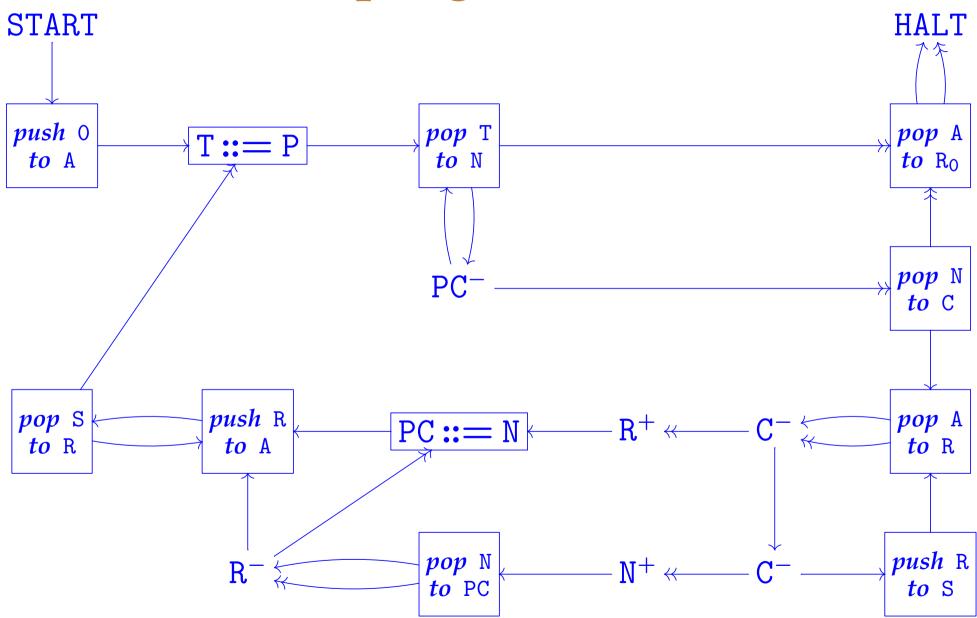
The program for **U**



Overall structure of **U**'s program

1 copy PCth item of list in P to N (halting if PC > length of list); goto 2

2 if N = 0 then copy 0th item of list in A to R_0 and halt, else (decode N as $\langle y, z \rangle$; C := y; N := z; goto 3)

{at this point either C = 2i is even and current instruction is $R_i^+ \rightarrow L_z$,

or C = 2i + 1 is odd and current instruction is $R_i^- \rightarrow L_j, L_k$ where $z = \langle j, k \rangle$

3 copy *i*th item of list in A to R; goto 4

4 execute current instruction on R; update PC to next label; restore register values to A; goto 1

Halting

For a finite computation c_0, c_1, \ldots, c_m , the last configuration $c_m = (\ell, r, \ldots)$ is a halting configuration, i.e. instruction labelled L_ℓ is

either HALT (a "proper halt") or $R^+ \rightarrow L$, or $R^- \rightarrow L, L'$ with R > 0, or $R^- \rightarrow L', L$ with R = 0and there is no instruction labelled L in the program (an "erroneous halt") E.g. $\begin{bmatrix} L_0 : R_0^+ \to L_2 \\ L_1 : HALT \end{bmatrix}$ halts erroneously. (has imputation Sequences [(0, x)])

Halting

For a finite computation c_0, c_1, \ldots, c_m , the last configuration $c_m = (\ell, r, \ldots)$ is a halting configuration, i.e.

either l>, number of instructions in program
(an "erroneous halt")
or
$$l^{\text{th}}$$
 instruction in program has
body HALT (a "proper halt")
E.g. $L_0: \mathbb{R}_0^+ \to L_2$
 $L_1: \text{HALT}$ halts erroneously(has computation
Sequences $[(0, x), (2, xH)]$)

L2

The halting problem

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \ldots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \ldots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0, R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine **H** can exist.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

► Let H' be obtained from H by replacing START → by START → $Z := R_1$ → $push_{to R_2}^{push_{to R_2}}$ →

(where Z is a register not mentioned in H's program).

- Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $\longrightarrow R_0^- \longrightarrow R_0^+$.
- Let $c \in \mathbb{N}$ be the index of C's program.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

> C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if H started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if H started with $R_1 = c, R_2 = \lceil [c] \rceil$ halts with $R_0 = 0$ if & only if prog(c) started with $R_1 = c$ does not halt

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if **H** started with $R_1 = c_r R_2 = \lceil c \rceil$ halts with $R_0 = 0$ if & only if prog(c) started with $R_1 = c$ does not halt if & only if C started with $R_1 = c$ does not halt

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

C started with $R_1 = c$ eventually halts if & only if H' started with $R_1 = c$ halts with $R_0 = 0$ if & only if **H** started with $R_1 = c, R_2 = \lceil c \rceil$ halts with $R_0 = 0$ if & only if prog(c) started with $R_1 = c$ does not halt if & only if C started with $R_1 = c$ does not halt -contradiction!

Computable functions

Recall:

Definition. $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is (register machine) computable if there is a register machine M with at least n + 1 registers $\mathbb{R}_0, \mathbb{R}_1, \ldots, \mathbb{R}_n$ (and maybe more) such that for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$,

the computation of M starting with $R_0 = 0$, $R_1 = x_1, \ldots, R_n = x_n$ and all other registers set to 0, halts with $R_0 = y$

if and only if $f(x_1, \ldots, x_n) = y$.

Note that the same RM M could be used to compute a unary function (n = 1), or a binary function (n = 2), etc. From now on we will concentrate on the unary case...

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$e\mapsto \varphi_e$

defines an <u>onto</u> function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N} .

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus $e \mapsto \varphi_e$ defines an <u>onto</u> function from N to the collection of all computable partial functions from N to N. So $N \rightarrow N$ (uncountable, by (antor) contains uncomputable functions

An uncomputable function

Let $f \in \mathbb{N} \to \mathbb{N}$ be the partial function with graph $\{(x,0) \mid \varphi_x(x)\uparrow\}.$ Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x)\uparrow\\ undefined & \text{if } \varphi_x(x)\downarrow \end{cases}$

An uncomputable function

Let $f \in \mathbb{N} \to \mathbb{N}$ be the partial function with graph $\{(x,0) \mid \varphi_x(x)\uparrow\}$. Thus $f(x) = \begin{cases} 0 & \text{if } \varphi_x(x)\uparrow\\ undefined & \text{if } \varphi_x(x)\downarrow \end{cases}$

f is not computable, because if it were, then $f=\varphi_e$ for some $e\in\mathbb{N}$ and hence

- ► if $\varphi_e(e)\uparrow$, then f(e) = 0 (by def. of f); so $\varphi_e(e) = 0$ (since $f = \varphi_e$), hence $\varphi_e(e)\downarrow$
- ► if $\varphi_e(e)\downarrow$, then $f(e)\downarrow$ (since $f = \varphi_e$); so $\varphi_e(e)\uparrow$ (by def. of f)

—contradiction! So f cannot be computable.

(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So *S* is decidable iff there is a RM *M* with the property: for all $x \in \mathbb{N}$, *M* started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So *S* is decidable iff there is a RM *M* with the property: for all $x \in \mathbb{N}$, *M* started with $R_0 = 0, R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...

Claim: $S_0 \triangleq \{e \mid \varphi_e(0) \downarrow\}$ is undecidable.

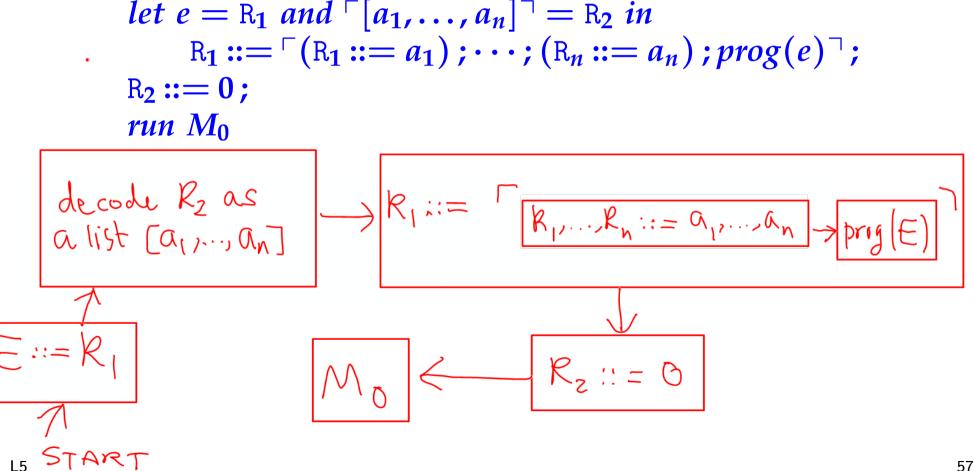
Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

let
$$e = R_1 and [a_1, ..., a_n] = R_2 in$$

 $R_1 ::= [(R_1 ::= a_1); ...; (R_n ::= a_n); prog(e)];$
 $R_2 ::= 0;$
run M_0

Claim: $S_0 \triangleq \{e \mid \varphi_e(0) \downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:



Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

let
$$e = R_1 \text{ and } \lceil [a_1, ..., a_n] \rceil = R_2 \text{ in}$$

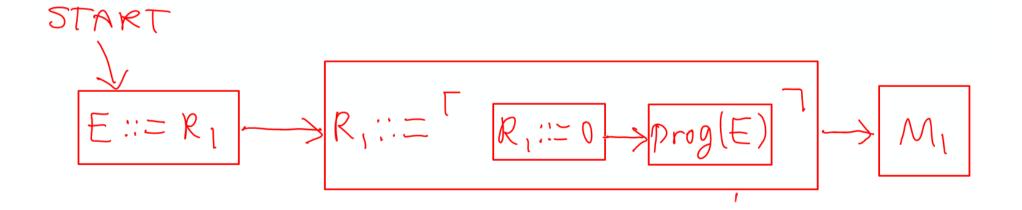
 $R_1 ::= \lceil (R_1 ::= a_1); \cdots; (R_n ::= a_n); prog(e) \rceil;$
 $R_2 ::= 0;$
run M_0

Then by assumption on M_0 , H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out:

let
$$e = \mathbb{R}_1$$
 in $\mathbb{R}_1 ::= \lceil \mathbb{R}_1 ::= 0$; $prog(e) \rceil$;
run M_1



Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out:

let $e = \mathbb{R}_1$ in $\mathbb{R}_1 ::= \lceil \mathbb{R}_1 ::= 0$; $prog(e) \rceil$; run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0})—contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.

Exercise 5 If
$$f: \mathbb{N} \to \mathbb{N}$$
 is a RM computable
function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy
 $\forall e \in \mathbb{N}$. $e \in S_0 \Leftrightarrow f(e) \in S_1$
then if S_1 is decidable, then so is S_0

Exercise 5 If
$$f: \mathbb{N} \to \mathbb{N}$$
 is a RM computable
function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy
 $\forall e \in \mathbb{N}$. $e \in S_0 \iff f(e) \in S_1$
then if S_1 is decidable, then so is S_0
For $S_1 \notin S_2$ as on Slides S7 & S8 we have:
 $e \in S_0 \iff \mathcal{G}_e(0) \downarrow$
 $f(e) \in S_1 \iff \forall x \in \mathbb{N}$. $\mathcal{G}_{f(e)}(x) \downarrow$

Exercise 5 If
$$f: \mathbb{N} \to \mathbb{N}$$
 is a RM computable
function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy
 $\forall e \in \mathbb{N}$. $e \in S_0 \Leftrightarrow f(e) \in S_1$
then if S_1 is decidable, then so is S_0
For $S_1 \notin S_2$ as on Slides S7 & S8 we have:
 $e \in S_0 \iff \varphi_e(0) \downarrow$
 $f(e) \in S_1 \iff \forall x \in \mathbb{N}$. $\varphi_{f(e)}(x) \downarrow$
So can apply the Exercise to deduce
undecidability of S_1 from undecidability of S_0
by finding RM computable $f: \mathbb{N} \to \mathbb{N}$ with
 $\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_e(0)$

Exercise 5 If
$$f: \mathbb{N} \to \mathbb{N}$$
 is a RM computable
function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy
 $\forall e \in \mathbb{N}$. $e \in S_0 \Leftrightarrow f(e) \in S_1$
then if S_1 is decidable, then so is S_0
For $S_1 \notin S_2$ as on Slides S7 & S8 we have:
 $e \in S_0 \Leftrightarrow \varphi_e(0) \downarrow$
 $f(e) \in S_1 \iff \forall x \in \mathbb{N} . \varphi_{f(e)}(x) \downarrow$
So can apply the Exercise to deduce
undecidability of S_1 from undecidability of S_0
by finding RM computable $f: \mathbb{N} \to \mathbb{N}$ with
 $\forall e, x. \varphi_{f(e)}(x) \equiv \varphi_e(0)$