Recall: λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

L9

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

result of substituting N for free x in M

Substitution N[M/x]

```
x[M/x] = M

y[M/x] = y if y \neq x

(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)

(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

```
N[M/2] = result of replacing all free occurrences
of or in N with M, avoiding
"capture" of free variables in M by
\( \lambda - \text{binders} \) in N
```

L9 108

Substitution N[M/x]

```
x[M/x] = M

y[M/x] = y if y \neq x

(\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (M x)

(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
```

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding".

E.g. if $x \neq y$

 $(\lambda y.x)[y/x] \neq \lambda y.y$

L9 108

Substitution N[M/x]

```
x[M/x] = M
        y[M/x] = y if y \neq x
 (\lambda y.N)[M/x] = \lambda y.N[M/x] if y \# (Mx)
(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]
Can always satisty this I up to a-equivalence
E.g. if x \neq y \neq z \neq x
              (\lambda y.x)[y/x] =_{\alpha} (\lambda z.x)[y/x] = \lambda z.y
```

In fact $N \mapsto N[M/x]$ induces a totally defined function from the set of α -equivalence classes of λ -terms to itself.

L9 108

 $\lambda x, (\lambda z.z) y x [\lambda z.y/y]$

 λx , $(\lambda z.z)yx$ $[\lambda z.y/y]$ no possible capture

 λx , $(\lambda z.z)yx [\lambda z.y/y]$ = λx , $(\lambda z.z)(\lambda z.y)x$

$$\lambda x. (\lambda u. u) xy [\lambda y. x/y]$$

$$\lambda x$$
, $(\lambda z \cdot z) y x [\lambda x \cdot y / y]$
= λx , $(\lambda z \cdot z) (\lambda x \cdot y) x$

$$\lambda x. (\lambda u. u) xy [\lambda y.x/y] possible capture$$

$$\lambda x$$
, $(\lambda z.z)yx [\lambda x.y/y]$
= λx , $(\lambda z.z)(\lambda x.y)x$

$$\lambda x. (\lambda u.u) xy [\lambda y.x/y]$$
 possible capture...

= $\lambda z. (\lambda u.u) z y [\lambda y.x/y]$... α -convert to avoid

$$\lambda x$$
, $(\lambda z.z)yx [\lambda x.y/y]$
= λx , $(\lambda z.z)(\lambda x.y)x$

$$\lambda x. (\lambda u.u) xy [\lambda y.x/y]$$
 possible capture...

 $=_{\alpha} \lambda z. (\lambda u.u) z y [\lambda y.x/y]$... α - convert to avoid

$$= \lambda z . (\lambda u - u) z (\lambda y - x)$$

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

So the natural notion of computation for λ -terms is given by stepping from a

```
\beta-redex (\lambda x.M)N
```

to the corresponding

$$\beta$$
-reduct $M[N/x]$

One-step β -reduction, $M \rightarrow M'$:

$$\frac{M \to M'}{\lambda x.M)N \to M[N/x]} \qquad \frac{M \to M'}{\lambda x.M \to \lambda x.M'}$$

$$\frac{M \to M'}{M N \to M'N} \qquad \frac{M \to M'}{N M \to N M'}$$

$$\frac{N =_{\alpha} M \qquad M \to M' \qquad M' =_{\alpha} N'}{N \to N'}$$

L10

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{((\lambda y.\lambda z.z)u)y} (\lambda z.z)y \longrightarrow y$$

$$(\lambda x.xy)(\lambda z.z)$$

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{(\lambda x.xy)((\lambda y.\lambda z.z)u)} (\lambda z.z)y \longrightarrow y$$

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{(\lambda x.xy)((\lambda y.\lambda z.z)u)y} (\lambda z.z)y \longrightarrow y$$

$$(\lambda x.xy)(\lambda z.z)$$

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{(\lambda x.xy)((\lambda y.\lambda z.z)u)} (\lambda z.z)y \longrightarrow y$$

E.g.

$$(\lambda x.xy)((\lambda y.\lambda z.z)u) \xrightarrow{(\lambda x.xy)((\lambda y.\lambda z.z)u)y} (\lambda z.z)y \longrightarrow y$$

Many-step β -reduction, $M \rightarrow M'$:

$$rac{M=_{lpha}M'}{M o M'}$$
 $rac{M o M'}{M o M''}$ $rac{MM}{M o M''}$ (no steps) (1 more step)

E.g.

$$(\lambda x.xy)((\lambda yz.z)u) \rightarrow y$$

 $(\lambda x.\lambda y.x)y \rightarrow \lambda z.y$

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

```
E.g. u\left((\lambda x\,y.\,v\,x)y\right) =_{\beta} (\lambda x.\,u\,x)(\lambda x.\,v\,y)
because (\lambda x.\,u\,x)(\lambda x.\,v\,y) \to u(\lambda x.\,v\,y)
and so we have u\left((\lambda x\,y.\,v\,x)y\right) =_{\alpha} u\left((\lambda x\,y'.\,v\,x)y\right)
```

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g.
$$u\left((\lambda x\,y.\,v\,x)y\right) =_{\beta} (\lambda x.\,u\,x)(\lambda x.\,v\,y)$$

because $(\lambda x.\,u\,x)(\lambda x.\,v\,y) \to u(\lambda x.\,v\,y)$
and so we have
$$u\left((\lambda x\,y.\,v\,x)y\right) =_{\alpha} u\left((\lambda x\,y'.\,v\,x)y\right)$$
$$\to u(\lambda y'.\,v\,y) \qquad \text{reduction}$$

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

```
E.g. u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)

because (\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)

and so we have
u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y)
\rightarrow u(\lambda y'. v y) \qquad \text{reduction}
=_{\alpha} u(\lambda x. v y)
```

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

```
E.g. u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)

because (\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)

and so we have
u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y)
\rightarrow u(\lambda y'. v y) \qquad \text{reduction}
=_{\alpha} u(\lambda x. v y)
\leftarrow (\lambda x. u x)(\lambda x. v y) \qquad \text{expansion}
```

is the binary relation inductively generated by the rules:

$$\frac{M =_{\alpha} M'}{M =_{\beta} M'} \qquad \frac{M \to M'}{M =_{\beta} M'} \qquad \frac{M =_{\beta} M'}{M' =_{\beta} M}$$

$$\frac{M =_{\beta} M'}{M =_{\beta} M'} \qquad M' =_{\beta} M'$$

$$\frac{M =_{\beta} M'}{M =_{\beta} M''} \qquad \frac{M =_{\beta} M'}{\lambda x.M =_{\beta} \lambda x.M'}$$

$$\frac{M =_{\beta} M'}{M N =_{\beta} M' N'}$$

L10

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \twoheadleftarrow M_2$.

[Proof omitted.]

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \twoheadleftarrow M_2$.

Corollary. To show that two terms are β -convertible, it suffices to show that they both reduce to the same term. More precisely: $M_1 =_{\beta} M_2$ iff $\exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely,

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \twoheadleftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1,M_2) \mid \exists M \ (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \leftarrow M_2 \longrightarrow M' \leftarrow M_3$

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M \ (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser

theorem: $M_1 \longrightarrow M \twoheadleftarrow M_2 \longrightarrow M' \twoheadleftarrow M_3$

L10

Theorem. \rightarrow is confluent, that is, if $M_1 \twoheadleftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \twoheadleftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. $=_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M \ (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_1 =_{\beta} M_2$ implies $\exists M \ (M_1 \rightarrow M' \leftarrow M_2)$.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M=_{\beta}N$ with N a β -nf.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M=_{\beta}N$ with N a β -nf.

Note that if N is a β -nf and $N \rightarrow N'$, then it must be that $N =_{\alpha} N'$ (why?).

Hence if $N_1=_{\beta}N_2$ with N_1 and N_2 both β -nfs, then $N_1=_{\alpha}N_2$. (For if $N_1=_{\beta}N_2$, then by Church-Rosser $N_1 \to M' \leftarrow N_2$ for some M', so $N_1=_{\alpha}M'=_{\alpha}N_2$.)

So the β -nf of M is unique up to α -equivalence if it exists.

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.xx)(\lambda x.xx)$ satisfies

- $ightharpoonup \Omega woheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.xx)(\lambda x.xx)$ satisfies

- $ightharpoonup \Omega woheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

A term can possess both a β -nf and infinite chains of reduction from it.

E.g. $(\lambda x.y)\Omega \to y$, but also $(\lambda x.y)\Omega \to (\lambda x.y)\Omega \to \cdots$.

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first.

- ▶ left-most: reduce M before N in M N, and then
- outer-most: reduce $(\lambda x.M)N$ rather than either of M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β -nf of M if it possesses one.

$$M_1 =_{\alpha} M_1' \quad M_1' \rightarrow_{NOR} M_2' \quad M_2' =_{\alpha} M_2$$

$$M_1 \rightarrow_{NOR} M_2$$

$$\frac{M \to_{NOR} M^1}{\lambda x. M \to_{NOR} \lambda x. M^1}$$

$$M_1 \longrightarrow_{NOR} M_1'$$
 $M_1 M_2 \longrightarrow_{NOR} M_1' M_2$

where
$$\begin{cases} U := x \mid UN \\ V := \lambda a.N \mid U \end{cases}$$

$$\beta-normal forms \qquad "neutral" forms >$$