
Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic functions
and closed under the operations of composition and
primitive recursion.
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. . .
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Examples of recursive definitions
{

f1(0) ≡ 0

f1(x + 1) ≡ f1(x) + (x + 1)
f1(x) = sum of
0, 1, 2, . . . , x

⎧

⎪
⎨

⎪
⎩

f2(0) ≡ 0

f2(1) ≡ 1

f2(x + 2) ≡ f2(x) + f2(x + 1)

f2(x) = xth Fibonacci
number
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Ackermann’s function

There is a (unique) function ack ∈ N
2
�N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))
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◮ ack is computable, hence recursive [proof: exercise].
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OCaml version 4.00.1

# let rec ack (x : int)(y : int) : int =
match x ,y with

0 , y -> y+1
| x , 0 -> ack (x-1) 1
| x ,y -> ack (x-1) (ack x (y-1));;

val ack : int -> int -> int = <fun>
# ack 0 0;;
- : int = 1
# ack 1 1;;
- : int = 3
# ack 2 2;;
- : int = 7
# ack 3 3;;
- : int = 61
# ack 4 4;;
Stack overflow during evaluation (looping recursion?).
#

1/1
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Lambda calculus
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Notions of computability

◮ Church (1936): λ-calculus

◮ Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.
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λ-Terms, M

are built up from a given, countable collection of

◮ variables x, y, z, . . .

by two operations for forming λ-terms:

◮ λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

◮ application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))
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λ-Terms, M

Notational conventions:

◮ (λx1 x2 . . . xn.M) means
(λx1.(λx2 . . . (λxn.M) . . .))

◮ (M1 M2 . . . Mn) means (. . . (M1 M2) . . . Mn)
(i.e. application is left-associative)

◮ drop outermost parentheses and those enclosing the
body of a λ-abstraction. E.g. write
(λx.(x(λy.(y x)))) as λx.x(λy.y x).

◮ x # M means that the variable x does not occur
anywhere in the λ-term M.
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Free and bound variables

In λx.M, we call x the bound variable and M the body of
the λ-abstraction.

An occurrence of x in a λ-term M is called

◮ binding if in between λ and .
(e.g. (λx.y x) x)

◮ bound if in the body of a binding occurrence of x
(e.g. (λx.y x) x)

◮ free if neither binding nor bound
(e.g. (λx.y x)x).
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Free and bound variables
Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or combinator.
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α-Equivalence M =α M′

λx.M is intended to represent the function f such that

f(x) = M for all x.

So the name of the bound variable is immaterial: if
M′ = M{x′/x} is the result of taking M and changing all
occurrences of x to some variable x′ # M, then λx.M and
λx′.M′ both represent the same function.

For example, λx.x and λy.y represent the same function
(the identity function).
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α-Equivalence M =α M′

is the binary relation inductively generated by the rules:

x =α x

z # (M N) M{z/x} =α N{z/y}

λx.M =α λy.N

M =α M′ N =α N ′

M N =α M′ N ′

where M{z/x} is M with all occurrences of x replaced by
z.
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α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.
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α-Equivalence M =α M′

Fact: =α is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So α-equivalence classes of
λ-terms are more important than λ-terms themselves.

◮ Textbooks (and these lectures) suppress any notation for
α-equivalence classes and refer to an equivalence class via a
representative λ-term (look for phrases like “we identify terms up
to α-equivalence” or “we work up to α-equivalence”).

◮ For implementations and computer-assisted reasoning, there are
various devices for picking canonical representatives of
α-equivalence classes (e.g. de Bruijn indexes, graphical
representations, . . . ).
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