Register machines

Algorithms, informally

No precise definition of "algorithm" at the time Hilbert posed the Entscheidungsproblem, just examples.

Common features of the examples:

- finite description of the procedure in terms of elementary operations
- deterministic (next step uniquely determined if there is one)
- procedure may not terminate on some input data, but we can recognize when it does terminate and what the result is.

Register Machines, informally

They operate on natural numbers $\mathbb{N}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\}$ stored in (idealized) registers using the following "elementary operations":

- add 1 to the contents of a register
- test whether the contents of a register is $\mathbf{0}$
- subtract 1 from the contents of a register if it is non-zero
- jumps ("goto")
- conditionals ("if_then_else_")

Definition. A register machine is specified by:

- finitely many registers $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ (each capable of storing a natural number);
- a program consisting of a finite list of instructions of the form label: body, where for $i=0,1,2, \ldots$, the $(i+1)^{\text {th }}$ instruction has label L_{i}.

Definition. A register machine is specified by:

- finitely many registers $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ (each capable of storing a natural number);
- a program consisting of a finite list of instructions of the form label: body, where for $i=0,1,2, \ldots$, the $(i+1)^{\text {th }}$ instruction has label L_{i}.

Instruction body takes one of three forms:

$\boldsymbol{R}^{+} \rightarrow \boldsymbol{L}^{\prime}$	add $\mathbf{1}$ to contents of register \boldsymbol{R} and jump to instruction labelled L^{\prime}
$\boldsymbol{R}^{-} \rightarrow \boldsymbol{L}^{\prime}, \boldsymbol{L}^{\prime \prime}$	if contents of \boldsymbol{R} is $>\mathbf{0}$, then subtract $\mathbf{1}$ from it and jump to L^{\prime}, else jump to $\boldsymbol{L}^{\prime \prime}$
HALT	stop executing instructions

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

10002

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
L_{4} : HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$

Example

registers:
$R_{0} R_{1} R_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
21002

Example

registers:
$R_{0} R_{1} R_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 0 & 1\end{array}$

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 0 & 1\end{array}$
$2 \quad 2 \quad 0 \quad 1$

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}2 & 2 & 0 & 1 \\ 3 & 2 & 0 & 0\end{array}$

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
$\mathrm{L}_{4}:$ HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 0 & 1\end{array}$
$2 \begin{array}{llll}2 & 2 & 0 & 1\end{array}$
$\begin{array}{llll}3 & 2 & 0 & 0\end{array}$
2300

Example

registers:
$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
L_{4} : HALT
example computation:

L_{i}	R_{0}	R_{1}	R_{2}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$

100002
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}2 & 1 & 0 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 0 & 1\end{array}$
$2 \begin{array}{llll}2 & 2 & 0 & 1\end{array}$
$\begin{array}{llll}3 & 2 & 0 & 0\end{array}$
$2 \begin{array}{llll}2 & 0 & 0\end{array}$
4300

Register machine computation

Register machine configuration:

$$
c=\left(\ell, r_{0}, \ldots, r_{n}\right)
$$

where $\ell=$ current label and $r_{i}=$ current contents of R_{i}.
Notation: " $\mathrm{R}_{i}=x$ [in configuration c]" means
$c=\left(\ell, r_{0}, \ldots, r_{n}\right)$ with $r_{i}=x$.

Register machine computation

Register machine configuration:

$$
c=\left(\ell, r_{0}, \ldots, r_{n}\right)
$$

where $\ell=$ current label and $r_{i}=$ current contents of R_{i}.
Notation: " $\mathrm{R}_{i}=x$ [in configuration c]" means
$c=\left(\ell, r_{0}, \ldots, r_{n}\right)$ with $r_{i}=x$.
Initial configurations:

$$
c_{0}=\left(0, r_{0}, \ldots, r_{n}\right)
$$

where $r_{i}=$ initial contents of register R_{i}.

Register machine computation

A computation of a RM is a (finite or infinite) sequence of configurations

$$
c_{0}, c_{1}, c_{2}, \ldots
$$

where

- $c_{0}=\left(0, r_{0}, \ldots, r_{n}\right)$ is an initial configuration
- each $c=\left(\ell, r_{0}, \ldots, r_{n}\right)$ in the sequence determines the next configuration in the sequence (if any) by carrying out the program instruction labelled L_{ℓ} with registers containing r_{0}, \ldots, r_{n}.

Halting

For a finite computation $c_{0}, c_{1}, \ldots, c_{m}$, the last configuration $c_{m}=(\ell, r, \ldots)$ is a halting configuration, i.e. instruction labelled L_{ℓ} is
either HALT (a "proper halt")
or $\boldsymbol{R}^{+} \rightarrow \boldsymbol{L}$, or $\boldsymbol{R}^{-} \rightarrow \boldsymbol{L}, \boldsymbol{L}^{\prime}$ with $\boldsymbol{R}>\mathbf{0}$, or $R^{-} \rightarrow L^{\prime}, L$ with $R=\mathbf{0}$
and there is no instruction labelled L in the program (an "erroneous halt")

Halting

For a finite computation $c_{0}, c_{1}, \ldots, c_{m}$, the last configuration $c_{m}=(\ell, r, \ldots)$ is a halting configuration, i.e. instruction labelled L_{ℓ} is
either HALT (a "proper halt")
or $\boldsymbol{R}^{+} \rightarrow \boldsymbol{L}$, or $\boldsymbol{R}^{-} \rightarrow \boldsymbol{L}, \boldsymbol{L}^{\prime}$ with $\boldsymbol{R}>\mathbf{0}$, or $R^{-} \rightarrow L^{\prime}, L$ with $R=0$
and there is no instruction labelled L in the program (an "erroneous halt")

E.g. | $\mathrm{L}_{0}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$ |
| :--- |
| $\mathrm{~L}_{1}: H A L T$ | halts erroneously.

Halting

For a finite computation $c_{0}, c_{1}, \ldots, c_{m}$, the last configuration $c_{m}=(\ell, r, \ldots)$ is a halting configuration, i.e. instruction labelled L_{ℓ} is

either HALT (a "proper halt")

$$
\text { or } \begin{aligned}
& \boldsymbol{R}^{+} \rightarrow \boldsymbol{L} \text {, or } \boldsymbol{R}^{-} \rightarrow \boldsymbol{L}, \boldsymbol{L}^{\prime} \text { with } R>0 \text {, or } \\
& \boldsymbol{R}^{-} \rightarrow \boldsymbol{L}^{\prime}, L \text { with } R=0
\end{aligned}
$$

and there is no instruction labelled L in the program (an "erroneous halt")
N.B. can always modify programs (without affecting their computations) to turn all erroneous halts into proper halts by adding extra HALT instructions to the list with appropriate labels.

Halting

For a finite computation $c_{0}, c_{1}, \ldots, c_{m}$, the last configuration $c_{m}=(\ell, r, \ldots)$ is a halting configuration.

Note that computations may never halt. For example,

$$
\begin{aligned}
& \mathrm{L}_{0}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{1}: \mathrm{HALT}
\end{aligned}
$$ only has infinite computation sequences

$$
(0, r),(0, r+1),(0, r+2), \ldots
$$

Graphical representation

- one node in the graph for each instruction
- arcs represent jumps between instructions
- lose sequential ordering of instructions-so need to indicate initial instruction with START.

instruction	representation
$\boldsymbol{R}^{+} \rightarrow \boldsymbol{L}$	$\boldsymbol{R}^{+} \longrightarrow[\boldsymbol{L}]$
$\boldsymbol{R}^{-} \rightarrow \boldsymbol{L}, L^{\prime}$	\boldsymbol{R}^{-}
HALT	HALT
L_{0}	START $\longrightarrow\left[\boldsymbol{L}^{\prime}\right]$

Example

registers:

$\mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2}$
program:
$\mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2}$
$\mathrm{L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0}$
$\mathrm{L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4}$
$\mathrm{L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2}$
L_{4} : HALT
graphical representation: START

HALT

Example

$$
\begin{aligned}
& \text { registers: } \\
& \mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2} \\
& \text { program: } \\
& \mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2} \\
& \mathrm{~L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4} \\
& \mathrm{~L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2} \\
& \mathrm{~L}_{4}: \mathrm{HALT}
\end{aligned}
$$

graphical representation: START

Graphical representation is helpful for seeing what function a machine computes...

Example

$$
\begin{aligned}
& \text { registers: } \\
& \mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2} \\
& \text { program: } \\
& \mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2} \\
& \mathrm{~L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4} \\
& \mathrm{~L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2} \\
& \mathrm{~L}_{4}: \mathrm{HALT}
\end{aligned}
$$

Claim: starting from initial configuration $(0,0, x, y)$, this machine's computation halts with configuration $(4, x+y, 0,0)$.

Example

$$
\begin{aligned}
& \text { registers: } \\
& \mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2} \\
& \text { program: } \\
& \mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2} \\
& \mathrm{~L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4} \\
& \mathrm{~L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2} \\
& \mathrm{~L}_{4}: \mathrm{HALT}^{2}
\end{aligned}
$$

Claim: starting from initial configuration ($0,0, x, y$), this machine's computation halts with configuration $(4, x+y, 0,0)$.

Example

$$
\begin{aligned}
& \text { registers: } \\
& \mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2} \\
& \text { program: } \\
& \mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2} \\
& \mathrm{~L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4} \\
& \mathrm{~L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2} \\
& \mathrm{~L}_{4}: \mathrm{HALT}^{2}
\end{aligned}
$$

Claim: starting from initial configuration $(0,0, x, y)$, this machine's computation halts with configuration $(4, x+y, 0,0)$.

Partial functions

Register machine computation is deterministic: in any non-halting configuration, the next configuration is uniquely determined by the program.
So the relation between initial and final register contents defined by a register machine program is a partial function. . .

Partial functions

Register machine computation is deterministic: in any non-halting configuration, the next configuration is uniquely determined by the program.
So the relation between initial and final register contents defined by a register machine program is a partial function. . .

Definition. A partial function from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$
(x, y) \in f \wedge\left(x, y^{\prime}\right) \in f \rightarrow y=y^{\prime}
$$

for all $x \in X$ and $y, y^{\prime} \in Y$.

Partial functions

```
ordered pairs {(x,y)|x\inX\wedgey\inY}
```

Definition. A partial function from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$
(x, y) \in f \wedge\left(x, y^{\prime}\right) \in f \rightarrow y=y^{\prime}
$$

for all $x \in X$ and $y, y^{\prime} \in Y$.

Partial functions

Notation:

- " $f(x)=y$ " means $(x, y) \in f$
- " $f(x) \downarrow$ " means $\exists y \in Y(f(x)=y)$
- " $f(x) \uparrow "$ means $\neg \exists y \in Y(f(x)=y)$
- $\boldsymbol{X} \boldsymbol{\boldsymbol { Y }}=$ set of all partial functions from \boldsymbol{X} to \boldsymbol{Y} $\boldsymbol{X} \rightarrow \boldsymbol{Y}=$ set of all (total) functions from X to \boldsymbol{Y}

Definition. A partial function from a set X to a set Y is specified by any subset $f \subseteq X \times Y$ satisfying

$$
(x, y) \in f \wedge\left(x, y^{\prime}\right) \in f \rightarrow y=y^{\prime}
$$

for all $x \in X$ and $y, y^{\prime} \in Y$.

Partial functions

Notation:

- " $f(x)=y "$ means $(x, y) \in f$
- " $f(x) \downarrow$ " means $\exists y \in Y(f(x)=y)$
- " $f(x) \uparrow "$ means $\neg \exists y \in Y(f(x)=y)$
- $\boldsymbol{X} \boldsymbol{\boldsymbol { Y }}=$ set of all partial functions from X to \boldsymbol{Y} $\boldsymbol{X} \rightarrow \boldsymbol{Y}=$ set of all (total) functions from \boldsymbol{X} to \boldsymbol{Y}

Definition. A partial function from a set X to a set Y is total if it satisfies

$$
f(x) \downarrow
$$

for all $x \in X$.

Computable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is (register machine)

 computable if there is a register machine \boldsymbol{M} with at least $n+\mathbf{1}$ registers $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ (and maybe more) such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and all $y \in \mathbb{N}$, the computation of \boldsymbol{M} starting with $\mathrm{R}_{0}=\mathbf{0}$, $\mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$ and all other registers set to 0 , halts with $\mathrm{R}_{0}=y$if and only if $f\left(x_{1}, \ldots, x_{n}\right)=y$.
Note the [somewhat arbitrary] I/O convention: in the initial configuration registers $\mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ store the function's arguments (with all others zeroed); and in the halting configuration register R_{0} stores it's value (if any).

Computable functions

Definition. $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is (register machine)

 computable if there is a register machine \boldsymbol{M} with at least $n+\mathbf{1}$ registers $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{n}$ (and maybe more) such that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and all $y \in \mathbb{N}$, the computation of \boldsymbol{M} starting with $\mathrm{R}_{0}=\mathbf{0}$, $\mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$ and all other registers set to 0 , halts with $\mathrm{R}_{0}=y$if and only if $f\left(x_{1}, \ldots, x_{n}\right)=y$.
N.B. there may be many different M that compute the same partial function f.

Example

$$
\begin{aligned}
& \text { registers: } \\
& \mathrm{R}_{0} \mathrm{R}_{1} \mathrm{R}_{2} \\
& \text { program: } \\
& \mathrm{L}_{0}: \mathrm{R}_{1}^{-} \rightarrow \mathrm{L}_{1}, \mathrm{~L}_{2} \\
& \mathrm{~L}_{1}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{0} \\
& \mathrm{~L}_{2}: \mathrm{R}_{2}^{-} \rightarrow \mathrm{L}_{3}, \mathrm{~L}_{4} \\
& \mathrm{~L}_{3}: \mathrm{R}_{0}^{+} \rightarrow \mathrm{L}_{2} \\
& \mathrm{~L}_{4}: \mathrm{HALT}
\end{aligned}
$$

Claim: starting from initial configuration $(0,0, x, y)$, this machine's computation halts with configuration $(4, x+y, 0,0)$. So $f(x, y) \triangleq x+y$ is computable.

Multiplication $f(x, y) \triangleq x y$ is computable

Multiplication $f(x, y) \triangleq x y$ is computable

Multiplication $f(x, y) \triangleq x y$ is computable

Multiplication $f(x, y) \triangleq x y$ is computable

Multiplication $f(x, y) \triangleq x y$ is computable

If the machine is started with $\left(R_{0}, R_{1}, R_{2}, R_{3}\right)=(0, x, y, 0)$, it halts with $\left(\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}\right)=(x y, 0, y, 0)$.

Further examples

The following arithmetic functions are all computable. (Proof-left as an exercise!) projection: $p(x, y) \triangleq x$
constant: $c(x) \triangleq n$
truncated subtraction: $x \doteq y \triangleq \begin{cases}x-y & \text { if } y \leq x \\ 0 & \text { if } y>x\end{cases}$

Further examples

The following arithmetic functions are all computable. (Proof-left as an exercise!) integer division:
$x \operatorname{div} y \triangleq \begin{cases}\text { integer part of } x / y & \text { if } y>0 \\ 0 & \text { if } y=0\end{cases}$
integer remainder: $x \bmod y \triangleq x \doteq y(x \operatorname{div} y)$
exponentiation base 2: $e(x) \triangleq 2^{x}$
logarithm base 2:
$\log _{2}(x) \triangleq \begin{cases}\text { greatest } y \text { such that } 2^{y} \leq x & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$
W.l.og. can use RMs with only one HALT
START M Y HALT

Sequential composition $M_{1} ; M_{2}$
START $\rightarrow M_{1} \because M_{2} \Rightarrow$ HALT

WHILE $R \neq O$ DO M

