the relation{(x, y) | x, y ∈ N ∧ x + y is even}?
• the relation{(x, y) | x, y ∈ N ∧ x + y = 100}?
• the relation{(x, y) | x, y ∈ N ∧ x ≡ y (mod 16)}?

Exercise 14 Taking= andR as 2-place relation symbols, consider the following
axioms:

∀x¬R(x, x) (1)

∀xy¬(R(x, y) ∧ R(y, x)) (2)

∀xyz(R(x, y) ∧ R(y, z)→ R(x, z)) (3)

∀xy(R(x, y) ∨ (x = y) ∨ R(y, x)) (4)

∀xz(R(x, z)→ ∃y (R(x, y) ∧ R(y, z))) (5)

27

Exhibit two interpretations that satisfy axioms 1–3 and falsify axioms 4 and 5.
Exhibit two interpretations that satisfy axioms 1–4 and falsify axiom 5. Exhibit
two interpretations that satisfy axioms 1–5. Consider only interpretations that
make= denote the equality relation. (This exercise asks whether you can make
the connection between the axioms and typical mathematical objects satisfying
them.)

6 Formal Reasoning in First-Order Logic

This section reviews some syntactic notations: free variables versus bound vari-
ables and substitution. It lists some of the main equivalences for quantifiers. Fi-
nally it describes and illustrates the quantifier rules of the sequent calculus.

6.1 Free vs bound variables

The notion of bound variable occurs widely in mathematics: consider the role
of x in

∫
f (x)dx and the role ofk in lim∞k=0 ak. Similar concepts occur in the

λ-calculus. In first-order logic, variables are bound by quantifiers (rather than
by λ).

Definition 9 An occurrence of a variablex in a formula isboundif it is contained
within a subformula of the form∀x A or ∃x A.

An occurrence of the form∀x or ∃x is called thebinding occurrenceof x.
An occurrence of a variable isfree if it is not bound.
A closedformula is one that contains no free variables.
A groundterm, formula or clause is one that contains no variables at all.

In ∀x ∃y R(x, y, z), the variablesx andy are bound whilez is free.
In (∃x P(x)) ∧ Q(x), the occurrence ofx just after P is bound, while that

just afterQ is free. Thusx has both free and bound occurrences. Such situations
can be avoided by renaming bound variables. Renaming can also ensure that all
bound variables in a formula are distinct.

Example 7 Renaming bound variables in a formula preserves its meaning, pro-
vided no name clashes are introduced. Consider the following renamings of
∀x ∃y R(x, y, z):

∀u ∃y R(u, y, z) OK
∀x ∃w R(x, w, z) OK
∀u ∃y R(x, y, z) not done consistently
∀y ∃y R(y, y, z) clash with bound variabley
∀z∃y R(z, y, z) clash with free variablez

28 6 FORMAL REASONING IN FIRST-ORDER LOGIC

6.2 Substitution

If A is a formula,t is a term, andx is a variable, thenA[t/x] is the formula
obtained by substitutingt for x throughoutA. The substitution only affects the
freeoccurrences ofx. PronounceA[t/x] as ‘A with t for x.’ We also useu[t/x]
for substitution in a termu andC[t/x] for substitution in a clauseC.

Substitution is only sensible provided all bound variables inA are distinct from
all variables int . This can be achieved by renaming the bound variables inA. For
example, if∀x A then A[t/x] is true for all t ; the formula holds when we drop
the∀x and replacex by any term. But∀x ∃y x = y is true in all models, while
∃y y+1= y is not. We may not replacex by y+1, since the free occurrence ofy
in y+ 1 gets captured by the∃y . First we must rename the boundy, getting say
∀x ∃z x= z; now we may replacex by y+ 1, getting∃z y+ 1= z. This formula
is true in all models, regardless of the meaning of the symbols+ and 1.

6.3 Equivalences involving quantifiers

These equivalences are useful for transforming and simplifying quantified for-
mulæ. Later, we shall use them to convert formulæ intoprenex normal form,
where all quantifiers are at the front.

pulling quantifiers through negation
(infinitary de Morgan laws)

¬(∀x A) ' ∃x¬A

¬(∃x A) ' ∀x¬A

pulling quantifiers through conjunction and disjunction
(providedx is not free inB)

(∀x A) ∧ B ' ∀x (A∧ B)

(∀x A) ∨ B ' ∀x (A∨ B)

(∃x A) ∧ B ' ∃x (A∧ B)

(∃x A) ∨ B ' ∃x (A∨ B)

distributive laws

(∀x A) ∧ (∀x B) ' ∀x (A∧ B)

(∃x A) ∨ (∃x B) ' ∃x (A∨ B)

implication: A→ B as¬A∨ B

6.3 Equivalences involving quantifiers 29

(providedx is not free inB)

(∀x A)→ B ' ∃x (A→ B)

(∃x A)→ B ' ∀x (A→ B)

expansion:∀ and∃ as infinitary conjunction and disjunction

∀x A' (∀x A) ∧ A[t/x]

∃x A' (∃x A) ∨ A[t/x]

With the help of the associative and commutative laws for∧ and∨, a quantifier
can be pulled out of any conjunct or disjunct.

The distributive laws differ from pulling: they replace two quantifiers by one.
(Note that the quantified variables will probably have different names, so one of
them will have be renamed.) Depending upon the situation, using distributive laws
can be either better or worse than pulling. There are no distributive laws for∀ over
∨ and∃ over∧. If in doubt, do not use distributive laws!

Two substitution laws do not involve quantifiers explicitly, but let us usex = t
to replacex by t in a restricted context:

(x = t ∧ A) ' (x = t ∧ A[t/x])

(x = t → A) ' (x = t → A[t/x])

Many first-order formulæ have easy proofs using equivalences:

∃x (x = a ∧ P(x)) ' ∃x (x = a ∧ P(a))

' ∃x (x = a) ∧ P(a)

' P(a)

The following formula is quite hard to prove using the sequent calculus, but
using equivalences it is simple:

∃z(P(z)→ P(a) ∧ P(b)) ' ∀z P(z)→ P(a) ∧ P(b)

' ∀z P(z) ∧ P(a) ∧ P(b)→ P(a) ∧ P(b)

' t

If you are asked to prove a formula, but no particular formal system (such as the
sequent calculus) has been specified, then you may use any convincing argument.
Using equivalences as above can shorten the proof considerably. Also, take ad-
vantage of symmetries; in provingA∧ B ' B ∧ A, it obviously suffices to prove
A∧ B |= B ∧ A.

30 6 FORMAL REASONING IN FIRST-ORDER LOGIC

Exercise 15 Verify these equivalences by appealing to the truth definition for
first-order logic.

Exercise 16 Explain why the following are not equivalences. Are they implica-
tions? In which direction?

(∀x A) ∨ (∀x B)
?' ∀x (A∨ B)

(∃x A) ∧ (∃x B)
?' ∃x (A∧ B)

6.4 Sequent rules for the universal quantifier

Here are the sequent rules for∀:
A[t/x], 0⇒1

∀x A, 0⇒1
(∀l) 0⇒1, A

0⇒1,∀x A
(∀r)

Rule (∀r) holdsprovidedx is not free in the conclusion! This ensures thatx is
really arbitrary; ifx is free in0 or1 then the sequent is assuming properties ofx.
To understand the proviso, contrast the proof of the theorem∀x [P(x) → P(x)]
with an attempted proof of the invalid formulaP(x)→ ∀x P(x).

Rule (∀l) lets us create many instances of∀x A. The exercises below include
some examples that require more than one copy of the quantified formula. Since
we regard sequents as consisting of sets, we may regard them as containing unlim-
ited quantities of each of their elements. But except for the two rules(∀l) and(∃r)
(see below), we only need one copy of each formula.

Example 8 In this elementary proof, rule(∀l) is applied to instantiate the bound
variablex with the term f (y). The application of(∀r) is permitted becausey is
not free in the conclusion (which, in fact, is closed).

P(f (y))⇒ P(f (y))
∀x P(x)⇒ P(f (y))

(∀l)

∀x P(x)⇒∀y P(f (y))
(∀r)

Example 9 This proof concerns part of the law for pulling universal quantifiers
out of conjunctions. Rule(∀l) just discards the quantifier, since it instantiates the
bound variablex with the free variablex.

A, B⇒ A
A∧ B⇒ A

(∧l)

∀x (A∧ B)⇒ A
(∀l)

∀x (A∧ B)⇒∀x A
(∀r)

6.5 Sequent rules for the existential quantifier 31

Example 10 The sequent∀x (A→ B)⇒ A→ ∀x B is valid providedx is not
free in A. That condition is required for the application of(∀r) below:

A⇒ A, B A, B⇒ B
A, A→ B⇒ B

(→l)

A, ∀x (A→ B)⇒ B
(∀l)

A, ∀x (A→ B)⇒∀x B
(∀r)

∀x (A→ B)⇒ A→ ∀x B
(→r)

What if the condition fails to hold? LetA andB both be the formulax = 0. Then
∀x (x = 0→ x = 0) is valid, butx = 0→ ∀x (x = 0) is not valid (it fails under
any valuation that setsx to 0).

Exercise 17 Prove¬∀y [(Q(a)∨Q(b))∧¬Q(y)] using equivalences, and then
formally using the sequent calculus.

Exercise 18 Prove the following using the sequent calculus:

∀x [P(x)→ P(f (x))]⇒∀x [P(x)→ P(f (f (x)))]

(∀x A) ∧ (∀x B)⇒∀x (A∧ B)

∀x (A∧ B)⇒ (∀x A) ∧ (∀x B)

6.5 Sequent rules for the existential quantifier

Here are the sequent rules for∃:
A, 0⇒1

∃x A, 0⇒1
(∃l) 0⇒1, A[t/x]

0⇒1, ∃x A
(∃r)

Rule (∃l) holdsprovidedx is not free in the conclusion! These rules are strictly
dual to the∀-rules; any example involving∀ can easily be transformed into one
involving ∃ and having a proof of precisely the same form. For example, the
sequent∀x P(x)⇒∀y P(f (y)) can be transformed into∃y P(f (y))⇒∃x P(x).

Example 11 Here is half of the∃ distributive law. Rule(∃r) just discards the
quantifier, instantiating the bound variablex with the free variablex. In the gen-
eral case, it can instantiate the bound variable with any term.

A⇒ A, B
A⇒ A∨ B

(∨r)

A⇒∃x (A∨ B)
(∃r)

∃x A⇒∃x (A∨ B)
(∃l) similar

∃x B⇒∃x (A∨ B)
(∃l)

∃x A∨ ∃x B⇒∃x (A∨ B)
(∨l)

32 7 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

Example 12 The sequent∃x A∧ ∃x B⇒∃x (A ∧ B) is not valid, because the
value ofx that makesA true could differ from the value ofx that makesB true.
This comes out clearly in the proof attempt, where we are not allows to apply(∃l)
twice with the same variable name,x. As soon as we are forced to rename the
second variable toy, it becomes obvious that the two values could differ. Turning
to the right side of the sequent, no application of(∃r) can lead to a proof. We have
nothing to instantiatex with:

A, B[y/x]⇒ A∧ B
A, B[y/x]⇒∃x (A∧ B)

(∃r)

A, ∃x B⇒∃x (A∧ B)
(∃l)

∃x A, ∃x B⇒∃x (A∧ B)
(∃l)

∃x A∧ ∃x B⇒∃x (A∧ B)
(∧l)

Exercise 19 Prove the following using the sequent calculus:

P(a) ∨ ∃x P(f (x))⇒∃y P(y)

∃x (A∨ B)⇒ (∃x A) ∨ (∃x B)

⇒∃z(P(z)→ P(a) ∧ P(b))

7 Clause Methods for Propositional Logic

This section discusses two proof methods in the context of propositional logic:
the Davis-Putnam procedure and resolution.

The Davis-Putnam procedure dates from 1960, and its application to first-
order logic has been regarded as obsolete for decades. However, propositional
logic has grown in importance, and Davis-Putnam has been rediscovered as an
efficient decision procedure. It has been applied to solve some open questions
in combinatorial mathematics, such as the existence of certain Latin squares. Its
main rival is OBDDs, which have been applied mainly to hardware design.

Resolution is a powerful proof method for first-order logic. We first consider
ground resolution, which works for propositional logic. Though of little practi-
cal use, ground resolution introduces some of the main concepts. The resolution
method is not natural for hand proofs, but it is easy to automate: it has only one
inference rule and no axioms.

Both methods require the original formula to be negated, then converted into
CNF. Recall that CNF is a conjunction of disjunction of literals. A disjunction of
literals is called aclause, and written as a set of literals. Converting the negated
formula to CNF yields a set of such clauses. Both methods seek a contradiction in

7.1 Clausal notation 33

the set of clauses; if the clauses are unsatisfiable, then so is the negated formula,
and therefore the original formula is valid.

To refutea set of clauses is to prove that they are inconsistent. The proof is
called arefutation.

7.1 Clausal notation

Definition 10 A clauseis a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln,

written as a set

{¬K1, . . . ,¬Km, L1, . . . , Ln}.

Since∨ is commutative, associative, and idempotent, the order of literals in a
clause does not matter. The above clause is logically equivalent to the implication

(K1 ∧ · · · ∧ Km)→ (L1 ∨ · · · ∨ Ln)

Kowalski notation abbreviates this to

K1, · · · , Km→ L1, · · · , Ln

and whenn = 1 we have the familiar Prolog clauses, also known asdefinite
clauses.

7.2 The Davis-Putnam Method

The Davis-Putnam method is based upon some obvious identities:

t ∧ A ' A

A∧ (A∨ B) ' A

A∧ (¬A∨ B) ' A∧ B

A ' (A∧ B) ∨ (A∧ ¬B)

Here is an outline of the algorithm:

1. Delete tautological clauses:{P,¬P, . . . }
2. For each unit clause{L},

• delete all clauses containingL

34 7 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

• delete¬L from all clauses

3. Delete all clauses containingpure literals. A literal L is pure if there is no
clause containing¬L.

4. If the empty clause is generated, then we have a refutation. Conversely, if
all clauses are deleted, then the original clause set is satisfiable.

5. Perform acase spliton some literalL, and recursively apply the algorithm
to theL and¬L subcases. The clause set is satisfiable if and only if one of
the subcases is satisfiable.

This is a decision procedure. It must terminate because each case split eliminates
a propositional symbol. Zhang and Stickel (1994) have proposed some efficient
algorithms for the Davis-Putnam procedure.

Tautological clauses are deleted because they are always true, and thus cannot
participate in a contradiction. A pure literal can always be assumed to be true;
deleting the clauses containing it can be regarded as a degenerate case split, in
which there is only one case.

Example 13 The Davis-Putnam method can show that a formula is not a theo-
rem. Consider the formulaP ∨ Q→ Q ∨ R. After negating this and converting
to CNF, we obtain the three clauses{P, Q}, {¬Q} and{¬R}. The Davis-Putnam
method terminates rapidly:

{P, Q} {¬Q} {¬R} initial clauses
{P} {¬R} unit¬Q

{¬R} unit P (also pure)
unit¬R (also pure)

The clauses are satisfiable byP 7→ t, Q 7→ f, R 7→ f. This interpretation falsifies
P ∨ Q→ Q ∨ R.

Example 14 Here is an example of a case split. Consider the clause set

{¬Q, R} {¬R, P} {¬R, Q} {¬P, Q, R} {P, Q} {¬P,¬Q}.
There are no unit clauses or pure literals, so we arbitrarily selectP for case

splitting:

{¬Q, R} {¬R, Q} {Q, R} {¬Q} if P is true
{¬R} {R} unit¬Q
¤ unit R

{¬Q, R} {¬R} {¬R, Q} {Q} if P is false
{¬Q} {Q} unit¬R

¤ unit¬Q

7.3 Introduction to resolution 35

Exercise 20 Apply the Davis-Putnam procedure to the clause set

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}.

7.3 Introduction to resolution

Resolution is essentially the following rule of inference:

B ∨ A ¬B ∨ C
A∨ C

To convince yourself that this rule is sound, note thatB must be either false or
true.

• if B is false, thenB ∨ A is equivalent toA, so we getA∨ C

• if B is true, then¬B ∨ C is equivalent toC, so we getA∨ C

You might also understand this rule via transitivity of→ (with D = ¬A):

D→ B B→ C
D→ C

A special case of resolution is whenA andC are empty:

B ¬B
f

This detects contradictions.
Resolution works with disjunctions. The aim is to prove a contradiction, re-

futing a formula. Here is the method for proving a formulaA:

1. Translate¬A into CNF asA1 ∧ · · · ∧ Am.

2. Break this into a set of clauses:A1, . . . , Am.

3. Repeatedly apply the resolution rule to the clauses, producing new clauses.
These are all consequences of¬A.

4. If a contradiction is reached, we have refuted¬A.

In set notation the resolution rule is

{B, A1, . . . , Am} {¬B,C1, . . . ,Cn}
{A1, . . . , Am,C1, . . . ,Cn}

Resolution takes two clauses and creates a new one. A collection of clauses is
maintained; the two clauses are chosen from the collection according to some

36 7 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

strategy, and the new clause is added to it. Ifm = 0 or n = 0 then the new
clause will be smaller than one of the parent clauses; ifm = n = 0 then the new
clause will be empty. A clause is true (in some interpretation) just when one of
the literals is true; thus the empty clause indicates contradiction. It is written¤.
If the empty clause is generated, resolution terminates successfully.

7.4 Examples of ground resolution

Let us try to prove

P ∧ Q→ Q ∧ P

Convert its negation to CNF:

¬(P ∧ Q→ Q ∧ P)

We can combine steps 1 (eliminate→) and 2 (push negations in) using the law
¬(A→ B) ' A∧ ¬B:

(P ∧ Q) ∧ ¬(Q ∧ P)

(P ∧ Q) ∧ (¬Q ∨ ¬P)

Step 3, push disjunctions in, has nothing to do. The clauses are

{P} {Q} {¬Q,¬P}
We resolve{P} and{¬Q,¬P} as follows:

{P} {¬P,¬Q}
{¬Q}

The resolvent is{¬Q}. Resolving{Q} and with this new clause gives

{Q} {¬Q}
{}

The resolvent is the empty clause, properly written as¤. We have provedP ∧
Q→ Q ∧ P by assuming its negation and deriving a contradiction.

It is nicer to draw a tree like this:

ab

{P} {¬Q,¬P}

{Q} {¬Q}

¤
ac 1

7.5 A proof using a set of assumptions 37

Another example is(P ↔ Q) ↔ (Q ↔ P). The steps of the conversion
to clauses is left as an exercise; remember to negate the formula first! The final
clauses are

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}

A tree for the resolution proof is

{P, Q} {¬P, Q} {P,¬Q} {¬P,¬Q}

{Q} {¬Q}

¤

2

abac 1

Note that the tree contains{Q} and{¬Q} rather than{Q, Q} and{¬Q,¬Q}.
If we forget to suppress repeated literals, we can get stuck. Resolving{Q, Q}
and{¬Q,¬Q} (keeping repetitions) gives{Q,¬Q}, a tautology. Tautologies are
useless. Resolving this one with the other clauses leads nowhere. Try it.

These examples might suggest that a proof has to involve all the clauses, each
used exactly once. In general, a clause may be used repeatedly. Problems often
contain irrelevant clauses that are not used at all.

Exercise 21 Prove(A→ B ∨ C)→ [(A→ B) ∨ (A→ C)] using resolution.

7.5 A proof using a set of assumptions

In this example we assume

H → M ∨ N M→ K ∧ P N→ L ∧ P

and proveH → P. It turns out that we can generate clauses separately from the
assumptions (takenpositively) and the conclusion (negated).

If we call the assumptionsA1, . . . , Ak and the conclusionB, then the desired
theorem is

(A1 ∧ · · · ∧ Ak)→ B

Try negating this and converting to CNF. Using the law¬(A→ B) ' A∧ ¬B,
the negation converts in one step to

A1 ∧ · · · ∧ Ak ∧ ¬B

38 7 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

Since the entire formula is a conjunction, we can separately convertA1, . . . , Ak,
and¬B to clause form and pool the clauses together.

AssumptionH → M ∨ N is essentially in clause form already:

{¬H,M, N}
AssumptionM → K ∧ P becomes two clauses:

{¬M, K } {¬M, P}
AssumptionN → L ∧ P also becomes two clauses:

{¬N, L} {¬N, P}
The negated conclusion,¬(H → P), becomes two clauses:

{H} {¬P}
A tree for the resolution proof is

abac 1

{H} {¬H,M, N}

{M, N} {¬M, P}

{N, P} {¬N, P}

{P} {¬P}

¤

The clauses were not tried at random. Here are some points of proof strategy.

Ignoring irrelevance. Clauses{¬M, K } and {¬N, L} lead nowhere, so they
were not tried. Resolving with one of these would make a clause containingK
or L. There is no way of getting rid of either literal, for no clause contains¬K or
¬L. So this is not a way to obtain the empty clause.

Working from the goal. In each resolution step, at least one clause involves
the negated conclusion (possibly via earlier resolution steps). We do not blindly
derive facts from the assumptions — for, provided the assumptions are consistent,
any contradiction will have to involve the negated conclusion. This strategy is
calledset of support.

7.6 Deletion of redundant clauses 39

Linear resolution. The proof has a linear structure: each resolvent becomes the
parent clause for the next resolution step. Furthermore, the other parent clause is
always one of the original set of clauses. This simple structure is very efficient
because only the last resolvent needs to be saved. It is similar to the execution
strategy of Prolog.

Exercise 22 Explain in more detail the conversion of this example into clauses.

Exercise 23 Prove Peirce’s law,((P→ Q)→ P)→ P, using resolution.

Exercise 24 Prove(Q→ R) ∧ (R→ P ∧ Q) ∧ (P → Q ∨ R)→ (P ↔ Q)
using the Davis-Putnam method, and again by resolution. (This one is fairly long.)

7.6 Deletion of redundant clauses

During resolution, the number of clauses builds up dramatically; it is important to
delete all redundant clauses.

Each new clause is a consequence of the existing clauses. A contradiction
can only be derived if the original set of clauses is inconsistent. A clause can be
deleted if it does not affect the consistency of the set. Any tautology should be
deleted, since it is true in all interpretations.

Here is a subtler case. Consider the clauses

{S, R} {P,¬S} {P, Q, R}

Resolving the first two yields{P, R}. Since each clause is a disjunction, any
interpretation that satisfies{P, R} also satisfies{P, Q, R}. Thus{P, Q, R} cannot
cause inconsistency, and should be deleted.

Put another way,P ∨ R implies P ∨ Q ∨ R. Anything that could be derived
from P∨ Q∨ R could also be derived fromP∨ R. This sort of deletion is called
subsumption; clause{P, R} subsumes{P, Q, R}.

Exercise 25 Prove(P ∧ Q → R) ∧ (P ∨ Q ∨ R) → ((P ↔ Q) → R) by
resolution. Show the steps of converting the formula into clauses.

Exercise 26 Using linear resolution, prove that(P ∧ Q) → (R ∧ S) follows
from P→ R andR∧ P→ S.

40 8 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

Exercise 27 Convert these axioms to clauses, showing all steps. Then prove
Winterstorm→ Miserableby resolution:

Rain∧ (Windy∨ ¬Umbrella)→Wet Winterstorm→ Storm∧ Cold
Wet∧ Cold→ Miserable Storm→ Rain∧Windy

8 Skolem Functions and Herbrand’s Theorem

Propositional logic is the basis of many proof methods for first-order logic. Elim-
inating the quantifiers from a first-order formula reduces it nearly to propositional
logic. This section describes how to do so.

8.1 Prenex normal form

The simplest method of eliminating quantifiers from formula involves first moving
them to the front.

Definition 11 A formula is inprenex normal formif and only if it has the form

Q1x1 Q2x2 · · · Qnxn︸ ︷︷ ︸
prefix

(A)︸︷︷︸
matrix

,

where A is quantifier-free, eachQi is either∀ or ∃, andn ≥ 0. The string of
quantifiers is called theprefixandA is called thematrix.

Using the equivalences described above, any formula can be put into prenex
normal form.

Examples of translation.

The affected subformulæ will be underlined.

Example 15 Start with

¬(∃x P(x)) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the∃x :

∀x¬P(x) ∧ (∃y Q(y) ∨ ∀z P(z))

Pull out the∃y :

∀x¬P(x) ∧ (∃y (Q(y) ∨ ∀z P(z)))

8.2 Removing quantifiers: Skolem form 41

Pull out the∃y again:

∃y (∀x¬P(x) ∧ (Q(y) ∨ ∀z P(z)))

Pull out the∀z :

∃y (∀x¬P(x) ∧ ∀z(Q(y) ∨ P(z)))

Pull out the∀z again:

∃y∀z(∀x¬P(x) ∧ (Q(y) ∨ P(z)))

Pull out the∀x :

∃y∀z∀x (¬P(x) ∧ (Q(y) ∨ P(z)))

Example 16 Start with

∀x P(x)→ ∃y∀z R(y, z)

Remove the implication:

¬∀x P(x) ∨ ∃y∀z R(y, z)

Pull out the∀x :

∃x¬P(x) ∨ ∃y∀z R(y, z)

Distribute∃ over∨, renamingy to x:5

∃x (¬P(x) ∨ ∀z R(x, z))

Finally, pull out the∀z :

∃x ∀z(¬P(x) ∨ R(x, z))

8.2 Removing quantifiers: Skolem form

Now that the quantifiers are at the front, let’s eliminate them! We replace every
existentially bound variable by a Skolem constant or function. This transformation
does not preserve the meaning of a formula; it does preserveinconsistency, which
is the critical property, since resolution works by detecting contradictions.

5Or simply pull out the quantifiers separately. Using the distributive law is marginally better
here because it will result in only one Skolem constant instead of two; see the following section.

42 8 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

How to Skolemize a formula

Suppose the formula is in prenex normal form.6 Starting from the left, if the
formula contains an existential quantifier, then it must have the form

∀x1∀x2 · · · ∀xk ∃y A

whereA is a prenex formula,k ≥ 0, and∃y is the leftmost existential quantifier.
Choose ak-place function symbol not present inA (that is, anewfunction sym-
bol). Delete the∃y and replace all other occurrences ofy by f (x1, x2, . . . , xk).
The result is another prenex formula:

∀x1∀x2 · · · ∀xk A[f (x1, x2, . . . , xk)/y]

If k = 0 above then the prenex formula is simply∃y A, and other occurrences
of y are replaced by a new constant symbolc. The resulting formula isA[c/y].

The remaining existential quantifiers, if any, are inA. Repeatedly eliminate
all of them, as above. The new symbols are calledSkolem functions(or Skolem
constants).

After Skolemization the formula is just∀x1∀x2 · · · ∀xk A where A is
quantifier-free. Since the free variables in a formula are taken to be universally
quantified, we can drop these quantifiers, leaving simplyA. We are almost back
to the propositional case, except the formula typically contains terms. We shall
have to handle constants, function symbols, and variables.

Examples of Skolemization

The affected expressions are underlined.

Example 17 Start with

∃x ∀y ∃z R(x, y, z)

Eliminate the∃x using the Skolem constanta:

∀y ∃z R(a, y, z)

Eliminate the∃z using the 1-place Skolem functionf :

∀y R(a, y, f (y))

Finally, drop the∀y and convert the remaining formula to a clause:

{R(a, y, f (y))}
6This makes things easier to follow. However, some proof methods merely require the formula

to be in negation normal form. The basic idea is the same: remove the outermost existential
quantifier, replacing its bound variable by a Skolem term. Pushing quantifiers in as far as possible,
instead of pulling them out, yields a better set of clauses.

8.2 Removing quantifiers: Skolem form 43

Example 18 Start with

∃u∀v ∃w ∃x ∀y ∃z((P(h(u, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the∃u using the Skolem constantc:

∀v ∃w ∃x ∀y ∃z((P(h(c, v)) ∨ Q(w)) ∧ R(x, h(y, z)))

Eliminate the∃w using the 1-place Skolem functionf :

∀v ∃x ∀y ∃z((P(h(c, v)) ∨ Q(f (v))) ∧ R(x, h(y, z)))

Eliminate the∃x using the 1-place Skolem functiong:

∀v ∀y ∃z((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, z)))

Eliminate the∃z using the 2-place Skolem functionj (note that functionh is
already used!):

∀v ∀y ((P(h(c, v)) ∨ Q(f (v))) ∧ R(g(v), h(y, j (v, y))))

Finally drop the universal quantifiers, getting a set of clauses:

{P(h(c, v)), Q(f (v))} {R(g(v), h(y, j (v, y)))}

Correctness of Skolemization

Skolemization doesnot preserve meaning. The version presented above does not
even preserve validity! For example,

∃x (P(a)→ P(x))

is valid. (Why? In any model, the required value ofx exists — it is just the value
of a in that model.)

Replacing the∃x by the Skolem constantb gives

P(a)→ P(b)

This has a different meaning since it refers to a constantb not previously men-
tioned. And it is not valid! For example, it is false in the interpretation where
P(x) means ‘x equals 0’ anda denotes 0 andb denotes 1.

Our version of Skolemization does preserveconsistency— and therefore in-
consistency. Consider one Skolemization step.

44 8 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

• The formula∀x ∃y A is consistent iff it holds in some interpretationI =
(D, I)

• iff for all x ∈ D there is somey ∈ D such thatA holds

• iff there is some function onD, say f̂ ∈ D → D, such that for allx ∈ D,
if y = f̂ (x) thenA holds

• iff there is an interpretationI ′ extendingI so that the symbolf denotes the
function f̂ , andA[f (x)/y] holds for allx ∈ D.

• iff the formula∀x A[f (x)/y] is consistent.

Note thatI above does not interpretf because Skolem functions have to be new.
ThusI may be extended toI ′ by giving an interpretation forf .

This argument easily generalizes to the case∀x1∀x2 · · · ∀xk ∃y A. Thus, if a
formula is consistent then so is the Skolemized version. If it is inconsistent then
so is the Skolemized version. That is what we need: resolution works by proving
that a formula is inconsistent.

There is a dual version of Skolemization that preserves validity rather than
consistency. It replaces universal quantifiers, rather than existential ones, by
Skolem functions.

Exercise 28 Describe this dual version of Skolemization and demonstrate that it
preserves validity. What might it be used for?

8.3 Herbrand interpretations

A Herbrand interpretation basically consists of all terms that can be written us-
ing just the constant and function symbols in a set of clausesS (or quantifier-free
formula). Why define Herbrand interpretations? A mathematical reason: for con-
sistency ofS we need only consider Herbrand interpretations. A programming
reason: the data processed by a Prolog programS is simply its Herbrand universe.

To define the Herbrand universe for the set of clausesS we start with sets of
the constant and function symbols inS, including Skolem functions.

Definition 12 Let C be the set of all constants inS. If there are none, letC = {a}
for some constant symbola of the first-order language.7 For n > 0 let Fn be
the set of alln-place function symbols inS and letPn be the set of alln-place
predicate symbols inS.

7This step ensures that the resulting domain will be non-empty.

8.3 Herbrand interpretations 45

TheHerbrand universeis the setH =⋃i≥0 Hi , where

H0 = C
Hi+1 = Hi ∪ { f (t1, . . . , tn) | t1, . . . , tn ∈ Hi and f ∈ Fn}

By this construction,H turns out to satisfy the recursive equation

H = { f (t1, . . . , tn) | t1, . . . , tn ∈ H and f ∈ Fn}
TheHerbrand base(or atom set) consists of all possible applications of pred-

icate symbols inS to terms of the Herbrand universe forS:

H B = {P(t1, . . . , tn) | t1, . . . , tn ∈ H andP ∈ Pn}
Note that the elements ofH are ground terms — this is a syntactic interpretation.
An interpretation(H, I) is a Herbrand interpretationprovided I [t] = t for all
ground termst . The interpretation of the predicates is given by a subset of the
Herbrand base; this specifies which predicate applications are true.

Example 19 Suppose we have the set (consisting of two clauses)

S= {{P(a)}, {Q(g(y, z)),¬P(f (x))}}
Then

C = {a}
F1 = { f }
F2 = {g}
Fn = ∅ (n > 2)

H = {a, f (a), g(a,a), f (f (a)), g(f (a),a), g(a, f (a)), g(f (a), f (a)), . . . }
H B = {P(a), Q(a), P(f (a)), Q(f (a)), P(g(a,a)), Q(g(a,a)),

P(f (f (a))), Q(f (f (a))), P(g(f (a),a)), Q(g(f (a),a)),

P(g(a, f (a))), Q(g(a, f (a))), P(g(f (a), f (a))), Q(g(f (a), f (a))), . . . }
Every interpretationI over an arbitrary universe can be mimicked by some Her-
brand interpretation: just take

{P(t1, . . . , tn) ∈ H B | P(t1, . . . , tn) holds inI}
This is a subset ofH B. Each subset ofH B specifies a Herbrand interpretation by
listing the values (inH) for which each predicate holds. To mimic the interpreta-
tion I we take exactly the set of ground atomic formulæ that hold inI; this is a
Herbrand interpretation.

Thus, we have informally proved the following two results (Chang and Lee,
page 55):

46 8 SKOLEM FUNCTIONS AND HERBRAND’S THEOREM

Lemma 13 Let S be a set of clauses. If an interpretation satisfiesS, then an
Herbrandinterpretation satisfiesS.

Theorem 14 A setSof clauses is unsatisfiable if and only no Herbrand interpre-
tation satisfiesS.

Equality may behave strangely in Herbrand interpretations. Given an interpre-
tationI, the denotation of= is the set of all pairs of ground terms(t1, t2) such that
t1 = t2 according toI. In a context of the natural numbers, the denotation of=
could include pairs like(1+ 1,2) — the two components need not be identical,
contrary to the normal situation with equality.

8.4 The Skolem-G̈odel-Herbrand Theorem

Finally we have the Skolem-G̈odel-Herbrand Theorem. A version of the Com-
pleteness Theorem, it tells us that unsatisfiability can always be detected by a
finiteprocess. It does not tell us how to detect satisfiability, for there is no general
method.8

Definition 15 An instanceof a clauseC is a clause that results by replacing vari-
ables inC by terms. Aground instanceof a clauseC is an instance ofC that
contains no variables. (It can be obtained by replacing all variables inC by ele-
ments of a Herbrand universe, which are ground terms.)

Since the variables in a clause are taken to be universally quantified, every
instance ofC is a logical consequence ofC.

Example 20 This clause is valid in the obvious integer model:

C = {¬even(x),¬even(y),even(x + y)}

Replacingx by y+ y in C results in the instance

C′ = {¬even(y+ y),¬even(y),even((y+ y)+ y)}

Replacingy by 2 inC′ results in the ground instance

C′′ = {¬even(2+ 2),¬even(2),even((2+ 2)+ 2)}
8It is often confused with Herbrand’s Theorem, a stronger result.

47

Example 21 Consider the clause

C = {Q(g(y, x)),¬P(f (x))}
Replacingx by f (z) in C results in the instance

C′ = {Q(g(y, f (z))),¬P(f (f (z)))}
Replacingy by j (a) andz by b in C′ results in the instance

C′′ = {Q(g(j (a), f (b))),¬P(f (f (b)))}
Assuming thata andb are constants,C′′ is a ground instance ofC.

Theorem 16 A setS of clauses is unsatisfiable if and only if there is a finite un-
satisfiable setS′ of ground instances of clauses ofS.

The proof is rather involved; see Chang and Lee, pages 56–61, for details. The
(H⇒) direction is the interesting one. It uses a non-constructive argument to show
that if there is no finite unsatisfiable setS′, then there must be a model ofS.

The(⇐H) direction simply says that ifS′ is unsatisfiable then so isS. This is
straightforward since every clause inS′ is a logical consequence of some clause
in S. Thus if S′ is inconsistent, the inconsistency is already present inS.

Question: how do we discoverwhichground instances? Answer: byunifica-
tion.

Exercise 29 Consider a first-order language with 0 and 1 as constant symbols,
with− as a 1-place function symbol and+ as a 2-place function symbol, and with
< as a 2-place predicate symbol.

(a) Describe the Herbrand Universe for this language.

(b) The language can be interpreted by taking the integers for the universe and
giving 0 1,−, +, and< their usual meanings over the integers. What do
those symbols denote in the corresponding Herbrand model?

9 Unification

Unification is the operation of finding a common instance of two terms. Though
the concept is simple, it involves a complicated theory. Proving the unification
algorithm’s correctness (especially termination) is difficult.

To introduce the idea of unification, consider a few examples. The terms
f (x,b) and f (a, y) have the common instancef (a,b), replacingx by a and y

48 9 UNIFICATION

by b. The termsf (x, x) and f (a,b) have no common instance, assuming thata
andb are distinct constants. The termsf (x, x) and f (y, g(y)) have no common
instance, since there is no way thatx can have the formy andg(y) at the same
time — unless we admit the infinite termg(g(g(· · ·))).

Only variables may be replaced by other terms. Constants are not affected
(they remain constant!). If a term has the formf (t,u) then instances of that term
must have the formf (t ′,u′), wheret ′ is an instance oft andu′ is an instance ofu.

9.1 Substitutions

We have already seen substitutions informally. It is now time for a more detailed
treatment.

Definition 17 A substitutionis a finite set of replacements

[t1/x1, . . . , tk/xk]

wherex1, . . . , xk are distinct variables such thatti 6= xi for all i = 1, . . . , k. We
use Greek lettersφ, θ , σ to stand for substitutions.

The finite set{x1, . . . , xk} is called thedomainof the substitution. The domain
of a substitutionθ is written dom(θ).

A substitutionθ = [t1/x1, . . . , tk/xk] defines a function from the variables
{x1, . . . , xk} to terms. Postfix notation is usual for applying a substitution; thus,
for example,xi θ = ti . Substitutions may be applied to terms, not just to variables.
Substitution on terms is defined recursively as follows:

f (t1, . . . , tn)θ = f (t1θ, . . . , tnθ)

xθ = x for all x 6∈ dom(θ)

Here f is ann-place function symbol. The operation substitutes in the arguments
of functions, and leaves unchanged any variables outside of the domain ofθ .

Substitution may be extended to literals and clauses as follows:

P(t1, . . . , tn)θ = P(t1θ, . . . , tnθ)

{L1, . . . , Lm}θ = {L1θ, . . . , Lmθ}

HereP is ann-place predicate symbol (or its negation), whileL1, . . . , Lm are the
literals in a clause.

9.2 Composition of substitutions 49

Example 22 The substitutionθ = [h(y)/x,b/y] says to replacex by h(y) andy
by b. The replacements occur simultaneously; it doesnot have the effect of re-
placing x by h(b). Its domain is dom(θ) = {x, y}. Applying this substitution
gives

f (x, g(u), y)θ = f (h(y), g(u),b)

R(h(x), z)θ = R(h(h(y)), z)

{P(x),¬Q(y))}θ = {P(h(y)),¬Q(b))}

9.2 Composition of substitutions

If φ andθ are substitutions then so is theircompositionφ ◦ θ , which satisfies

t (φ ◦ θ) = (tφ)θ for all termst

Can we writeφ ◦ θ as a set of replacements? It has to satisfy the above for all
relevant variables:

x(φ ◦ θ) = (xφ)θ for all x ∈ dom(φ) ∪ dom(θ)

Thus it must be the set consisting of the replacements

(xφ)θ / x for all x ∈ dom(φ) ∪ dom(θ)

Equalityof substitutionsφ andθ is defined as follows:φ = θ if xφ = xθ for
all variablesx. Under these definitions composition enjoys an associative law. It
also has an identity element, namely [], the empty substitution.

(φ ◦ θ) ◦ σ = φ ◦ (θ ◦ σ)
φ ◦ [] = φ
[] ◦ φ = φ

Example 23 Let φ = [j (x)/u,0/y] and θ = [h(z)/x, g(3)/y]. Then
dom(φ) = {u, y} and dom(θ) = {x, y}, so dom(φ) ∪ dom(θ) = {u, x, y}. Thus

φ ◦ θ = [j (h(z))/u, h(z)/x,0/y]

Notice thaty(φ ◦θ) = (yφ)θ = 0θ = 0; the replacementg(3)/y has disappeared.

Exercise 30 Verify that◦ is associative and has [] for an identity.

50 9 UNIFICATION

9.3 Unifiers

Definition 18 A substitutionθ is aunifier of termst1 andt2 if t1θ = t2θ . More
generally,θ is a unifier of termst1, t2, . . . , tm if t1θ = t2θ = · · · = tmθ . The term
t1θ is called thecommon instanceof the unified terms. A unifier of two or more
literals is defined similarly.

Two terms can only be unified if they have similar structure apart from vari-
ables. The termsf (x) andh(y, z) are clearly non-unifiable since no substitution
can do anything about the differing function symbols. It is easy to see thatθ

unifies f (t1, . . . , tn) and f (u1, . . . ,un) if and only if θ unifies ti andui for all
i = 1, . . . ,n.

Example 24 The substitution [3/x, g(3)/y] unifies the termsg(g(x)) andg(y).
The common instance isg(g(3)). These terms have many other unifiers, including
the following:

unifying substitution common instance
[f (u)/x, g(f (u))/y] g(g(f (u)))
[z/x, g(z)/y] g(g(z))
[g(x)/y] g(g(x))

Note thatg(g(3)) and g(g(f (u))) are instances ofg(g(x)). Thus g(g(x))
is more general thang(g(3)) and g(g(f (u))); it admits many other instances.
Certainlyg(g(3)) seems to be arbitrary — neither of the original terms mentions
3! A separate point worth noting is thatg(g(x)) is equivalent tog(g(z)), apart
from the name of the variable. Let us formalize these intuitions.

9.4 Most general unifiers

Definition 19 The substitutionθ is more generalthanφ if φ = θ ◦ σ for some
substitutionσ .

Example 25 Recall the unifiers ofg(g(x)) andg(y). The unifier [g(x)/y] is
more general than the others listed, for

[3/x, g(3)/y] = [g(x)/y] ◦ [3/x]

[f (u)/x, g(f (u))/y] = [g(x)/y] ◦ [f (u)/x]

[z/x, g(z)/y] = [g(x)/y] ◦ [z/x]

[g(x)/y] = [g(x)/y] ◦ []

9.5 A simple unification algorithm 51

The last line above illustrates that every substitutionθ is more general than itself
becauseθ = θ ◦ []; ‘more general’ is a reflexive relation.

If two substitutionsθ andφ are each more general than the other then they
differ at most by renaming of variables, and can be regarded as equivalent. For
instance, [y/x, f (y)/w] and [x/y, f (x)/w] are equivalent:

[y/x, f (y)/w] = [x/y, f (x)/w] ◦ [y/x]

[x/y, f (x)/w] = [y/x, f (y)/w] ◦ [x/y]

What does all this mean in practice? Suppose we would like to apply either
θ or φ, whereφ = θ ◦ σ . If we applyθ then we can still get the effect ofφ by
applyingσ later. Furthermore, there is an algorithm to find a most general unifier
of two terms; by composition, this one unifier can generate all the unifiers of the
terms.

Definition 20 A substitutionθ is amost general unifier(MGU) of termst1, . . . ,
tm if

• θ unifiest1, . . . , tm, and

• θ is more general than every other unifier oft1, . . . , tm.

A most general unifier of two or moreliterals is defined similarly.

Thus ifθ is an MGU of termst1 andt2 andt1φ = t2φ thenφ = θ ◦σ for some
substitutionσ .

9.5 A simple unification algorithm

In many books, the unification algorithm is presented as operating on the concrete
syntax of terms, scanning along character strings. But terms are really tree struc-
tures and are so represented in a computer. Unification should be presented as
operating on trees. In fact, we need consider only binary trees, since these can
representn-ary branching trees. Unification is easily implemented in Lisp, where
the basic data structure (the S-expression) is a binary tree with labelled leaves.

Our trees have three kinds of nodes:

• A variablex, y, . . . — can be modified by substitution

• A constanta, b, . . . — handles function symbols also

• A pair (t,u) — wheret andu are terms

52 9 UNIFICATION

Unification of two terms considers nine cases, most of which are trivial. It is
impossible to unify a constant with a pair; in this case the algorithm fails. When
trying to unify two constantsa andb, if a = b then the most general unifier is []; if
a 6= b then unification is impossible. The interesting cases are variable-anything
and pair-pair.

Unification with a variable

Consider unifying a variablex with a termt , wherex 6= t . If x does not occur int
then the substitution [t/x] has no effect ont , so it does the job trivially:

x[t/x] = t = t [t/x]

It is not hard to show that [t/x] is amost generalunifier.
If x doesoccur in t then no unifier exists, for ifxθ = tθ then the termxθ

would be a subterm of itself, which is impossible.

Example 26 The termsx and f (x) are not unifiable. Ifxθ = u then f (x)θ =
f (u). Thusxθ = f (x)θ would imply u = f (u). We could, perhaps, introduce
the infinite term

u = f (f (f (f (f (· · ·)))))

as a unifier, but this would require a rigorous definition of the syntax and semantics
of infinite terms.

Unification of two pairs

Unifying the pairs(t1, t2) with (u1,u2) requires two recursive calls of the unifica-
tion algorithm. Ifθ1 unifiest1 with u1 andθ2 unifiest2θ1 with u2θ1 thenθ1 ◦ θ2

unifies(t1, t2) with (u1,u2):

(t1, t2)(θ1 ◦ θ2) = (t1, t2)θ1θ2

= (t1θ1θ2, t2θ1θ2)

= (u1θ1θ2, t2θ1θ2) sincet1θ1 = u1θ1

= (u1θ1θ2,u2θ1θ2) since(t2θ1)θ2 = (u2θ1)θ2

= (u1,u2)θ1θ2

= (u1,u2)(θ1 ◦ θ2)

It is possible to prove that ifθ1 andθ2 aremost generalunifiers then so isθ1 ◦ θ2.
If either recursive call fails then the pairs are not unifiable.

9.5 A simple unification algorithm 53

Note that the substitutionθ1 is applied tot2 andu2 before the second recursive
call. Will this terminate, even ift2θ1 andu2θ1 are much bigger thant2 andu2?
One can show that eitherθ1 does not affectt2 andu2, or elseθ1 reduces the number
of variables in the pair of terms. This is enough to show termination.

As given above, the algorithm works from left to right. An equally good alter-
native is to begin by unifyingt2 andu2.

Examples of unification

These examples are given for terms rather than binary trees. The translation to
binary trees is left as an exercise.

In most of these examples, the two terms have no variables in common. Most
uses of unification (including resolution, see below) rename variables in one of
the terms to ensure this. However, such renaming isnot part of unification itself.

Example 27 Unify f (x,b) with f (a, y). Steps:

Unify x anda getting [a/x].

Unify b andy getting [b/y].

Result is [a/x] ◦ [b/y], which is [a/x,b/y].

Strictly speaking we also have to unifyf with f , but this just gives [], the null
substitution.

Example 28 Unify f (x, x) with f (a,b). Steps:

Unify x anda getting [a/x].

Try to unify x[a/x] andb[a/x].

These area andb, distinct constants.Fail.

Example 29 Unify f (x, g(y)) with f (y, x). Steps:

Unify x andy getting [y/x].

Try to unify g(y)[y/x] and x[y/x]. These areg(y) andy, violating
the occurs check.Fail.

If we had renamed the variables in one of the terms beforehand, uni-
fication would have succeeded. In the next example, the two terms
have no variables in common, but unification fails anyway.

54 9 UNIFICATION

Example 30 Unify f (x, x) with f (y, g(y)). Steps:

Unify x andy getting [y/x].

Try to unify x[y/x] andg(y)[y/x].

These arey andg(y), wherey occurs ing(y). Fail.

Example 31 Unify j (w,a, h(w)) with j (f (x, y), x, z). Steps:

Unify w and f (x, y) getting [f (x, y)/w].

Unify a andx (the substitution has no effect) getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and(z[f (x, y)/w])[a/x].

These areh(f (x, y))[a/x] andz[a/x].

These areh(f (a, y)) andz; unifier is [h(f (a, y))/z].

Result is [f (x, y)/w] ◦ [a/x] ◦ [h(f (a, y))/z]. Performing the com-
positions, this simplifies to [f (a, y)/w,a/x, h(f (a, y))/z].

Example 32 Unify j (w,a, h(w)) with j (f (x, y), x, y). This is the previous
example but with ay in place of az.

Unify w and f (x, y) getting [f (x, y)/w].

Unify a andx getting [a/x].

Unify (h(w)[f (x, y)/w])[a/x] and(y[f (x, y)/w])[a/x].

These areh(f (a, y)) andy, but y occurs inh(f (a, y)). Fail.

Diagrams can be helpful. The lines indicate variable replacements:

abac 1

j (w,a, h(w)) j (f (x, y), x, y)

a/x

f (a, y)/w

h(f (a, y))/y???

9.6 Examples of theorem proving 55

Implementation remarks

To unify termst1, t2, . . . , tm for m > 2, compute a unifierθ of t1 and t2, then
recursively compute a unifierσ of the termst2θ , . . . , tmθ . The overall unifier is
thenθ ◦ σ . If any unification fails then the set is not unifiable.

A real implementation does not need to compose substitutions. Most represent
variables by pointers and effect the substitution [t/x] by updating pointerx to t .
The compositions are cumulative, so this works. However, if unification fails at
some point, the pointer assignments must be undone!

To avoid pointers you can store the updates as a list of pairs, called anenvi-
ronment. For example, the environmenta/x, f (x)/y represents the substitution
[a/x, f (a)/y]. The algorithm sketched here can take exponential time in unusual
cases. Faster algorithms exist, although they are more complex and are seldom
adopted.

Prolog systems, for the sake of efficiency, omit the occurs check. This can
result in circular data structures and looping. It is unsound for theorem proving.

9.6 Examples of theorem proving

These two examples are fundamental. They illustrate how the occurs check en-
forces correct quantifier reasoning.

Example 33 Consider a proof of

(∃y∀x R(x, y))→ (∀x ∃y R(x, y)).

Produce clauses separately for the antecedent and for the negation of the conse-
quent; this is more efficient than producing clauses for the negation of the entire
formula.

• The antecedent is∃y∀x R(x, y); replacing y by the Skolem constanta
yields the clause{R(x,a)}.

• In ¬(∀x ∃y R(x, y)), pushing in the negation produces∃x ∀y¬R(x, y).
Replacingx by the Skolem constantb yields the clause{¬R(b, y)}.

Unifying R(x,a) with R(b, y) detects the contradictionR(b,a) ∧ ¬R(b,a).

Example 34 In a similar vein, let us try to prove

(∀x ∃y R(x, y))→ (∃y∀x R(x, y)).

56 10 APPLICATIONS OF UNIFICATION

• Here the antecedent is∀x ∃y R(x, y); replacingy by the Skolem functionf
yields the clause{R(x, f (x))}.
• The negation of the consequent is¬(∃y∀x R(x, y)), which becomes
∀y ∃x¬R(x, y). Replacingx by the Skolem functiong yields the clause
{¬R(g(y), y)}.

Observe thatR(x, f (x)) and R(g(y), y) are not unifiable because of the occurs
check. And so it should be, because the original formula is not a theorem!

Exercise 31 For each of the following pairs of terms, give a most general unifier
or explain why none exists. Do not rename variables prior to performing the
unification.

f (g(x), z) f (y, h(y))

j (x, y, z) j (f (y, y), f (z, z), f (a,a))

j (x, z, x) j (y, f (y), z)

j (f (x), y,a) j (y, z, z)

j (g(x),a, y) j (z, x, f (z, z))

10 Applications of Unification

By means of unification, we can extend resolution to first-order logic. As a special
case we obtain Prolog. Other theorem provers are also based on unification. Other
applications include polymorphic type checking for the language ML.

10.1 Binary resolution

We now define the binary resolution rule with unification:

{B, A1, . . . , Am} {¬D,C1, . . . ,Cn}
{A1, . . . , Am,C1, . . . ,Cn}σ providedBσ = Dσ

As before, the first clause containsB and other literals, while the second clause
contains¬D and other literals. The substitutionσ is a unifier ofB and D (al-
most always amost generalunifier). This substitution is applied to all remaining
literals, producing the conclusion.

The variables in one clause are renamed before resolution to prevent clashes
with the variables in the other clause. Renaming is sound because the scope of
each variable is its clause. Resolution is sound because it takes an instance of
each clause — the instances are valid, because the clauses are universally valid —

10.2 Factoring 57

and then applies the propositional resolution rule, which is sound. For example,
the two clauses

{P(x)} and {¬P(g(x))}

yield the empty clause in a single resolution step. This works by renaming vari-
ables — say,x to y in the second clause — and unifyingP(x) with P(g(y)). For-
getting to rename variables is fatal, becauseP(x) cannot be unified withP(g(x)).

10.2 Factoring

In the general case, the resolution rule must performfactoring. This uses addi-
tional unifications to identify literals in the same clause. Factoring can make the
clause{P(x,b), P(a, y)} behave like the clause{P(a,b)}, sinceP(a,b) is the
result of unifyingP(x,b) with P(a, y).

The factoring unifications are done at the same time as the unification of the
complementary literals in the two clauses. The binary resolution rule with factor-
ing is

{B1, . . . , Bk, A1, . . . , Am} {¬D1, . . . ,¬Dl ,C1, . . . ,Cn}
{A1, . . . , Am,C1, . . . ,Cn}σ

whereσ is the most general substitution such that

B1σ = · · · = Bkσ = D1σ = · · · = Dlσ.

Resolution with factoring isrefutation complete: it will find a contradiction if
there is one. Showing this is difficult.

The search space is huge: resolution with factoring can be applied in many dif-
ferent ways, every time. Modern resolution systems use highly complex heuristics
to limit the search. Typically they only perform resolutions that can lead (perhaps
after several steps) to very short clauses, and they discard the intermediate clauses
produced along the way. Dozens of flags and parameters influence their operation.

Example 35 Let us prove∀x ∃y¬(P(y, x)↔ ¬P(y, y)).
Negate and expand the↔, getting

¬∀x ∃y¬((¬P(y, x) ∨ ¬P(y, y)) ∧ (¬¬P(y, y) ∨ P(y, x)))

Its negation normal form is

∃x ∀y ((¬P(y, x) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y, x)))

58 10 APPLICATIONS OF UNIFICATION

Skolemization yields

(¬P(y,a) ∨ ¬P(y, y)) ∧ (P(y, y) ∨ P(y,a))

The clauses are

{¬P(y,a),¬P(y, y)} {P(y, y), P(y,a)}

Note that¬P(a,a) is an instance of the first clause and thatP(a,a) is an
instance of the second, contradiction. This is a one-step proof! But it involves
both resolution and factoring, since the 2-literal clauses must collapse to singleton
clauses.

Example 36 Let us prove∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔
Q(x)]. The clauses are

{P,¬Q(b)} {P, Q(x)} {¬P,¬Q(x)} {¬P, Q(a)}

A short resolution proof follows. The complementary literals are underlined:

Resolve {P,¬Q(b)} with {P, Q(x)} getting{P}
Resolve{¬P,¬Q(x)} with {¬P, Q(a)} getting{¬P}
Resolve {P} with {¬P} getting¤

Exercise 32 Show the steps of converting∃x [P→ Q(x)]∧∃x [Q(x)→ P] →
∃x [P↔ Q(x)] into clauses. Then show two resolution proofs different from the
one shown above.

Exercise 33 Is the clause{P(x,b), P(a, y)} logically equivalent to the unit
clause {P(a,b)}? Is the clause{P(y, y), P(y,a)} logically equivalent to
{P(y,a)}? Explain both answers.

10.3 Prolog clauses

Prolog clauses, also called Horn clauses, have at most one positive literal. A
definiteclause is one of the form

{¬A1, . . . ,¬Am, B}

It is logically equivalent to(A1 ∧ · · · ∧ Am)→ B. Prolog’s notation is

B← A1, . . . , Am.

10.4 Prolog computations 59

If m= 0 then the clause is simply written asB and is sometimes called afact.
A negativeor goalclause is one of the form

{¬A1, . . . ,¬Am}

Prolog permits just one of these; it represents the list of unsolved goals. Prolog’s
notation is

← A1, . . . , Am.

A Prolog database consists of definite clauses. Observe that definite clauses can-
not express negative assertions, since they must contain a positive literal. From a
mathematical point of view, they have little expressive power; every set of definite
clauses is consistent! Even so, definite clauses are a natural notation for many
problems.

Exercise 34 Show that every set of definite clauses is consistent. (Hint: first
consider propositional logic, then extend your argument to first order logic.)

10.4 Prolog computations

A Prolog computation takes a database of definite clauses together with one goal
clause. It repeatedly resolves the goal clause with some definite clause to produce
a new goal clause. If resolution produces the empty goal clause, then execution
succeeds.

Here is a diagram of a Prolog computation step:

abac 1

definite clause goal clause
{¬A1, . . . ,¬An, B} {¬B1, . . . ,¬Bm}

σ = unify(B,¬B1)

new goal clause
{¬A1σ, . . . ,¬Anσ,¬B2σ, . . . ,¬Bmσ }

This is alinear resolution (§7). Two program clauses are never resolved with
each other. The result of each resolution step becomes the next goal clause; the
previous goal clause is discarded after use.

Prolog resolution is very efficient, compared with general resolution, because
it involves less search and storage. General resolution must consider all possible
pairs of clauses; it adds their resolvents to the existing set of clauses; it spends

60 10 APPLICATIONS OF UNIFICATION

a great deal of effort getting rid of subsumed (redundant) clauses and probably
useless clauses. Prolog always resolves some program clause with the goal clause.
Because goal clauses do not accumulate, Prolog requires little storage. Prolog
never uses factoring, with all its complexity.

Prolog has a fixed, deterministic execution strategy. The program is is re-
garded as a list of clauses, not a set; the clauses are tried strictly in order. With
a clause, the literals are also regarded as a list. The literals in the goal clause are
proved strictly from left to right. The goal clause’s first literal is replaced by the
literals from the unifying program clause, preserving their order.

Prolog’s search strategy is depth-first. To illustrate what this means, suppose
that the goal clause is simply← P and that the program clauses areP← P and
P← . Prolog will resolveP← P with ← P to obtain a new goal clause, which
happens to be identical to the original one. Prolog never notices the repeated
goal clause, so it repeats the same useless resolution over and over again. Depth-
first search means that at every ‘choice point,’ such as between usingP ← P
and P ← , Prolog will explore every avenue arising from its first choice before
considering the second choice. Obviously, the second choice would prove the goal
trivially, but Prolog never notices this.

10.5 Example of Prolog execution

Here are axioms about the English succession: howy can become King afterx.

∀x ∀y (oldestson(y, x) ∧ king(x)→ king(y))

∀x ∀y (defeat(y, x) ∧ king(x)→ king(y))

king(richardIII)

defeat(henryVII, richardIII)

oldestson(henryVIII,henryVII)

The goal is to prove king(henryVIII).
These axioms correspond to the following definite clauses:

{¬oldestson(y, x),¬king(x), king(y)}

{¬defeat(y, x),¬king(x), king(y)}

10.5 Example of Prolog execution 61

{king(richardIII)}

{defeat(henryVII, richardIII)}

{oldestson(henryVIII,henryVII)}

The goal clause is

{¬king(henryVIII)}

Figure 2 shows the execution. The subscripts in the clauses are to rename the
variables.

Note how crude this formalization is. It says nothing about the passage of
time, about births and deaths, about not having two kings at once. Henry VIII was
the second son of Henry VII; the first son, Arthur, died before his father. Logic is
clumsy for talking about situations in the real world.

The Frame Problem in Artificial Intelligence reveals another limitation of
logic. Consider writing an axiom system to describe a robot’s possible actions.
We might include an axiom to state that if the robot lifts an object at timet , then
it will be holding the object at timet + 1. But we also need to assert that the
positions of everything else remain the same as before. Then we must consider
the possibility that the object is a table and has other things on top of it. . .

Prolog is a powerful and useful language, but it is not necessarily logic. Most
Prolog programs rely on special predicates that affect execution but have no log-
ical meaning. There is a huge gap between the theory and practice of logic pro-
gramming.

Exercise 35 Convert these formulæ into clauses, showing each step: negating
the formula, eliminating→ and↔, pushing in negations, moving the quantifiers,
Skolemizing, dropping the universal quantifiers, and converting the matrix into
CNF.

(∀x ∃y R(x, y))→ (∃y∀x R(x, y))

(∃y∀x R(x, y))→ (∀x ∃y R(x, y))

∃x ∀yz((P(y)→ Q(z))→ (P(x)→ Q(x)))

¬∃y∀x (R(x, y)↔ ¬∃z(R(x, z) ∧ R(z, x)))

62 10 APPLICATIONS OF UNIFICATION

abac 1

definite clause goal clause

{¬os(y1, x1),¬k(x1), k(y1)} {¬k(henryVIII)}

{os(henryVIII, henryVII)} {¬os(henryVIII, x1),¬k(x1)}

{¬defeat(y2, x2),¬k(x2), k(y2)} {¬k(henryVII)}

{defeat(henryVII, richardIII)} {¬defeat(henryVII, x2),¬k(x2)}

{k(richardIII)} {¬k(richardIII)}

¤

6

Figure 2: Execution of a Prolog program (os= oldestson, k= king)

63

Exercise 36 Consider the Prolog program consisting of the definite clauses

P(f (x, y))← Q(x), R(y)

Q(g(z))← R(z)

R(a)←
Describe the Prolog computation starting from the goal clause← P(v). Keep
track of the substitutions affectingv to determine what answer the Prolog system
would return.

Exercise 37 Find a refutation from the following set of clauses using resolution
with factoring.

{¬P(x,a),¬P(x, y),¬P(y, x)}
{P(x, f (x)), P(x,a)}
{P(f (x), x), P(x,a)}

Exercise 38 Prove the following formulæ by resolution, showing all steps of the
conversion into clauses. Remember to negate first!

∀x (P ∨ Q(x))→ (P ∨ ∀x Q(x))

∃xy(P(x, y)→ ∀vw P(v,w))

11 Modal Logics

There are many forms of modal logic. Each one is based upon two parameters:

• W is the set ofpossible worlds(machine states, future times,. . .)

• R is theaccessibility relationbetween worlds (state transitions, flow of time,
. . .)

The pair(W, R) is called amodal frame.
The twomodal operators, or modalities, are2 and3:

• 2A meansA is necessarily true

• 3A meansA is possibly true

Here ‘necessarily true’ means ‘true in all worlds accessible from the present one’.
The modalities are related by the law¬3A ' 2¬A; in words, ‘A is necessarily
false’ is equivalent to ‘it is not possible thatA is true’.

Complex modalitiesare made up of strings of the modal operators, such as
22A, 23A, 32A, etc. Typically many of these are equivalent to others; inS4,
a a standard modal logic,22A is equivalent to2A.

64 11 MODAL LOGICS

11.1 Semantics of propositional modal logic

Here are some basic definitions, with respect to a particular frame(W, R):
An interpretationI maps the propositional letters to subsets ofW. For each

letter P, the setI (P) consists of those worlds in whichP is regarded as true.
If w ∈ W andA is a modal formula, thenw ° A meansA is true in worldw.

This relation is defined as follows:

w ° P ⇐⇒ w ∈ I (P)
w ° 2A ⇐⇒ v ° A for all v such thatR(w, v)
w ° 3A ⇐⇒ v ° A for somev such thatR(w, v)
w ° A∨ B⇐⇒ w ° A orw ° B
w ° A∧ B⇐⇒ w ° A andw ° B
w ° ¬A ⇐⇒ w ° A does not hold

This definition of truth is more complex than we have seen previously (§2.2),
because of the extra parametersW andR. We shall not consider quantifiers at all;
they really complicate matters, especially if the universe is allowed to vary from
one world to the next.

For a particular frame(W, R), further relations can be defined in terms of
w ° A:

|=W,R,I A meansw ° A for all w under interpretationI
|=W,R A meansw ° A for all w and all I

Now |= A means|=W,R A for all frames. We say thatA is universally valid.
In particular, all tautologies of propositional logic are universally valid.

Typically we take additional assumptions on accessibility relation. We may
assume, for example, thatR is transitive, and consider whether a formula holds
under all frames satisfying that assumption. More formulæ become universally
valid if we take additional assumptions, as they exclude some modal frames from
consideration.

11.2 Hilbert-style proof systems for the modal logics

Start with any proof system for propositional logic. Then add thedistribution
axiom

2(A→ B)→ (2A→ 2B)

and thenecessitationrule:

A
2A

11.3 Sequent Calculus Rules forS4 65

There are no axioms or inference rules for3. The modality is viewed simply
as an abbreviation:

3A
def= ¬2¬A

The distribution axiom clearly holds in our semantics. The propositional con-
nectives obey their usual truth tables in each world. IfA holds in all worlds,
and A → B holds in all worlds, thenB holds in all worlds. Thus if2A and
2(A → B) hold then so does2B, and that is the essence of the distribution
axiom.

The necessitation rule states that all theorems are necessarily true. In more
detail, if A can be proved, then it holds in all worlds; therefore2A is also true.

The modal logic that results from adding the distribution axiom and necessi-
tation rule is calledK . It is a pure modal logic, from which others are obtained
by adding further axioms. Each axiom corresponds to a property that is assumed
to hold of all accessibility relations. Here are just a few of the main ones:

T 2A→ A (reflexive)
4 2A→ 22A (transitive)
B A→ 23A (symmetric)

Logic T includes axiom T: reflexivity. LogicS4 includes axioms T and 4:
reflexivity and transitivity. LogicS5 includes axioms T, 4 and B: reflexivity, tran-
sitivity and symmetry; these imply that the accessibility relation is an equivalence
relation, which is a strong condition.

Other conditions on the accessibility relation concern forms ofconfluence.
One such condition might state that ifw1 andw2 are both accessible fromw then
there exists somev that is accessible from bothw1 andw2.

11.3 Sequent Calculus Rules forS4

We shall mainly look atS4, which is one of the mainstream modal logics. The
sequent calculus forS4 extends the usual sequent rules for propositional logic
with additional ones for2 and3. Four rules are required because the modalities
may occur on either the left or right side of a sequent.

A, 0⇒1

2A, 0⇒1
(2l)

0∗⇒1∗, A
0⇒1,2A

(2r)

A, 0∗⇒1∗
3A, 0⇒1

(3l)
0⇒1, A
0⇒1,3A

(3r)

66 11 MODAL LOGICS

The(2r) rule is analogous to the necessitation rule. But nowA may be proved
from other formulæ. This introduces complications. Modal logic is notorious for
requiring strange conditions in inference rules. The symbols0∗ and1∗ stand for
sets of formulæ, defined as follows:

0∗ def= {2B | 2B ∈ 0}
1∗ def= {3B | 3B ∈ 1}

In effect, applying rule(2r) in a backward proof throws away all left-hand formulæ
that do not begin with a2 and all right-hand formulæ that do not begin with a3.

If you consider why the(2r) rule actually holds, it is not hard to see why those
formulæ must be discarded. If we forgot about the restriction, then we could use
(2r) to infer A⇒2A from A⇒ A, which is ridiculous. The restriction ensures
that the proof ofA in the premise is independent of any particular world.

The rule(3l) is an exact dual of(2r). The obligation to discard formulæ forces
us to plan proofs carefully. If rules are applied in the wrong order, vital informa-
tion may have to be discarded and the proof will fail.

11.4 Some sample proofs inS4

A few examples will illustrate how theS4 sequent calculus is used.
The distribution axiom is assumed in the Hilbert-style proof system. Using

the sequent calculus, we can prove it:

A⇒ A B⇒ B
A→ B, A⇒ B

(→l)

A→ B, A⇒ B
(2l)

A→ B,2A⇒ B
(2l)

2(A→ B),2A⇒ B
(2l)

2(A→ B),2A⇒2B
(2r)

A few applications of(→r) yield the desired theorem,2(A→ B)→ (2A→
2B).

Working backwards, the first step is to apply rule(2r). This rule discards non-
2 formulæ, but there happen not to be any. Had we first applied(2l), removing
the boxes from the left side, then we should get stuck:

?
⇒ B ?

A→ B, A⇒2B
(2r)

A→ B,2A⇒2B
(2l)

2(A→ B),2A⇒2B
(2l)

11.4 Some sample proofs inS4 67

Applying (2r) before(2l) is analogous to applying(∀r) before(∀l). The analogy
because2A has an implicit universal quantifier: for all accessible worlds.

The following two proofs establish the equivalence2323A ' 23A. Strings
of modalities, like2323 and23, are calledoperator strings. So the pair of
results establish an operator string equivalence.

Here is the first entailment in the equivalence. As usual we apply(2r) before
(2l). Dually, and analogously to the treatment of the∃ rules, we apply(3l) before
(3r):

3A⇒3A
23A⇒3A

(2l)

323A⇒3A
(3l)

2323A⇒3A
(2l)

2323A⇒23A
(2r)

The opposite entailment is easy to prove:

23A⇒23A
23A⇒323A

(3r)

23A⇒2323A
(2r)

Logic S4 enjoys many operator string equivalences, including22A ' 2A.
And for every operator string equivalence, its dual (obtained by exchanging2

with 3) also holds. In particular,33A ' 3A and3232A ' 32A hold.
So we only need to consider operator strings in which the boxes and diamonds
alternate, and whose length does not exceed three.

The distinctS4 operator strings are therefore2, 3, 23, 32, 232 and323.
Finally, here are two attempted proofs that fail — because their conclusions

are not theorems! The modal sequentA⇒23A states that ifA holds now then it
necessarily holds again: from each accessible world, another world is accessible
in which A holds. This formula is valid if the accessibility relation is symmetric;
then one could simply return to the original world. The formula is therefore a
theorem ofS5 modal logic, but notS4.

⇒ A
⇒3A

(3r)

A⇒23A
(2r)

Here, the modal sequent3A,3B⇒3(A∧ B) states that ifA holds in some
accessible world, andB holds in some accessible world, then bothA andB hold in
some accessible world. It is a fallacy because those two worlds need not coincide.

68 12 TABLEAUX-BASED METHODS

The (3l) rule prevents us from removing the diamonds from both3A and3B; if
we choose one we must discard the other:

B⇒ A∧ B
B⇒3(A∧ B)

(3r)

3A,3B⇒3(A∧ B)
(3l)

The topmost sequent may give us a hint as to why the conclusion fails. Here we
are in a world in whichB holds, and we are trying to showA∧ B, but there is no
reason whyA should hold in that world.

Exercise 39 Why does the dual of an operator string equivalence also hold?

Exercise 40 Prove the sequent3(A∨ B)⇒3A,3B.

Exercise 41 Prove the sequent3A∨3B⇒3(A∨ B). Together with the pre-
vious exercise, this yields3(A∨ B) ' 3A∨3B.

Exercise 42 Prove the sequent3(A→ B),2A⇒3B.

Exercise 43 Prove the equivalence2(A∧ B) ' 2A∧2B.

Exercise 44 Prove the sequent23A⇒2323A.

12 Tableaux-Based Methods

There is a lot of redundancy among the connectives¬, ∧, ∨,→, ↔, ∀, ∃. We
could get away using only three of them (two if we allowed exclusive ‘or’), but
use the full set for readability. There is also a lot of redundancy in the sequent
calculus, because it was designed to model human reasoning, not to be as small
as possible.

One approach to removing redundancy results in the resolution method.
Clause notation replaces the connectives, and there is only one inference rule.
A less radical approach still removes much of the redundancy, while preserving
much of the natural structure of formulæ. This approach is often adopted by proof
theorists because of its logical simplicity; it is also amenable to implementation.

12.1 Simplifying the sequent calculus 69

12.1 Simplifying the sequent calculus

The usual formalisation of first-order logic involves seven connectives, or nine in
the case of modal logic. For each connective the sequent calculus has a left and a
right rule. So, apart from the structural rules (basic sequent and cut) there are 14
rules, or 18 for modal logic.

Suppose we allow only formulæ in negation normal form. This immediately
disposes of the connectives→ and↔. Really¬ is discarded also, as it is allowed
only on propositional letters. So only four connectives remain, six for modal logic.

The greatest simplicity gain comes in the sequent rules. The only sequent rules
that move formulæ from one side to the other (across the⇒ symbol) are the rules
for the connectives that we have just discarded. Half of the sequent rules can be
discarded too. It makes little difference whether we discard the left-side rules or
the right-side rules.

Let us discard the right-side rules. The resulting system allows sequents of
the form A⇒ . It is a form of refutation system (proof by contradiction), since
the formulaA has the same meaning as the sequent¬A⇒ . Moreover, a basic
sequent has the form of a contradiction.

¬A, A, 0⇒ (basic)
¬A, 0⇒ A, 0⇒

0⇒ (cut)

A, B, 0⇒
A∧ B, 0⇒ (∧l)

A, 0⇒ B, 0⇒
A∨ B, 0⇒ (∨l)

A[t/x], 0⇒
∀x A, 0⇒ (∀l) A, 0⇒

∃x A, 0⇒ (∃l)

Rule(∃l) has the usual proviso: it holdsprovidedx is not free in the conclusion!
We can extend the system toS4 modal logic by adding just two further rules,

one for2 and one for3:

A, 0⇒
2A, 0⇒ (2l)

A, 0∗⇒
3A, 0⇒ (3l)

As previously,0∗ is defined to erase all non-2 formulæ:

0∗ def= {2B | 2B ∈ 0}
We have gone from 14 rules to four, ignoring the structural rules. For modal

logic, we have gone from 18 rules to six.
A simple proof will illustrate how the simplified system works. Let us prove

∀x (A→ B)⇒ A→ ∀x B, wherex is not free inA. We must negate the formula

70 12 TABLEAUX-BASED METHODS

and convert it to NNF; the resulting sequent isA ∧ ∃x¬B, ∀x (¬A ∨ B)⇒ .
Elaborate explanations should not be necessary because this sequent calculus is
essentially a subset of the one described in §6.

A, ¬B, ¬A⇒ A, ¬B, B⇒
A, ¬B, ¬A∨ B⇒ (∨l)

A, ¬B, ∀x (¬A∨ B)⇒ (∀l)

A, ∃x¬B, ∀x (¬A∨ B)⇒ (∃l)

A∧ ∃x¬B, ∀x (¬A∨ B)⇒ (∧l)

12.2 Mechanising the technique

Some proof theorists adopt the simplified sequent calculus as their formalisation
of first-order logic. It has most of the advantages of the usual sequent calculus,
without the redundancy. But can we use it as the basis for a theorem prover?
Implementing the calculus (or indeed, implementing the full sequent calculus)
requires a treatment of quantifiers. As with the resolution method, we can use
unification together with Skolemization.

First, consider how to add unification. The rule(∀l) to substitutes some term
for the bound variable. Since we do not know in advance what the term ought
to be, instead substitute a free variable. The variable ought to be fresh, not used
elsewhere in the proof:

A[z/x], 0⇒
∀x A, 0⇒ (∀l)

Then allow unification to instantiate variables with terms. This should occur when
trying to solve any goal containing two formulæ,¬A and B. Try to unify A
with B, producing a basic sequent. Of course, instantiating a variable updates the
entire proof tree.

Rule (∃l), used in backward proof, must create a fresh variable. That will no
longer do, in part because we now allow variables to become instantiated by terms.
We have a choice of techniques, but the simplest is to Skolemize the formula. All
existential quantifiers disappear, so we can discard rule(∃l).

Previously (§8.2) we performed Skolemization on formulæ in prenex form: all
quantifiers at the front. The outermost existentially-bound variable was replaced
by a function, which took as many arguments as there were enclosing universal
quantifiers. But there is no need to pull quantifiers to the front. Precisely the same
approach works, although now the existential quantifiers are found in subformulæ
instead of being lined up in a row.

12.3 Sample proofs 71

The Skolem form of∀y ∃z Q(y, z) ∧ ∃x P(x) is ∀y Q(y, f (y)) ∧ P(a). The
subformula∃x P(x) goes toP(a) and not toP(g(y)) because it is outside the
scope of the∀y.

12.3 Sample proofs

To demonstrate the system, let us prove the formula∃x ∀y [P(x)→ P(y)]. First
negate it and convert to NNF, getting∀x ∃y [P(x) ∧ ¬P(y)]. The Skolemized
sequent to be proved is∀x [P(x) ∧ ¬P(f (x))]⇒ . Unification completes the
proof by creating a basic sequent; there are two distinct ways of doing so:

z 7→ f (y) or y 7→ f (z)
P(y), ¬P(f (y)), P(z), ¬P(f (z))⇒ basic

P(y), ¬P(f (y)), P(z) ∧ ¬P(f (z))⇒ (∧l)

P(y), ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒ (∀l)

P(y) ∧ ¬P(f (y)), ∀x [P(x) ∧ ¬P(f (x))]⇒ (∧l)

∀x [P(x) ∧ ¬P(f (x))]⇒ (∀l)

In the first inference from the bottom, the universal formula is retained because it
must be used again. In principle, universally quantified formulæ ought always to
be retained, as they may be used any number of times. I normally erase them to
save space.

Pulling quantifiers to the front is not merely unnecessary; it can be harmful.
Skolem functions should have as few arguments as possible, as this leads to shorter
proofs. Attaining this requires that quantifiers should have the smallest possible
scopes; we ought to push quantifiers in, not pull them out. This is sometimes
calledminiscopeform.

For example, the formula∃x ∀y [P(x)→ P(y)] is tricky to prove. But putting
it in miniscope form makes its proof trivial. Let us do this step by step:

Negate; convert to NNF: ∀x ∃y [P(x) ∧ ¬P(y)]
Push in the∃y : ∀x [P(x) ∧ ∃y¬P(y)]
Push in the∀x : ∀x P(x) ∧ ∃y¬P(y)

Skolemize: ∀x P(x) ∧ ¬P(a)]

The formula∀x P(x) ∧ ¬P(a)] is obviously inconsistent. Here is its refutation
in the modified sequent calculus:

y 7→ a
P(y), ¬P(a)⇒ basic

∀x P(x), ¬P(a)⇒ (∀l)

∀x P(x) ∧ ¬P(a)⇒ (∧l)

72 12 TABLEAUX-BASED METHODS

A failed proof is always illuminating. Let us try to prove the invalid formula

∀x [P(x) ∨ Q(x)]⇒∀x P(x) ∨ ∀x Q(x).

Negation and conversion to NNF gives∃x¬P(x) ∧ ∃x¬Q(x), ∀x [P(x) ∨
Q(x)].

Skolemization gives¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)].
The proof fails becausea and b are distinct constants. It is impossible to

instantiatey to both simultaneously.

y 7→ a
¬P(a), ¬Q(b), P(y)⇒

y 7→ b???
¬P(a), ¬Q(b), Q(y)⇒

¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒ (∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒ (∀l)

¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒ (∧l)

12.4 Tableaux-based theorem provers

An analytic tableaurepresents a partial proof as a set ofbranchesof formulæ.
Each formula on a branch isexpandeduntil this is no longer possible (and the
proof fails) or until the proof succeeds.

Expanding a conjunctionA∧ B on a branch replaces it by the two conjuncts,
A andB. Expanding a disjunctionA∨B splits the branch in two, with one branch
containingA and the other branchB. Expanding the quantification∀x A extends
the branch by a formula of the formA[t/x]. If a branch contains bothA and¬A
then it is said to beclosed. When all branches are closed, the proof has succeeded.

A tableau is, in fact, nothing but a compact, graph-based representation of a
set of sequents. The branch operations described above correspond to our sequent
rules in an obvious way.

Quite a few theorem provers have been based upon the tableau method. The
simplest by far is due to Beckert and Posegga (1994) and is calledleanTAP. The
entire program appears below! Its deductive system is similar to the reduced se-
quent calculus we have just studied. It relies on some Prolog tricks, and is cer-
tainly not pure Prolog code. It demonstrates just how simple a theorem prover can
be. leanTAP does not outperform big resolution systems. But it quickly proves
some fairly hard theorems.

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

REFERENCES 73

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

(Note: you are not expected to memorize this program or understand how it
works in any detail.)

Exercise 45 Use the tableau calculus to prove examples given in previous sec-
tions.

References

Beckert, B. and Posegga, J. (1994). leanTAP: Lean, tableau-based theorem
proving. In A. Bundy, editor,Automated Deduction — CADE-12 International
Conference, LNAI 814, pages 793–797. Springer.

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered
binary-decision diagrams.Computing Surveys, 24(3), 293–318.

Zhang, H. and Stickel, M. E. (1994). An efficient algorithm for unit propagation.
Technical Report 94-12, Computer Science Dept., University of Iowa.

