Definition. A [partial] function f is primitive recursive $(f \in PRIM)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition and primitive recursion.

In other words, the set **PRIM** of primitive recursive functions is the <u>smallest</u> set (with respect to subset inclusion) of partial functions containing the basic functions and closed under the operations of composition and primitive recursion.

FACT: every f & PRIM is a total function

L8 92

Definition. A partial function f is partial recursive $(f \in PR)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

The members of **PR** that are <u>total</u> are called <u>recursive</u> functions.

Fact: there are recursive functions that are not primitive recursive. For example. . .

 $(f \in PR)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization. The members of **PR** that are total are called recursive

Definition. A partial function f is partial recursive

functions. **Fact:** there are recursive functions that are not primitive

recursive. For example. . . its possible to construct a computable function e: TVXIV -> IV sortistying e(n,x) = value of nth PRIM fr. at 20

A diagonalization argument shows e & PRIM (See CST 2017, p.6, 94)

Examples of recursive definitions

```
\begin{cases} f_2(0) & \equiv 0 \\ f_2(1) & \equiv 1 \\ f_2(x+2) & \equiv f_2(x) + f_2(x+1) \end{cases}
f_2 \in PRIM \text{ even though this} \text{ is not}
           a primitive recursive definition
        ( see (ST 2014, paper 6, question 4)
```

L/ 85

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying

$$ack(0, x_2) = x_2 + 1$$

 $ack(x_1 + 1, 0) = ack(x_1, 1)$
 $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying

$$ack(0, x_2) = x_2 + 1$$

 $ack(x_1 + 1, 0) = ack(x_1, 1)$
 $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$

▶ *ack* is computable, hence recursive [proof: exercise].

OCaml version 4.00.1

```
# let rec ack (x : int)(y : int) : int =
  match x ,y with
     0 , y -> y+1
    | x , 0 -> ack (x-1) 1
    | x, y -> ack (x-1) (ack x (y-1));;
val ack : int -> int -> int = <fun>
# ack 0 0;;
-: int = 1
# ack 1 1;;
-: int = 3
# ack 2 2;;
-: int = 7
# ack 3 3;;
-: int = 61
# ack 4 4;;
Stack overflow during evaluation (looping recursion?).
```

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying

$$ack(0,x_2) = x_2 + 1$$

 $ack(x_1 + 1,0) = ack(x_1,1)$
 $ack(x_1 + 1,x_2 + 1) = ack(x_1,ack(x_1 + 1,x_2))$

► Fact: *ack* grows faster than any primitive recursive function $f \in \mathbb{N}^2 \rightarrow \mathbb{N}$:

$$\exists N_f \ \forall x_1, x_2 > N_f \ (f(x_1, x_2) < ack(x_1, x_2)).$$

Hence *ack* is not primitive recursive.

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying

$$ack(0, x_2) = x_2 + 1$$

 $ack(x_1 + 1, 0) = ack(x_1, 1)$
 $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$

In fact, writing
$$a_x$$
 for $ack(x,-) \in \mathbb{N} \to \mathbb{N}$, one has $a_{x+1}(y) = (a_{x}, 0, \dots, a_x)(1)$ this is an e.g. of a prim. rec. definition compose y times "of higher type"

Lambda calculus

Notions of computability

- ► Church (1936): **\(\lambda\)**-calculus
- ► Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

.9

Notation for <u>function definitions</u> in mathematical discourse:

" let f be the function $f(x) = x^2 + 2 + 1 \dots [f]...$

anonymous "the function $x \mapsto x^2 + x + 1 \dots$ "

"the function $\lambda x \cdot x^2 + x + 1 \dots$ "

LAMBDA NOTATION

λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

Some random examples of λ -terms:

$$x = (\lambda x.x) = ((\lambda y.(xy))x) = (\lambda y.((\lambda y.(xy))x))$$

λ -Terms, M

Notational conventions:

- $(\lambda x_1 x_2 \dots x_n M)$ means $(\lambda x_1 (\lambda x_2 \dots (\lambda x_n M) \dots))$
- $(M_1 M_2 ... M_n)$ means $(... (M_1 M_2) ... M_n)$ (i.e. application is left-associative)
- drop outermost parentheses and those enclosing the body of a λ -abstraction. E.g. write $(\lambda x.(x(\lambda y.(y x))))$ as $\lambda x.x(\lambda y.y x)$.
- ▶ x # M means that the variable x does not occur anywhere in the λ -term M.

Free and bound variables

In $\lambda x.M$, we call x the bound variable and M the body of the λ -abstraction.

An occurrence of x in a λ -term M is called

- binding if in between λ and (e.g. $(\lambda x.y x) x$)
- bound if in the body of a binding occurrence of x (e.g. $(\lambda x.y x) x$)
- free if neither binding nor bound (e.g. $(\lambda x.y x)x$).

Free and bound variables

Sets of free and bound variables:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) - \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$BV(x) = \emptyset$$

$$BV(\lambda x.M) = BV(M) \cup \{x\}$$

$$BV(MN) = BV(M) \cup BV(N)$$

E.g.
$$FV((\lambda x.yx)x) = \{x,y\}$$

 $BV((\lambda x.yx)x) = \{x\}$

Free and bound variables

Sets of free and bound variables:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) - \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$BV(x) = \emptyset$$

$$BV(\lambda x.M) = BV(M) \cup \{x\}$$

$$BV(MN) = BV(M) \cup BV(N)$$

If $FV(M) = \emptyset$, M is called a closed term, or combinator.

E.g.
$$FV(\lambda y, \lambda > c. (\lambda x, y > c) x) = \emptyset$$

 $\lambda x.M$ is intended to represent the function f such that

$$f(x) = M$$
 for all x .

So the name of the bound variable is immaterial: if $M' = M\{x'/x\}$ is the result of taking M and changing all occurrences of x to some variable x' # M, then $\lambda x.M$ and $\lambda x'.M'$ both represent the same function.

For example, $\lambda x.x$ and $\lambda y.y$ represent the same function (the identity function).

is the binary relation inductively generated by the rules:

$$\frac{z \# (MN) \qquad M\{z/x\} =_{\alpha} N\{z/y\}}{\lambda x.M =_{\alpha} \lambda y.N}$$

$$\frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{MN =_{\alpha} M'N'}$$

where $M\{z/x\}$ is M with all occurrences of x replaced by z.

For example:

$$\lambda \underline{x}.(\lambda \underline{x}x'.\underline{x}) x' =_{\alpha} \lambda y.(\lambda x x'.x) x'$$

because

For example:

because
$$\lambda x.(\lambda xx'.x) \, x' =_{\alpha} \lambda y.(\lambda x \, x'.x) x' \\ (\lambda z \, x'.z) x' =_{\alpha} (\lambda x \, x'.x) x'$$

L9

For example:

because
$$\lambda x.(\lambda xx'.x) \ x' =_{\alpha} \lambda y.(\lambda x \ x'.x) x'$$
because
$$(\lambda z \ x'.z) x' =_{\alpha} (\lambda x \ x'.x) x'$$
because
$$\lambda z \ x'.z =_{\alpha} \lambda x \ x'.x \ \text{and} \ x' =_{\alpha} x'$$
because

For example:

```
because \lambda x.(\lambda xx'.x) \ x' =_{\alpha} \lambda y.(\lambda x \ x'.x) x'because (\lambda z \ x'.z) x' =_{\alpha} (\lambda x \ x'.x) x'because \lambda z \ x'.z =_{\alpha} \lambda x \ x'.x \ \text{and} \ x' =_{\alpha} x'because because
```

For example:

```
because \lambda x.(\lambda xx'.x) \ x' =_{\alpha} \lambda y.(\lambda x \ x'.x) x'because (\lambda z \ x'.z) x' =_{\alpha} (\lambda x \ x'.x) x'because \lambda z \ x'.z =_{\alpha} \lambda x \ x'.x \ \text{and} \ x' =_{\alpha} x'because \lambda x'.u =_{\alpha} \lambda x'.u \ \text{and} \ x' =_{\alpha} x'because u =_{\alpha} u \ \text{and} \ x' =_{\alpha} x'.
```

Fact: $=_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive).

We do not care about the particular names of bound variables, just about the distinctions between them. So α -equivalence classes of λ -terms are more important than λ -terms themselves.

- ► Textbooks (and these lectures) suppress any notation for α -equivalence classes and refer to an equivalence class via a representative λ -term (look for phrases like "we identify terms up to α -equivalence" or "we work up to α -equivalence").
- For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α -equivalence classes (e.g. de Bruijn indexes, graphical representations, ...).