
CST Part IB Computation Theory
List of corrections to the 2019/20 lecture notes

30 January 2020

Pages 25 and 49: The universal machine on page 49 does not simulate register machines with
erroneous halts properly, according to the current definition of “erroneous halt” on page 25.
Instead, when it processes an instruction that contains jumps to non-existent labels, it carries out
the instruction’s register operation (increment of decrement-if-zero), sets the program counter
to the appropriate non-existent label number and then halts (as described by the high-level
specification on page 48).

Although the design of the machine on page 49 could be corrected, it is simpler to change the
convention for erroneous halting to be as implemented by the current machine. A corrected
page 25 is attached.

1



Register machine computation

A computation of a RM is a (finite or infinite) sequence of
configurations

c0, c1, c2, . . .

where

! c0 = (0, r0, . . . , rn) is an initial configuration
! each c = (ℓ, r0, . . . , rn) in the sequence determines

the next configuration in the sequence (if any) by
carrying out the program instruction labelled Lℓ with
registers containing r0,. . . ,rn.

24

Halting

For a finite computation c0, c1, . . . , cm, the last
configuration cm = (ℓ, r, . . .) must be a halting
configuration, i.e. ℓ satisfies:

either ℓ ≥ number of instructions in program, so that
there is no instruction labelled Lℓ (an “erroneous
halt”)

or ℓth instruction in program has body HALT (a
“proper halt”)

N.B. can always modify programs (without affecting their
computations) to turn all erroneous halts into proper halts by adding
extra HALT instructions to the list with appropriate labels.

25


