Hoare Logic and Model Checking

Jean Pichon-Pharabod

University of Cambridge

CST Part II - 2017/18

These slides are heavily based on previous versions by Mike Gordon, Alan Mycroft, and Kasper Svendsen.

Thanks to Mistral Contrastin, Victor Gomes, and Ian Orton for reporting mistakes.

Motivation

We often fail to write programs that meet our expectations, which we phrased in their specifications:

- we fail to write programs that meet their specification;
- we fail to write specifications that meet our expectations.

Addressing the former issue is called verification, and addressing the latter is called validation.

Background

There are many verification \& validation techniques of varying coverage, expressivity, level of automation, ..., for example:

More expressive and complete techniques lead to more confidence.

It is important to choose the right set of verification \& validation techniques for the task at hand:

- verified designs may still not work;
- verification can give a false sense of security;
- verification can be very expensive and time-consuming.

More heavyweight techniques should be used together with testing, not as a replacement.

This course is about two techniques, their underlying ideas, how to use them, and why they are correct:

- Hoare logic (Lectures 1-6);
- Model checking (Lectures 7-12).

These are not just techniques, but also ways of thinking about programs.

Lecture plan

[^0]
Hoare logic

Hoare logic is a formalism for relating the initial and terminal state of a program.

Hoare logic was invented in 1969 by Tony Hoare, inspired by earlier work of Robert Floyd.
There was little-known prior work by Alan Turing.
Hoare logic is still an active area of research.

Hoare logic uses partial correctness triples (also "Hoare triples") for specifying and reasoning about the behaviour of programs:

$$
\{P\} \subset\{Q\}
$$

Here, C is a command, and P and Q are state predicates:

- P is called the precondition, and describes the initial state;
- Q is called the postcondition, and describes the terminal state.

Hoare logic

To define a Hoare logic, we need four main components:

- the programming language that we want to reason about, along with its dynamic (e.g. operational) semantics;
- an assertion language for defining state predicates, along with a semantics;
- an interpretation of Hoare triples;
- a (sound) proof system for deriving Hoare triples.

This lecture will introduce each component informally. In the coming lectures, we will cover the formal details.

The WHILE language

The WHILE language

WHILE is the prototypical imperative language. Programs consist of commands, which include branching, iteration, and assignment:

```
C ::= skip
    |}\mp@subsup{C}{1}{};\mp@subsup{C}{2}{
    | V:=E
    | if B then C1 else C}\mp@subsup{C}{2}{
    while B do C
```

Here, V is a variable, E is an arithmetic expression, which evaluates to a natural number, and B is a boolean expression, which evaluates to a boolean.

States are mappings from variables to natural numbers.
The grammar for arithmetic expressions and boolean expressions includes the usual arithmetic operations and comparison operators, respectively:

$$
\begin{aligned}
E & :: N|V| E_{1}+E_{2} & \text { arithmetic expressions } \\
& \left|E_{1}-E_{2}\right| E_{1} \times E_{2} \mid \ldots & \\
B & :=T|F| E_{1}=E_{2} & \text { boolean expressions } \\
& \left|E_{1} \leq E_{2}\right| E_{1} \geq E_{2} \mid \cdots &
\end{aligned}
$$

Note that expressions do not have side effects

Hoare logic

State predicates P and Q can refer to program variables from C, and will be written using standard mathematical notations together with logical operators like:

- $\wedge($ "and" $), \vee($ "or" $), \neg($ "not" $)$, and \Rightarrow ("implies" $)$

For instance, the predicate $X=Y+1 \wedge Y>0$ describes states in which the variable Y contains a positive value, and the value of X is equal to the value of Y plus 1 .

The partial correctness triple $\{P\} \subset\{Q\}$ holds if and only if:

- assuming C is executed in an initial state satisfying P,
- and assuming moreover that this execution terminates,
- then the terminal state of the execution satisfies Q.

For instance,

- $\{X=1\} X:=X+1\{X=2\}$ holds;
- $\{X=1\} X:=X+1\{X=3\}$ does not hold.

Partial correctness triples are called partial because they only specify the intended behaviour of terminating executions.

For instance, $\{X=1\}$ while $X>0$ do $X:=X+1\{X=0\}$ holds, because the given program never terminates when executed from an initial state where X is 1 .

Hoare logic also features total correctness triples that strengthen the specification to require termination.

Total correctness

Total correctness

The following total correctness triple does not hold:

$$
[X=1] \text { while } X>0 \text { do } X:=X+1[X=0]
$$

- the loop never terminates when executed from an initial state where X is positive.

The following total correctness triple does hold:

$$
[X=0] \text { while } X>0 \text { do } X:=X+1[X=0]
$$

- the loop always terminates immediately when executed from an initial state where X is zero.

Informally: total correctness $=$ termination + partial correctness.

It is often easier to show partial correctness and termination separately.

Termination is usually straightforward to show, but there are examples where it is not: no one knows whether the program below terminates for all values of X :

```
while \(X>1\) do
    if \(O D D(X)\) then \(X:=3 \times X+1\) else \(X:=X\) DIV 2
```

Microsoft's T2 tool is used to prove termination of systems code.

Simple examples

$\{\perp\} \subset\{Q\}$

- this says nothing about the behaviour of C, because \perp never holds for any initial state.
$\{T\} \subset\{Q\}$
- this says that whenever C halts, Q holds.
$\{P\} \subset\{T\}$
- this holds for every precondition P and command C, because T always holds in the terminate state.

Simple examples

Specifications

[P] C [T]

- this says that C always terminates when executed from an initial state satisfying P.
[\top] C [Q]
- this says that C always terminates, and ends up in a state where Q holds.

Consider a program C that computes the maximum value of two variables X and Y and stores the result in a variable Z.

Is this a good specification for C ?
$\{\top\} \subset\{(X \leq Y \Rightarrow Z=Y) \wedge(Y \leq X \Rightarrow Z=X)\}$
No! Take C to be $X:=0 ; Y:=0 ; Z:=0$, then C satisfies the above specification. The postcondition should refer to the initial values of X and Y.

In Hoare logic we use auxiliary variables which do not occur in the program to refer to the initial value of variables in postconditions.

For instance, $\{X=x \wedge Y=y\} C\{X=y \wedge Y=x\}$ expresses that if C terminates, then it exchanges the values of variables X and Y.

Here, x and y are auxiliary variables (also "ghost variables"), which are not allowed to occur in C, and are only used to name the initial values of X and Y.

Informal convention: program variables are uppercase, and auxiliary variables are lowercase.

Hoare logic

We will now introduce a natural deduction proof system for partial correctness triples due to Tony Hoare.

The logic consists of a set of inference rule schemas for deriving consequences from premises.

If S is a statement, we will write $\vdash S$ to mean that the statement S is derivable. We will have two derivability judgements:

- $\vdash P$, for derivability of assertions; and
- $\vdash\{P\} \subset\{Q\}$, for derivability of partial correctness triples.

The inference rule schemas of Hoare logic will be specified as follows:
$\frac{\vdash S_{1} \quad \cdots \quad \vdash S_{n}}{\vdash S}$

This expresses that S may be deduced from assumptions S_{1}, \ldots, S_{n}.
These are schemas that may contain meta-variables.
A proof tree for $\vdash S$ in Hoare logic is a tree with $\vdash S$ at the root, constructed using the inference rules of Hoare logic, where all nodes are shown to be derivable, so leaves require no further derivations:

We typically write proof trees with the root at the bottom.

Formal proof system for Hoare logic

$$
\begin{gathered}
\overline{\vdash\{P\} \text { skip }\{P\}} \overline{\vdash\{P[E / V]\} V:=E\{P\}} \\
\frac{\vdash\{P\} C_{1}\{Q\} \quad \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}} \\
\frac{\vdash\{P \wedge B\} C_{1}\{Q\} \quad \vdash\{P \wedge \neg B\} C_{2}\{Q\}}{\vdash\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}} \\
\vdash \frac{\vdash\{P \wedge B\} C\{P\}}{\vdash\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
\end{gathered}
$$

$$
\frac{\vdash P_{1} \Rightarrow P_{2} \quad \vdash\left\{P_{2}\right\} \subset\left\{Q_{2}\right\} \quad \vdash Q_{2} \Rightarrow Q_{1}}{\qquad \vdash\left\{P_{1}\right\} \subset\left\{Q_{1}\right\}}
$$

$$
\overline{\vdash\{P[E / V]\} V:=E\{P\}}
$$

Here, $P[E / V]$ means the assertion P with the expression E substituted for all occurrences of the variable V.

For instance,

$$
\begin{gathered}
\{X+1=2\} X:=X+1\{X=2\} \\
\{Y+X=Y+10\} X:=Y+X\{X=Y+10\}
\end{gathered}
$$

The assignment rule reads right-to-left; could we use another rule that reads more easily?

Consider the following plausible alternative assignment rules:

$$
\overline{\vdash\{P\} V:=E\{P[E / V]\}}
$$

We can instantiate this rule to obtain the following triple, which does not hold:

$$
\{X=0\} X:=1\{1=0\}
$$

The rule of consequence

Sequential composition

$$
\frac{\vdash\{P\} C_{1}\{Q\} \quad \vdash\{Q\} C_{2}\{R\}}{\vdash\{P\} C_{1} ; C_{2}\{R\}}
$$

If the postcondition of C_{1} matches the precondition of C_{2}, we can derive a specification for their sequential composition.

For example, if we have deduced:

- $\{X=1\} X:=X+1\{X=2\}$
- $\{X=2\} \quad X:=X+1\{X=3\}$
we may deduce that $\{X=1\} X:=X+1 ; X:=X+1\{X=3\}$.

The conditional rule

$$
\frac{\vdash\{P \wedge B\} C_{1}\{Q\} \quad \vdash\{P \wedge \neg B\} C_{2}\{Q\}}{\vdash\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
$$

For instance, to prove that

$$
\vdash\{T\} \text { if } X \geq Y \text { then } Z:=X \text { else } Z:=Y\{Z=\max (X, Y)\}
$$

It suffices to prove that $\vdash\{T \wedge X \geq Y\} Z:=X\{Z=\max (X, Y)\}$ and $\vdash\{\top \wedge \neg(X \geq Y)\} Z:=Y\{Z=\max (X, Y)\}$.

Conjunction and disjunction rule

$$
\begin{aligned}
& \frac{\vdash\left\{P_{1}\right\} C\{Q\} \quad \vdash\left\{P_{2}\right\} C\{Q\}}{\vdash\left\{P_{1} \vee P_{2}\right\} C\{Q\}} \\
& \frac{\vdash\{P\} C\left\{Q_{1}\right\} \quad \vdash\{P\} \subset\left\{Q_{2}\right\}}{\vdash\{P\} C\left\{Q_{1} \wedge Q_{2}\right\}}
\end{aligned}
$$

These rules are useful for splitting up proofs.
Any proof with these rules could be done without using them

- i.e. they are theoretically redundant (proof omitted),
- however, they are useful in practice.

$$
\frac{\vdash\{P \wedge B\} C\{P\}}{\vdash\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

The loop rule says that

- if P is an invariant of the loop body when the loop condition succeeds, then P is an invariant for the whole loop, and
- if the loop terminates, then the loop condition failed.

We will return to be problem of finding loop invariants.

The loop rule

Summary

Hoare logic is a formalism for reasoning about the behaviour of programs by relating their initial and terminal state.

It uses an assertion logic based on first-order logic to reason about program states, and extends this with Hoare triples to reason about the programs.

Papers of historical interest:

- C. A. R. Hoare. An axiomatic basis for computer programming. 1969.
- R. W. Floyd. Assigning meanings to programs. 1967.
- A. M. Turing. Checking a large routine. 1949.

Hoare Logic and Model Checking

Jean Pichon-Pharabod
University of Cambridge

CST Part II - 2017/18

Semantics of Hoare logic

Recall: to define a Hoare logic, we need four main components:

- the programming language that we want to reason about, along with its dynamic semantics;
- an assertion language for defining state predicates, along with a semantics;
- an interpretation of Hoare triples;
- a (sound) proof system for deriving Hoare triples.

This lecture defines a formal semantics of Hoare logic, and introduces some meta-theoretic results about Hoare logic (soundness \& completeness).

Semantics of Hoare logic

-

The dynamic semantics of WHILE will be given in the form of a "big-step" operational semantics.

The reduction relation, written $\langle C, s\rangle \Downarrow s^{\prime}$, expresses that the command C reduces to the terminal state s^{\prime} when executed from initial state s.

More precisely, these "states" are stores, which are functions from variables to integers:

$$
\text { Store } \stackrel{\text { def }}{=} \operatorname{Var} \rightarrow \mathbb{Z}
$$

These are total functions, and define the current value of every program and auxiliary variable.

This models WHILE with arbitrary precision integer arithmetic. A more realistic model might use 32-bit integers and require reasoning about overflow, etc.

Dynamic semantics of WHILE

The reduction relation is defined inductively by a set of rules.

To reduce an assignment, we first evaluate the expression E using the current store, and update the store with the value of E :

$$
\frac{\mathcal{E} \llbracket E \rrbracket(s)=n}{\langle V:=E, s\rangle \Downarrow s[V \mapsto n]}
$$

We use functions $\mathcal{E} \llbracket E \rrbracket(s)$ and $\mathcal{B} \llbracket B \rrbracket(s)$ to evaluate arithmetic expressions and boolean expressions in a given store s, respectively.

Semantics of expressions

$\mathcal{E} \llbracket E \rrbracket(s)$ evaluates arithmetic expression E to an integer in store $s:$

$$
\begin{aligned}
\mathcal{E} \llbracket-\rrbracket(=): & : \operatorname{Exp} \times \text { Store } \rightarrow \mathbb{Z} \\
\mathcal{E} \llbracket N \rrbracket(s) & =N \\
\mathcal{E} \llbracket V \rrbracket(s) & =s(V) \\
\mathcal{E} \llbracket E_{1}+E_{2} \rrbracket(s) & =\mathcal{E} \llbracket E_{1} \rrbracket(s)+\mathcal{E} \llbracket E_{2} \rrbracket(s)
\end{aligned}
$$

This semantics is too simple to handle operations such as division, which fails to evaluate to an integer on some inputs.
$\mathcal{B} \llbracket B \rrbracket(s)$ evaluates boolean expression B to an boolean in store $s:$

$$
\begin{aligned}
\mathcal{B} \llbracket-\rrbracket(=): & B E \times p \times \text { Store } \rightarrow \mathbb{B} \\
\mathcal{E} \llbracket T \rrbracket(s) & =\top \\
\mathcal{E} \llbracket F \rrbracket(s) & =\perp \\
\mathcal{E} \llbracket E_{1} \leq E_{2} \rrbracket(s) & = \begin{cases}T & \text { if } \mathcal{E} \llbracket E_{1} \rrbracket(s) \leq \mathcal{E} \llbracket E_{2} \rrbracket(s) \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{array}{cc}
\frac{\mathcal{E} \llbracket E \rrbracket(s)=n}{\langle V:=E, s\rangle \Downarrow s[V \mapsto n]} & \frac{\left\langle C_{1}, s\right\rangle \Downarrow s^{\prime} \quad\left\langle C_{2}, s^{\prime}\right\rangle \Downarrow s^{\prime \prime}}{\left\langle C_{1} ; C_{2}, s\right\rangle \Downarrow s^{\prime \prime}} \\
\frac{\mathcal{B} \llbracket B \rrbracket(s)=\top \quad\left\langle C_{1}, s\right\rangle \Downarrow s^{\prime}}{\left\langle\text { if } B \text { then } C_{1} \text { else } C_{2}, s\right\rangle \Downarrow s^{\prime}} & \frac{\mathcal{B} \llbracket B \rrbracket(s)=\perp \quad\left\langle C_{2}, s\right\rangle \Downarrow s^{\prime}}{\left\langle\text { if } B \text { then } C_{1} \text { else } C_{2}, s\right\rangle \Downarrow s^{\prime}} \\
\frac{\mathcal{B} \llbracket B \rrbracket(s)=\top \quad\langle C, s\rangle \Downarrow s^{\prime}}{\langle\text { while } B \text { do } C, s\rangle \Downarrow s^{\prime \prime}} \quad\left\langle\text { while } B \text { do } C, s^{\prime}\right\rangle \Downarrow s^{\prime \prime} \\
\frac{\mathcal{B} \llbracket B \rrbracket(s)=\perp}{\langle\text { while } B \text { do } C, s\rangle \Downarrow s} & \frac{\text { skip }, s\rangle \Downarrow s}{}
\end{array}
$$

Meta-theory

Note that the dynamic semantics of WHILE is deterministic:

$$
\langle C, s\rangle \Downarrow s^{\prime} \wedge\langle C, s\rangle \Downarrow s^{\prime \prime} \Rightarrow s^{\prime}=s^{\prime \prime}
$$

We have already implicitly used this in the definition of total correctness triples.

Without this property, we would have to specify whether all reductions or just some reductions were required to terminate.

Meta-theory

We will need the following expression substitution property later to prove soundness of the Hoare assignment rule:

$$
\mathcal{E} \llbracket E_{1}\left[E_{2} / V \rrbracket \rrbracket(s)=\mathcal{E} \llbracket E_{1} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)\right.
$$

The expression substitution property follows by induction on E_{1}. Case $E_{1} \equiv N$:

$$
\mathcal{E} \llbracket N\left[E_{2} / V\right] \rrbracket(s)=N=\mathcal{E} \llbracket N \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)
$$

$$
\mathcal{E} \llbracket E_{1}\left[E_{2} / V \rrbracket \rrbracket(s)=\mathcal{E} \llbracket E_{1} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)\right.
$$

Case $E_{1} \equiv V$:

$$
\begin{aligned}
\mathcal{E} \llbracket V^{\prime}\left[E_{2} / V\right] \rrbracket(s) & = \begin{cases}\mathcal{E} \llbracket E_{2} \rrbracket(s) & \text { if } V=V^{\prime} \\
s\left(V^{\prime}\right) & \text { if } V \neq V^{\prime}\end{cases} \\
& =\mathcal{E} \llbracket V^{\prime} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)
\end{aligned}
$$

Semantics of assertions

$$
\mathcal{E} \llbracket E_{1}\left[E_{2} / V\right] \rrbracket(s)=\mathcal{E} \llbracket E_{1} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)
$$

Case $E_{1} \equiv E_{a}+E_{b}$:

$$
\begin{aligned}
& \mathcal{E} \llbracket\left(E_{a}+E_{b}\right)\left[E_{2} / V \rrbracket \rrbracket(s)\right. \\
& \quad= \mathcal{E} \llbracket E_{a}\left[E_{2} / V\right] \rrbracket(s)+\mathcal{E} \llbracket E_{b}\left[E_{2} / V \rrbracket \rrbracket(s)\right. \\
& \quad=\mathcal{E} \llbracket E_{a} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)+\mathcal{E} \llbracket E_{b} \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right) \\
&\left.\quad=\mathcal{E} \llbracket E_{a}+E_{b}\right] \rrbracket\left(s\left[V \mapsto \mathcal{E} \llbracket E_{2} \rrbracket(s)\right]\right)
\end{aligned}
$$

Now, we have formally defined the semantics of the WHILE language that we wish to reason about.

The next step is to formalise the assertion language that we will use to reason about states of WHILE programs.

We take the language of assertions to be an instance of (single-sorted) first-order logic with equality.

Knowledge of first-order logic is assumed. We will review some basic concepts now.

Review of first-order logic

Recall that in first-order logic there are two syntactic classes:

- terms, which denote values (e.g., numbers), and
- assertions, which denote properties that may be true or false.

Assertions are built out of predicates on terms, and logical connectives (\wedge, \vee, etc.).

Since we are reasoning about WHILE states, our assertions will describe properties of WHILE states.

Terms may contain variables like x, X, y, Y, z, Z etc.

Terms, like 1 and $4+5$, that do not contain any free variables are called ground terms.

We use conventional notation, e.g. here are some terms:

$$
\begin{array}{cl}
X, \quad y, \quad Z, \\
& 1, \quad 2, \quad 325, \\
-X, & -(X+1), \quad(x \times y)+Z \\
\sqrt{\left(1+x^{2}\right),} & X!, \quad \sin (x), \quad \operatorname{rem}(X, Y)
\end{array}
$$

Review of first-order logic: Atomic assertions

Review of first-order logic: Atomic assertions

In general, first-order logic is parameterised over a signature that defines non-logical function symbols $(+,-, \times, \ldots)$ and predicate symbols (ODD, PRIME, etc.).

We will be using a particular instance with a signature that includes the usual functions and predicates on integers.

Here ODD, PRIME, and \geq are examples of predicates (\geq is written using infix notation) and $X, 1,3, X+1,(X+1)^{2}$ and x^{2} are examples of terms.

Review of first-order logic: Compound assertions

Compound assertions are built up from atomic assertions using the usual logical connectives:

$$
\wedge(\text { conjunction }), \vee(\text { disjunction }), \Rightarrow(\text { implication })
$$

and quantification:

$$
\forall \text { (universal), } \exists \text { (existential) }
$$

Negation, $\neg P$, is a shorthand for $P \Rightarrow \perp$.

Semantics of terms

Semantics of assertions

$\llbracket P \rrbracket$ defines the set of stores that satisfy the assertion P :

$$
\begin{aligned}
\llbracket-\rrbracket & : \text { Assertion } \rightarrow \mathcal{P} \text { (Store) } \\
\llbracket \perp \rrbracket & =\emptyset \\
\llbracket\urcorner \rrbracket & =\text { Store } \\
\llbracket B \rrbracket & =\{s \mid \mathcal{B} \llbracket B \rrbracket(s)=\top\} \\
\llbracket P \vee Q \rrbracket & =\llbracket P \rrbracket \cup \llbracket Q \rrbracket \\
\mathbb{P} \wedge Q \rrbracket & =\llbracket P \rrbracket \cap \llbracket Q \rrbracket \\
\llbracket P \Rightarrow Q \rrbracket & =\{s \mid s \in \llbracket P \rrbracket \Rightarrow s \in \llbracket Q \rrbracket\}
\end{aligned}
$$

$$
\begin{aligned}
\llbracket \forall x \cdot P \rrbracket & =\{s \mid \forall v \cdot s[x \mapsto v] \in \llbracket P \rrbracket\} \\
\llbracket \exists x \cdot P \rrbracket & =\{s \mid \exists v \cdot s[x \mapsto v] \in \llbracket P \rrbracket\} \\
\llbracket t_{1}=t_{2} \rrbracket & =\left\{s \mid \llbracket t_{1} \rrbracket(s)=\llbracket t_{2} \rrbracket(s)\right\} \\
\llbracket p\left(t_{1}, \ldots, t_{n}\right) \rrbracket & =\left\{s \mid \llbracket \rrbracket \rrbracket\left(\llbracket t_{1} \rrbracket(s), \ldots, \llbracket t_{2} \rrbracket(s)\right)\right\}
\end{aligned}
$$

We assume $\llbracket p \rrbracket$ is given by the implicit signature.

This interpretation is related to the forcing relation you used in Part IB "Logic and Proof":

$$
s \in \llbracket P \rrbracket \Leftrightarrow s \models P
$$

Substitution property

The term and assertion semantics satisfy a similar substitution property to the expression semantics:

- $\llbracket t[E / V] \rrbracket(s)=\llbracket t \rrbracket(s[V \mapsto \mathcal{E} \llbracket E \rrbracket(s)])$
- $s \in \llbracket P[E / V] \rrbracket \Leftrightarrow s[V \mapsto \mathcal{E} \llbracket E \rrbracket(s)] \in \llbracket P \rrbracket$

They are easily provable by induction on t and P, respectively. (Exercise)

Now that we have formally defined the dynamic semantics of WHILE and our assertion language, we can define the formal meaning of our triples.

A partial correctness triple asserts that if the given command terminates when executed from an initial state that satisfies the precondition, then the terminal state must satisfy the postcondition:

$$
\models\{P\} C\{Q\} \stackrel{\text { def }}{=} \forall s, s^{\prime} . s \in \llbracket P \rrbracket \wedge\langle C, s\rangle \Downarrow s^{\prime} \Rightarrow s^{\prime} \in \llbracket Q \rrbracket
$$

A total correctness triple asserts that when the given command is executed from an initial state that satisfies the precondition, then it must terminate in a terminal state that satisfies the postcondition:

$$
\vDash[P] C[Q] \stackrel{\text { def }}{=} \forall s . s \in \llbracket P \rrbracket \Rightarrow \exists s^{\prime} .\langle C, s\rangle \Downarrow s^{\prime} \wedge s^{\prime} \in \llbracket Q \rrbracket
$$

Since WHILE is deterministic, if one terminating execution satisfies the postcondition, then all terminating executions satisfy the postcondition.

Meta-theory of Hoare logic

Now, we have a syntactic proof system for deriving Hoare triples, $\vdash\{P\} \subset\{Q\}$, and a formal definition of the meaning of our Hoare triples, $\models\{P\} \subset\{Q\}$.

How are these related?

We might hope that any triple that can be derived syntactically holds semantically (soundness), and that any triple that holds semantically is syntactically derivable (completeness).

This is not the case: Hoare logic is sound but not complete

$$
\vDash\{P[E / V]\} \quad V:=E\{P\}
$$

Assume $s \in \llbracket P[E / V] \rrbracket$ and $\langle V:=E, s\rangle \Downarrow s^{\prime}$.
From the substitution property, it follows that

$$
s[V \mapsto \mathcal{E} \llbracket E \rrbracket(s)] \in \llbracket P \rrbracket
$$

and from the reduction relation, it follows that $s^{\prime}=s[V \mapsto \mathcal{E} \llbracket E \rrbracket(s)]$. Hence, $s^{\prime} \in \llbracket P \rrbracket$.

Soundness of the loop inference rule

Completeness

$$
\begin{aligned}
& \text { If } \models\{P \wedge B\} C\{P\} \text {, then } \\
& \forall n . \forall s, s^{\prime} . s \in \llbracket P \rrbracket \wedge\langle\text { while } B \text { do } C, s\rangle \Downarrow^{n} s^{\prime} \Rightarrow s^{\prime} \in \llbracket P \wedge \neg B \rrbracket
\end{aligned}
$$

Case $n=1$: assume $s \in \llbracket P \rrbracket$ and \langle while B do $C, s\rangle \Downarrow^{1} s^{\prime}$. Since the loop reduced in one step, B must have evaluated to false: $\mathcal{B} \llbracket B \rrbracket(s)=\perp$ and $s^{\prime}=s$. Hence, $s^{\prime}=s \in \llbracket P \wedge \neg B \rrbracket$.

Case $n>1$: assume $s \in \llbracket P \rrbracket$ and \langle while B do $C, s\rangle \Downarrow^{n} s^{\prime}$. Since the loop reduced in more than one step, B must have evaluated to true: $\mathcal{B} \llbracket B \rrbracket(s)=\top$ and there exists an $s^{\prime \prime}, n_{1}$ and n_{2} such that $\langle C, s\rangle \Downarrow^{n_{1}} s^{\prime \prime}$, $\left\langle\right.$ while B do $\left.C, s^{\prime \prime}\right\rangle \Downarrow^{n_{2}} s^{\prime}$ with $n=n_{1}+n_{2}+1$.

From the $\models\{P \wedge B\} \subset\{P\}$ assumption, it follows that $s^{\prime \prime} \in \llbracket P \rrbracket$, and by the induction hypothesis, $s^{\prime} \in \llbracket P \wedge \neg B \rrbracket$.

To see why, consider the triple $\{T\}$ skip $\{P\}$.

By unfolding the meaning of this triple, we get:

$$
\models\{T\} \text { skip }\{P\} \Leftrightarrow \forall s . s \in \llbracket P \rrbracket
$$

If could deduce any true triple using Hoare logic, we would be able to deduce any true statement of the assertion logic using Hoare logic.

Since the assertion logic (first-order logic) is not complete, this is not the case.

Decidability

Finally, Hoare logic is not decidable.

The triple $\{\top\} C\{\perp\}$ holds if and only if C does not terminate. Hence, since the Halting problem is undecidable, so is Hoare logic.

The previous argument showed that because the assertion logic is not complete, then neither is Hoare logic.

However, Hoare logic is relatively complete for our simple language:

- Relative completeness expresses that any failure to prove $\vdash\{P\} \subset\{Q\}$ for a valid statement $\vDash\{P\} \subset\{Q\}$ can be traced back to a failure to prove $\vdash R$ for some valid arithmetic statement R.

Summary

We have defined a dynamic semantics for the WHILE language, and a formal semantics for a Hoare logic for WHILE.

We have shown that the formal Hoare logic proof system from the last lecture is sound with respect to this semantics, but not complete.

Supplementary reading on soundness and completeness:

- Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. Chapters 6-7.

Introduction

Hoare Logic and Model Checking

Jean Pichon-Pharabod

University of Cambridge

CST Part II - 2017/18

In the past lectures, we have given

- a notation for specifying the intended behaviour of programs;
- a proof system for proving that programs satisfy their intended specification; and
- a semantics capturing the precise meaning of this notation

Now, we are going to look at ways of finding proofs, including:

- derived rules \& backwards reasoning;
- finding invariants; and
- ways of annotating programs prior to proving.

We are also going to look at proof rules for total correctness.

Forward \& backwards reasoning

The proof rules we have seen so far are best suited for forward directed reasoning, where a proof tree is constructed starting from the leaves, going towards the root.

For instance, consider a proof of

$$
\vdash\{X=a\} X:=X+1\{X=a+1\}
$$

using the assignment rule:

$$
\overline{\vdash\{P[E / V]\} V:=E\{P\}}
$$

Forward reasoning

It is often more natural to work backwards, starting from the root of the proof tree, and generating new subgoals until all the nodes have been shown to be derivable.

We can derive rules better suited for backwards reasoning.

For instance, we can derive this backwards assignment rule:

$$
\frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}}
$$

Backwards reasoning

In the same way, we can derive a backwards reasoning rule for loops by building in consequence:

$$
\frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} \text { while } B \text { do } C\{Q\}}
$$

This rule still requires us to guess I to apply it bottom-up.

Backwards sequenced assignment rule

The sequence rule can already be applied bottom up, but requires us to guess an assertion R :

$$
\frac{\vdash\{P\} C_{1}\{R\} \quad \vdash\{R\} C_{2}\{Q\}}{\vdash\{P\} C_{1} ; C_{2}\{Q\}}
$$

In the case of a command sequenced before an assignment, we can avoid having to guess R with the sequenced assignment rule:

$$
\frac{\vdash\{P\} C\{Q[E / V]\}}{\vdash\{P\} C ; V:=E\{Q\}}
$$

This is easily derivable using the sequencing rule and the backwards assignment rule (exercise).

Backwards reasoning proof rules

$$
\begin{aligned}
& \frac{\vdash P \Rightarrow Q}{\vdash\{P\} \text { skip }\{Q\}} \quad \frac{\vdash\{P\} C_{1}\{R\} \quad \vdash\{R\} C_{2}\{Q\}}{\vdash\{P\} C_{1} ; C_{2}\{Q\}} \\
& \frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}} \frac{\vdash\{P\} C\{Q[E / V]\}}{\vdash\{P\} C ; V:=E\{Q\}} \\
& \frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} \text { while } B \text { do } C\{Q\}}
\end{aligned}
$$

$$
\frac{\vdash\{P \wedge B\} C_{1}\{Q\} \quad \vdash\{P \wedge \neg B\} C_{2}\{Q\}}{\vdash\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
$$

Finding loop invariants

\qquad

A verified factorial implementation

How does one find an invariant?

This corresponds to the following partial correctness Hoare triple:

$$
\begin{aligned}
& \{X=x \wedge X \geq 0 \wedge Y=1\} \\
& \quad \text { while } X \neq 0 \text { do }(Y:=Y \times X ; X:=X-1) \\
& \{Y=x!\}
\end{aligned}
$$

Here, '!' denotes the usual mathematical factorial function.

Note that we used an auxiliary variable x to record the initial value of X and relate the terminal value of Y with the initial value of X.

First we need to formalise the specification: should be non-negative in the initial state. initial state of X.

Here, I is an invariant that

- must hold initially;

We wish to verify that the following command computes the factorial of X and stores the result in Y.

$$
\text { while } X \neq 0 \text { do }(Y:=Y \times X ; X:=X-1)
$$

- Factorial is only defined for non-negative numbers, so X
- The terminal state of Y should be equal to the factorial of the
- The implementation assumes that Y is equal to 1 initially.

$$
\frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} \text { while } B \text { do } C\{Q\}}
$$

- must be preserved by the loop body when B is true; and
- must imply the desired postcondition when B is false.

$$
\frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} \text { while } B \text { do } C\{Q\}}
$$

The invariant / should express

- what has been done so far and what remains to be done;
- that nothing has been done initially; and
- that nothing remains to be done when B is false.

Proof rules

Proof outlines

$$
\begin{aligned}
& \frac{\vdash P \Rightarrow Q}{\vdash\{P\} \text { skip }\{Q\}} \quad \frac{\vdash\{P\} C_{1}\{R\} \quad \vdash\{R\} C_{2}\{Q\}}{\vdash\{P\} C_{1} ; C_{2}\{Q\}} \\
& \frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}} \\
& \frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} C ; V:=E\{Q\}} \\
& \frac{\vdash\{P\} \text { while } B \text { do } C\{Q\}}{\vdash\{P \wedge B\} C_{1}\{Q\} \quad \vdash\{P \wedge \neg B\} C_{2}\{Q\}} \\
& \qquad\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}
\end{aligned}
$$

In the literature, hand-written proofs in Hoare logic are often written as informal proof outlines instead of proof trees.

Proof outlines are code listings annotated with Hoare logic assertions between statements.

Here is an example of a proof outline for the second proof obligation for the factorial function:

$$
\begin{aligned}
& \{Y \times X!=x!\wedge X \geq 0 \wedge X \neq 0\} \\
& \{(Y \times X) \times(X-1)!=x!\wedge(X-1) \geq 0\} \\
& \quad Y:=Y \times X ; \\
& \{Y \times(X-1)!=x!\wedge(X-1) \geq 0\} \\
& \quad X:=X-1 \\
& \{Y \times X!=x!\wedge X \geq 0\}
\end{aligned}
$$

Writing out full proof trees or proof outlines by hand is tedious and error-prone even for simple programs.

In the next lecture, we will look at using mechanisation to check our proofs and help discharge trivial proof obligations.

A verified fibonacci implementation

A verified fibonacci implementation

Imagine we want to prove that the following fibonacci implementation satisfies the given specification:

$$
\begin{aligned}
& \{X=0 \wedge Y=1 \wedge Z=1 \wedge 1 \leq N \wedge N=n\} \\
& \text { while }(Z<N) \text { do } \\
& \qquad(Y:=X+Y ; X:=Y-X ; Z:=Z+1) \\
& \{Y=\text { fib }(n)\}
\end{aligned}
$$

First we need to understand the implementation:

- the Z variable is used to count loop iterations; and
- Y and X are used to compute the fibonacci number.

```
\(\{X=0 \wedge Y=1 \wedge Z=1 \wedge 1 \leq N \wedge N=n\}\)
while \((Z<N)\) do
    \((Y:=X+Y ; X:=Y-X ; Z:=Z+1)\)
\(\{Y=\operatorname{fib}(n)\}\)
```

While $Y=f i b(Z) \wedge X=f i b(Z-1)$ is an invariant, it is not strong enough to establish the desired post-condition.

We need to know that when the loop terminates, then $Z=n$.
It suffices to strengthen the invariant to:

$$
Y=f i b(Z) \wedge X=f i b(Z-1) \wedge Z \leq N \wedge N=n
$$

Total correctness

Total correctness

So far, we have many concerned ourselves with partial correctness.
What about total correctness?

Recall, total correctness $=$ partial correctness + termination.

The total correctness triple, $[P] C[Q]$ holds if and only if

- whenever C is executed in a state satisfying P, then C terminates, and the terminal state satisfies Q.

The while rule is not sound for total correctness:

$$
\frac{\frac{\vdash\{\top\} X:=X\{\top\}}{\vdash\{T \wedge T\} X:=X\{T\}}}{\frac{\vdash\{T\} \text { while true do } X:=X\{\top \wedge \neg \top\}}{\vdash\{\top\} \text { while true do } X:=X\{\perp\}}}
$$

If the while rule were sound for total correctness, then this would show that while true do $X:=X$ always terminates in a state satisfying \perp.

We need an alternative total correctness while rule that ensures the loop always terminates.

The idea is to show that some non-negative quantity decreases on each iteration of the loop.

This decreasing quantity is called a variant.

Using the rule of consequence, we can derive the following backwards reasoning total correctness while rule:

$$
\begin{gathered}
\vdash P \Rightarrow I \quad \vdash I \wedge \neg S \Rightarrow Q \\
\qquad I \wedge S \Rightarrow E \geq 0 \quad \vdash[I \wedge S \wedge(E=n)] C[I \wedge(E<n)]
\end{gathered}
$$

The second hypothesis ensures the variant is non-negative.

Consider the factorial computation we looked at before:

$$
\begin{aligned}
& {[X=x \wedge X \geq 0 \wedge Y=1]} \\
& \quad \text { while } X \neq 0 \text { do }(Y:=Y \times X ; X:=X-1) \\
& {[Y=x!]}
\end{aligned}
$$

By assumption, X is non-negative and decreases in each iteration of the loop.

To verify that this factorial implementation terminates, we can thus take the variant E to be X.

$$
\begin{aligned}
& {[X=x \wedge X \geq 0 \wedge Y=1]} \\
& \quad \text { while } X \neq 0 \text { do }(Y:=Y \times X ; X:=X-1) \\
& {[Y=x!]}
\end{aligned}
$$

Take I to be $Y \times X!=x!\wedge X \geq 0$, and E to be X.

Then we have to show that

- $X=x \wedge X \geq 0 \wedge Y=1 \Rightarrow I$
- $[I \wedge X \neq 0 \wedge(X=n)] Y:=Y \times X ; X:=X-1[I \wedge(X<n)]$
- $I \wedge X=0 \Rightarrow Y=x$!
- $I \wedge X \neq 0 \Rightarrow X \geq 0$

Summary: Total correctness

The relation between partial and total correctness is informally given by the equation

$$
\text { Total correctness }=\text { partial correctness }+ \text { termination }
$$

This is captured formally by the following inference rules:

$$
\frac{\vdash\{P\} C\{Q\} \quad \vdash[P] C[\top]}{\vdash[P] C[Q]} \quad \frac{\vdash[P] C[Q]}{\vdash\{P\} C\{Q\}}
$$

We have given rules for total correctness.

They are similar to those for partial correctness.

The main difference is in the while rule:

- while commands are the only ones that can fail to terminate;
- for while commands, we must prove that a non-negative expression is decreased by the loop body.

Hoare Logic and Model Checking

Jean Pichon-Pharabod

University of Cambridge

CST Part II - 2017/18

It is clear that proofs can be long and boring even if the programs being verified are quite simple.

In this lecture, we will sketch the architecture of a simple semi-automated program verifier, and justify it using the rules of Hoare logic.

Our goal is automate the routine parts of proofs in Hoare logic.

Mechanisation

Recall that it is impossible to design a decision procedure to decide automatically the truth or falsehood of any arbitrary mathematical statement.

This does not mean that one cannot have procedures that will prove many useful statements.

In practice, it is quite possible to build a system that will mechanise the boring and routine aspects of verification

Mechanisation

The standard approach to this will be described in the course.

- The ideas are very old:

JC King's 1969 CMU PhD, Stanford verifier in 1970s.

- This approach is used by actual program verifiers, e.g. Gypsy and SPARK verifiers.
- It provides a verification front end to different provers (see the Why3 system).

Architecture of a verifier

VC generator

The VC generator takes as input an annotated program along with the desired specification

From these inputs, it generates a set of verification conditions (VCs) expressed in first-order logic.

These VCs have the property that if they hold, then the original program satisfies the desired specification.

Since the VCs are expressed in first-order logic, we can use standard FOL theorem provers to discharge VCs.

Using a verifier

The three steps in proving $\{P\} \subset\{Q\}$ with a verifier:

1. The program C is annotated by inserting assertions expressing conditions that are meant to hold whenever execution reaches the given annotation
2. A set of logical statements called verification conditions is then generated from the annotated program and desired specification.
3. An automated theorem prover attempts to prove as many of the verification conditions it can, leaving the rest to the user.

Using a verifier

Verifiers are not a silver bullet

- Inserting appropriate annotations is tricky, and requires a good understanding of how the program works
- The verification conditions left over from step 3 may bear little resemblance to annotations and specification written by the user.

Example

We will illustrate the process with the following example:

$$
\begin{aligned}
& \{\top\} \\
& \quad R:=X ; Q:=0 ; \\
& \quad \text { while } Y \leq R \text { do } \\
& \quad(R:=R-Y ; Q:=Q+1) \\
& \{X=R+Y \times Q \wedge R<Y\}
\end{aligned}
$$

Example

Step 1 is to annotate the program with two assertions, ϕ_{1} and ϕ_{2} :

$$
\begin{aligned}
& \{\top\} \\
& \quad R:=X ; Q:=0 ;\{R=X \wedge Q=0\} \longleftarrow \phi_{1} \\
& \quad \text { while } Y \leq R \text { do }\{X=R+Y \times Q\} \longleftarrow \phi_{2} \\
& \quad(R:=R-Y ; Q:=Q+1) \\
& \{X=R+Y \times Q \wedge R<Y\}
\end{aligned}
$$

The annotations ϕ_{1} and ϕ_{2} state conditions which are intended to hold whenever control reaches them.

Control reaches ϕ_{1} once, and reaches ϕ_{2} each time the loop body is executed; ϕ_{2} should thus be a loop invariant.

Example

Step 2 will generate the following four VCs for our example:

1. $\top \Rightarrow(X=X \wedge 0=0)$
2. $(R=X \wedge Q=0) \Rightarrow(X=R+(Y \times Q))$
3. $(X=R+(Y \times Q)) \wedge Y \leq R) \Rightarrow(X=(R-Y)+(Y \times(Q+1)))$
4. $(X=R+(Y \times Q)) \wedge \neg(Y \leq R) \Rightarrow(X=R+(Y \times Q) \wedge R<Y)$

Note that these are statements of arithmetic: the constructs of our programming language have been "compiled away".

Step 3 uses an automated theorem prover to discharge as many VCs as possible, and lets the user prove the rest manually.

Annotation of commands

An annotated command is a command with extra assertions embedded within it.

A command is properly annotated if assertions have been inserted at the following places:

- just before C2 in C1;C2 if C2 is not an assignment command;
- just after the word do in while commands.

The inserted assertions should express the conditions one expects to hold whenever control reaches the assertion.

A properly annotated specification is a specification $\{P\} \subset\{Q\}$ where C is a properly annotated command.

Example: To be properly annotated, assertions should be at points ℓ_{1} and ℓ_{2} of the specification below:

$$
\begin{aligned}
& \{X=n\} \\
& \quad Y:=1 ; \longleftarrow \ell_{1} \\
& \quad \text { while } X=0 \text { do } \longleftarrow \ell_{2} \\
& \quad(Y:=Y \times X ; X:=X-1) \\
& \{X=0 \wedge Y=n!\}
\end{aligned}
$$

Next, we need to specify the VC generator.

We will specify it as a function $\operatorname{VC}(P, C, Q)$ that gives a set of verification conditions for a properly annotated specification.

The function will be defined by recursion on C, and is easily implementable.

Backwards reasoning proof rules (recap)

Justification of VCs

$$
\begin{aligned}
& \frac{\vdash P \Rightarrow Q}{\vdash\{P\} \text { skip }\{Q\}} \quad \frac{\vdash\{P\} C_{1}\{R\} \quad \vdash\{R\} C_{2}\{Q\}}{\vdash\{P\} C_{1} ; C_{2}\{Q\}} \\
& \frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}} \frac{\vdash\{P\} C\{Q[E / V]\}}{\vdash\{P\} C ; V:=E\{Q\}} \\
& \frac{\vdash P \Rightarrow I \quad \vdash\{I \wedge B\} C\{I\} \quad \vdash I \wedge \neg B \Rightarrow Q}{\vdash\{P\} \text { while } B \text { do } C\{Q\}} \\
& \frac{\vdash\{P \wedge B\} C_{1}\{Q\} \quad \vdash\{P \wedge \neg B\} C_{2}\{Q\}}{\vdash\{P\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{Q\}}
\end{aligned}
$$

To prove soundness of the verifier, the VC generator should have the property that if all the VCs generated for $\{P\} C\{Q\}$ hold, then $\vdash\{P\} \subset\{Q\}$ should be derivable in Hoare Logic.

Formally,

$$
\forall C, P, Q \cdot(\forall \phi \in V C(P, C, Q) \cdot \vdash \phi) \Rightarrow(\vdash\{P\} C\{Q\})
$$

This will be proven by induction on C.

$$
V C(P, V:=E, Q) \stackrel{d e}{=}\{P \Rightarrow Q[E / V]\}
$$

Example: The verification condition for

$$
\{X=0\} X:=X+1\{X=1\}
$$

is $X=0 \Rightarrow(X+1)=1$.

VCs for conditionals

$$
\begin{aligned}
& V C\left(P, \text { if } S \text { then } C_{1} \text { else } C_{2}, Q\right) \stackrel{\text { def }}{=} \\
& \quad V C\left(P \wedge S, C_{1}, Q\right) \cup V C\left(P \wedge \neg S, C_{2}, Q\right)
\end{aligned}
$$

Example: The verification conditions for
$\{T\}$ if $X \geq Y$ then $R:=X$ else $R:=Y\{R=\max (X, Y)\}$ are

- the VCs for $\{T \wedge X \geq Y\} R:=X\{R=\max (X, Y)\}$, and
- the VCs for $\{T \wedge \neg(X \geq Y)\} R:=Y\{R=\max (X, Y)\}$

To justify the VCs generated for an assignment, we need to show

$$
\text { if } \vdash P \Rightarrow Q[E / V] \text { then } \vdash\{P\} V:=E\{Q\}
$$

which holds by the backwards reasoning assignment rule.

This is one of the base cases for the inductive proof of

$$
(\forall \phi \in V C(P, C, Q) \cdot \vdash \phi) \Rightarrow(\vdash\{P\} C\{Q\})
$$

To justify the VCs generated for a conditional, we need to show

$$
\psi\left(C_{1}\right) \wedge \psi\left(C_{2}\right) \Rightarrow \psi\left(\text { if } S \text { then } C_{1} \text { else } C_{2}\right)
$$

where

$$
\psi(C) \stackrel{\text { def }}{=} \forall P, Q \cdot(\forall \phi \in V C(P, C, Q) \cdot \vdash \phi) \Rightarrow(\vdash\{P\} C\{Q\})
$$

This is one of the inductive cases of the proof, and $\psi\left(C_{1}\right)$ and $\psi\left(C_{2}\right)$ are the induction hypotheses.

VCs for conditionals

Let $\psi(C) \stackrel{\text { def }}{=} \forall P, Q .(\forall \phi \in V C(P, C, Q) . \vdash \phi) \Rightarrow(\vdash\{P\} \subset\{Q\})$
Assume $\psi\left(C_{1}\right), \psi\left(C_{2}\right)$. To show that $\psi\left(\mathbf{i f} S\right.$ then C_{1} else $\left.C_{2}\right)$, assume $\forall \phi \in V C\left(P\right.$, if S then C_{1} else $\left.C_{2}, Q\right)$. $\vdash \phi$

From the definition of $V C\left(P\right.$, if S then C_{1} else $\left.C_{2}, Q\right)$, it follows that $\forall \phi \in V C\left(P \wedge S, C_{1}, Q\right)$. $\vdash \phi$ and $\forall \phi \in V C\left(P \wedge \neg S, C_{2}, Q\right)$. $\vdash \phi$

By the induction hypotheses $\psi\left(C_{1}\right)$ and $\psi\left(C_{2}\right)$, it follows that $\vdash\{P \wedge S\} C_{1}\{Q\}$ and $\vdash\{P \wedge \neg S\} C_{2}\{Q\}$

By the conditional rule, $\vdash\{P\}$ if S then C_{1} else $C_{2}\{Q\}$

VCs for sequences

Since we have restricted the domain of $V C$ to be properly annotated specifications, we can assume that for any sequence $C_{1} ; C_{2}$

- it has been annotated with an intermediate assertion, or
- C_{2} is an assignment.

We define $V C$ for each of these two cases:

$$
\begin{aligned}
& V C\left(P, C_{1} ;\{R\} C_{2}, Q\right) \stackrel{\text { def }}{=} V C\left(P, C_{1}, R\right) \cup V C\left(R, C_{2}, Q\right) \\
& V C(P, C ; V:=E, Q) \stackrel{\text { def }}{=} V C(P, C, Q[E / V])
\end{aligned}
$$

VCs for sequences

Example

$$
\begin{aligned}
& V C(X=x \wedge Y=y, R:=X ; X:=Y ; Y:=R, X=y \wedge Y=x) \\
= & V C(X=x \wedge Y=y, R:=X ; X:=Y,(X=y \wedge Y=x)[R / Y]) \\
= & V C(X=x \wedge Y=y, R:=X ; X:=Y, X=y \wedge R=x) \\
= & V C(X=x \wedge Y=y, R:=X,(X=y \wedge R=x)[Y / X]) \\
= & V C(X=x \wedge Y=y, R:=X, Y=y \wedge R=x) \\
= & \{X=x \wedge Y=y \Rightarrow(Y=y \wedge R=x)[X / R]\} \\
= & \{X=x \wedge Y=y \Rightarrow(Y=y \wedge X=x)\}
\end{aligned}
$$

VCs for sequences

To justify the VCs, we have to prove that

$$
\begin{aligned}
\psi\left(C_{1}\right) \wedge \psi\left(C_{2}\right) & \Rightarrow \psi\left(C_{1} ;\{R\} C_{2}\right), \quad \text { and } \\
\psi(C) & \Rightarrow \psi(C ; V:=E)
\end{aligned}
$$

where $\psi(C) \stackrel{\text { def }}{=} \forall P, Q .(\forall \phi \in V C(P, C, Q) . \vdash \phi) \Rightarrow(\vdash\{P\} C\{Q\})$

These proofs are left as exercises, and you are strongly encouraged to try to prove one of them yourselves!

VCs for loops

A properly annotated loop has the form

$$
\text { while } S \text { do }\{R\} C
$$

We use the annotation R as the invariant, and generate the following VCs:

$$
\begin{aligned}
& V C(P, \text { while } B \text { do }\{R\} C, Q) \stackrel{\text { def }}{=} \\
& \quad\{P \Rightarrow R, R \wedge \neg B \Rightarrow Q\} \cup V C(R \wedge B, C, R)
\end{aligned}
$$

Summary of VCs

Other uses for Hoare triples

We have outlined the design of a semi-automated program verifier based on Hoare logic.

It takes annotated specifications, and generates a set of first-order logic statements that, if provable, ensure the specification is provable.

Intelligence is required to provide the annotations and help the automated theorem prover.

The soundness of the verifier is justified using a simple inductive argument, and uses many of the derived rules for backwards reasoning from the last lecture.

Weakest preconditions

If C is a command and Q is an assertion, then informally $w / p(C, Q)$ is the weakest assertion P such that $\{P\} C\{Q\}$ holds.
If P and Q are assertions, then P is 'weaker' than Q if $Q \Rightarrow P$. Thus, we are looking for a function wlp such that
$\{P\} \subset\{Q\} \Leftrightarrow P \Rightarrow w / p(C, Q)$.
Dijkstra gives rules for computing weakest liberal preconditions for deterministic loop-free code:

$$
\begin{aligned}
w \operatorname{lp}(V:=E, Q) & =Q[E / V] \\
w \operatorname{lp}(C 1 ; C 2, Q) & =w \operatorname{lp}(C 1, w p(C 2, Q))
\end{aligned}
$$

$w / p\left(\right.$ if B then C_{1} else $\left.C_{2}, Q\right)=\left(B \Rightarrow w / p\left(C_{1}, Q\right)\right) \wedge$

$$
\left(\neg B \Rightarrow w / p\left(C_{2}, Q\right)\right)
$$

Program refinement

Conclusion

We have focused on proving programs meet specifications.

An alternative is to construct a program that is correct by construction, by refining a specification into a program.

Rigorous development methods such as the B-Method, SPARK and the Vienna Development Method (VDM) are based on this idea.

For more: "Programming From Specifications" by Carroll Morgan.
Several practical tools for program verification are based on the idea of generating VCs from annotated programs:

- Gypsy (1970s);
- SPARK (current tool for Ada, used in aerospace \& defence).

Weakest liberal preconditions can be used to reduce the number of annotations required in loop-free code.

Weakest preconditions

While the following property holds for loops

$$
\begin{aligned}
& w / p(\text { while } B \text { do } C, Q) \Leftrightarrow \\
& \text { if } B \text { then } w / p(C, w / p(\text { while } B \text { do } C, Q)) \text { else } Q
\end{aligned}
$$

it does not define $w / p($ while B do $C, Q)$ as a finite formula.
In general, one cannot compute a finite formula for $w / p($ while B do $C, Q)$.

If C is loop-free, then we can take the VC for $\{P\} C\{Q\}$ to be $P \Rightarrow w / p(C, Q)$, without requiring C to be annotated.

Hoare Logic and Model Checking

Jean Pichon-Pharabod
University of Cambridge
CST Part II - 2017/18

Pointers and state

So far, we have been reasoning about a language without pointers, where all values were numbers.

In this lecture, we will extend the WHILE language with pointers, and introduce an extension of Hoare logic, called separation logic, to simplify reasoning about pointers.

\section*{Pointers

Point

Point

Pointers and state

$E::=N \mid$ null $|V| E_{1}+E_{2}$
arithmetic expressions
$\left|E_{1}-E_{2}\right| E_{1} \times E_{2} \mid \cdots$
$B::=T|F| E_{1}=E_{2} \quad$ boolean expressions $\left|E_{1} \leq E_{2}\right| E_{1} \geq E_{2} \mid \cdots$
$C::=$ skip $\left|C_{1} ; C_{2}\right| V:=E$
commands
| if B then C_{1} else C_{2}
while B do C
$|\quad V:=[E]|\left[E_{1}\right]:=E_{2}$
$\left|\quad V:=\operatorname{cons}\left(E_{1}, \ldots, E_{n}\right)\right| \operatorname{dispose}(E)$

Commands are now evaluated also with respect to a heap h that stores the current value of allocated locations.

Reading, writing, and disposing of pointers fails if the given location is not currently allocated.

Fetch assignment command: $V:=[E]$

- evaluates E to a location ℓ, and assigns the current value of ℓ to V; faults if ℓ is not currently allocated.

Heap assignment command: $\left[E_{1}\right]:=E_{2}$

- evaluates E_{1} to a location ℓ and E_{2} to a value v, and updates the heap to map ℓ to v; faults if ℓ is not currently allocated.

Pointer disposal command: dispose(E)

- evaluates E to a location ℓ, and deallocates location ℓ from the heap; faults if ℓ is not currently allocated.

Pointers and state

In this extended language, we can work with proper data structures, like the following singly-linked list:

For instance, this operation deletes the first element of the list:
$X:=[H E A D+1] ; \quad / /$ lookup address of second element
dispose(HEAD); // deallocate first element
dispose $(H E A D+1)$;
HEAD $:=X \quad / /$ swing head to point to second element

Operational semantics

\qquad _

For the WHILE language, we modelled the state as a function assigning values (numbers) to all variables:

$$
s \in \text { Store } \xlongequal{\text { def }} \operatorname{Var} \rightarrow \mathbb{Z}
$$

To model pointers, we will split the state into a stack and a heap:

- a stack maps program variables to values, and
- a heap maps locations to values

$$
\text { State } \xlongequal{\text { def }} \text { Store } \times \text { Heap }
$$

Pointers and state

Values now includes both numbers and locations

$$
\text { Val } \xlongequal{\text { def }} \mathbb{Z}+\text { Loc }
$$

Locations are modelled as natural numbers

$$
\ell \in L o c \stackrel{\text { def }}{=} \mathbb{N}
$$

To model allocation, we model the heap as a finite function, that is, a partial function with a finite domain:

$$
\text { Store } \stackrel{\text { def }}{=} \operatorname{Var} \rightarrow \text { Val } \quad \text { Heap } \stackrel{\text { def }}{=} L o c \xrightarrow{\text { fin }} \text { Val }
$$

Pointers and state

WHILE $_{p}$ programs can fail in several ways:

- dereferencing an invalid pointer;
- invalid pointer arithmetic.

To model failure, we introduce a distinguished failure value z, and adapt the semantics:

$$
\begin{aligned}
& \mathcal{E} \llbracket-\rrbracket: \operatorname{Exp} \times \text { Store } \rightarrow\{k\}+\text { Val } \\
& \mathcal{B} \llbracket-\rrbracket: B E x p \times \text { Store } \rightarrow\{k\}+\mathbb{B} \\
& \quad \Downarrow: \mathcal{P}(C m d \times \text { State } \times(\{k\} \cup \text { State }))
\end{aligned}
$$

$$
\begin{gathered}
\frac{\mathcal{E} \llbracket E \rrbracket(s)=\ell \quad \ell \in \operatorname{dom}(h)}{\langle V:=[E],(s, h)\rangle \Downarrow(s[V \mapsto h(l)], h)} \\
\frac{\mathcal{E} \llbracket \mathbb{E}(s)=\ell \quad \ell \notin \operatorname{dom}(h)}{\langle V:=[E],(s, h)\rangle \Downarrow 々}
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{E} \llbracket E_{1} \rrbracket(s)=\ell \quad \mathcal{E} \llbracket E_{2} \rrbracket(s)=v \\
& \frac{\ell \in \operatorname{dom}(h) \quad v \neq z}{\left\langle E_{1}:=\left[E_{1}\right],(s, h)\right\rangle \Downarrow(s, h[\ell \mapsto v])} \\
& \frac{\mathcal{E} \llbracket E_{1} \rrbracket(s)=\ell \quad \ell \notin \operatorname{dom}(h)}{\left\langle E_{1}:=\left[E_{2}\right],(s, h)\right\rangle \Downarrow \hbar} \quad \frac{\mathcal{E} \llbracket E_{2} \rrbracket(s)=\text {, }}{\left\langle E_{1}:=\left[E_{2}\right],(s, h)\right\rangle \Downarrow \hbar}
\end{aligned}
$$

In standard Hoare logic, we can syntactically approximate the set of program variables that might be affected by a command C :

Reasoning about pointers

$$
\begin{aligned}
\bmod (\mathbf{s k i p}) & =\emptyset \\
\bmod (X:=E) & =\{X\} \\
\bmod \left(C_{1} ; C_{2}\right) & =\bmod \left(C_{1}\right) \cup \bmod \left(C_{2}\right) \\
\bmod \left(\text { if } B \text { then } C_{1} \text { else } C_{2}\right) & =\bmod \left(C_{1}\right) \cup \bmod \left(C_{2}\right) \\
\bmod (\text { while } B \text { do } C) & =\bmod (C)
\end{aligned}
$$

The rule of constancy expresses that assertions that do not refer to variables modified by a command are automatically preserved during its execution:

$$
\frac{\vdash\{P\} \subset\{Q\} \quad \bmod (C) \cap F V(R)=\emptyset}{\vdash\{P \wedge R\} C\{Q \wedge R\}}
$$

This rule is derivable in standard Hoare logic.

This rule is important for modularity, as it allows us to only mention the part of the state that we access.

Imagine we extended Hoare logic with a new assertion, $E_{1} \hookrightarrow E_{2}$, for asserting that location E_{1} currently contains the value E_{2}, and extend the proof system with the following rule:

$$
\overline{\vdash\{T\}\left[E_{1}\right]:=E_{2}\left\{E_{1} \hookrightarrow E_{2}\right\}}
$$

Then we lose the rule of constancy:

$$
\frac{\vdash\{T\}[X]:=1\{X \hookrightarrow 1\}}{\vdash\{\top \wedge Y \hookrightarrow 0\}[X]:=1\{X \hookrightarrow 1 \wedge Y \hookrightarrow 0\}}
$$

(the post-condition is false if X and Y refer to the same location).

Reasoning about pointers

In the presence of pointers, syntactically distinct variables can refer to the same location. Updates made through one variable can thus influence the state referenced by other variables.

This complicates reasoning, as we explicitly have to track inequality of pointers to reason about updates:

$$
\overline{\vdash\left\{E_{1} \neq E_{3} \wedge E_{3} \hookrightarrow E_{4}\right\}\left[E_{1}\right]:=E_{2}\left\{E_{1} \hookrightarrow E_{2} \wedge E_{3} \hookrightarrow E_{4}\right\}}
$$

Separation logic

Separation logic (SL) is an extension of Hoare logic (HL) that simplifies reasoning about mutable state by using new connectives to control aliasing.

Separation logic was proposed by John Reynolds in 2000, and developed further by Peter O'Hearn and Hongseok Yang around 2001. It is still a very active area of research.

Separation logic

Meaning of separation logic assertions

The semantics of a separation logic assertion, written $\llbracket P \rrbracket(s)$, is a set of heaps that satisfy the assertion P.

The intended meaning is that if $h \in \llbracket P \rrbracket(s)$, then P asserts ownership of any locations in $\operatorname{dom}(h)$.

The heaps $h \in \llbracket P \rrbracket(s)$ are thus referred to as partial heaps, since they only contain the locations owned by P.

The empty heap assertion only holds for the empty heap:

$$
\llbracket e m p \rrbracket(s) \stackrel{\operatorname{def}}{=}\{[]\}
$$

Meaning of separation logic assertions

The points-to assertion $E_{1} \mapsto E_{2}$ asserts ownership of the location referenced by E_{1}, and that this location currently contains E_{2} :

$$
\begin{aligned}
\llbracket E_{1} \mapsto E_{2} \rrbracket(s) \stackrel{\text { def }}{=}\{h \mid & \operatorname{dom}(h)=\left\{\mathcal{E} \llbracket E_{1} \rrbracket(s)\right\} \\
& \left.\wedge h\left(\mathcal{E} \llbracket E_{1} \rrbracket(s)\right)=\mathcal{E} \llbracket E_{2} \rrbracket(s)\right\}
\end{aligned}
$$

Separating conjunction, $P * Q$, asserts that the heap can be split into two disjoint parts such that one satisfies P, and the other Q :

$$
\begin{aligned}
& \llbracket P * Q \rrbracket(s) \stackrel{\text { def }}{=}\left\{h \mid \exists h_{1}, h_{2} . h=h_{1} \uplus h_{2}\right. \\
& \left.\wedge h_{1} \in \llbracket P \rrbracket(s) \wedge h_{2} \in \llbracket Q \rrbracket(s)\right\}
\end{aligned}
$$

We use $h_{1} \uplus h_{2}$, which is equal to $h_{1} \cup h_{2}$ when it is defined, but is only defined when $\operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset$.

Examples of separation logic assertions

1. $X \mapsto E_{1} * Y \mapsto E_{2}$

This assertion is unsatisfiable in a state where X and Y refer to the same location, since $X \mapsto E_{1}$ and $Y \mapsto E_{2}$ would both assert ownership of the same location.

The following heap satisfies the assertion:

$$
x \longrightarrow E_{1} \quad E_{2} Y
$$

2. $X \mapsto E * X \mapsto E$

This assertion is not satisfiable.

Meaning of separation logic assertions

Examples of separation logic assertions

The first-order primitives are interpreted much like for Hoare logic:

$$
\begin{aligned}
& \llbracket \perp \rrbracket(s) \xlongequal{\text { def }} \emptyset \\
& \llbracket\rceil \rrbracket(s) \stackrel{\text { def }}{=} \text { Heap } \\
& \llbracket P \wedge Q \rrbracket(s) \stackrel{\text { def }}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s) \\
& \llbracket P \vee Q \rrbracket(s) \stackrel{d e f}{=} \llbracket P \rrbracket(s) \cup \llbracket Q \rrbracket(s) \\
& \llbracket P \Rightarrow Q \rrbracket(s) \stackrel{\text { def }}{=}\{h \mid h \in \llbracket P \rrbracket(s) \Rightarrow h \in \llbracket Q \rrbracket(s)\}
\end{aligned}
$$

3. $X \mapsto E_{1} \wedge Y \mapsto E_{2}$

This asserts that either X and Y alias each other and $E_{1}=E_{2}$:

$$
X \longrightarrow E_{1} Y
$$

or they refer to distinct locations:

$$
X \longrightarrow E_{1} \quad E_{2} Y
$$

4. $X \mapsto Y * Y \mapsto X$

5. $X \mapsto E_{1}, Y * Y \mapsto E_{2}$, null

Here, $X \mapsto E_{1}, \ldots, E_{n}$ is shorthand for

$$
X \mapsto E_{1} *(X+1) \mapsto E_{2} * \cdots *(X+n-1) \mapsto E_{n}
$$

Separation logic triples

Separation logic assertions describe properties of the current state and assert ownership of parts of the current heap.

Separation logic controls aliasing of pointers by asserting that assertions own disjoint heap parts.

Separation logic triples

Separation logic extends the assertion language, but uses the same Hoare triples to reason about the behaviour of programs

$$
\vdash\{P\} \subset\{Q\} \quad \vdash[P] \subset[Q]
$$

but with a different meaning.

Our SL triples extend the meaning of our HL triples in two ways:

- they ensure that our WHILE_{p} programs do not fail;
- they require that we respect the ownership discipline associated with assertions.

Separation logic triples

Separation logic triples require that we assert ownership in the precondition of any heap cells modified.

For instance, the following triple asserts ownership of the location denoted by X, and stores the value 2 at this location:

$$
\vdash\{X \mapsto 1\}[X]:=2\{X \mapsto 2\}
$$

However, the following triple is not valid, because it updates a location that it may not be the owner of:

$$
\nvdash\{Y \mapsto 1\}[X]:=2\{Y \mapsto 1\}
$$

Framing

How does preserving all frames force triples to assert ownership of heap cells they modify?

Imagine that the following triple did hold and preserved all frames:

$$
\{Y \mapsto 1\}[X]:=2\{Y \mapsto 1\}
$$

In particular, it would preserve the frame $X \mapsto 1$:

$$
\{Y \mapsto 1 * X \mapsto 1\}[X]:=2\{Y \mapsto 1 * X \mapsto 1\}
$$

This triple definitely does not hold, since the location referenced by X contains 2 in the terminal state.

Framing

How can we make this idea that triples must assert ownership of the heap cells they modify precise?

The idea is to require that all triples must preserve any assertions disjoint from the precondition. This is captured by the frame rule:

$$
\frac{\vdash\{P\} \subset\{Q\} \quad \bmod (C) \cap F V(R)=\emptyset}{\vdash\{P * R\} \subset\{Q * R\}}
$$

The assertion R is called the frame.

Framing

This problem does not arise for triples that assert ownership of the heap cells they modify, since triples only have to preserve frames disjoint from the precondition.

For instance, consider this triple which does assert ownership of X :

$$
\{X \mapsto 1\}[X]:=2\{X \mapsto 2\}
$$

If we frame on $X \mapsto 1$, then we get the following triple which holds vacuously since no initial states satisfies $X \mapsto 1 * X \mapsto 1$:

$$
\{X \mapsto 1 * X \mapsto 1\}[X]:=2\{X \mapsto 2 * X \mapsto 1\}
$$

Meaning of separation logic triples

The meaning of $\{P\} \subset\{Q\}$ in separation logic is thus

- C does not fault when executed in an initial state satisfying P, and
- if C terminates in a terminal state when executed from an initial heap $h_{1} \uplus h_{F}$ where h_{1} satisfies P then the terminal state has the form $h_{1}^{\prime} \uplus h_{F}$ where h_{1}^{\prime} satisfies Q.

This bakes in the requirement that triples must satisfy framing, by requiring that they preserve all disjoint frames h_{F}.

Written formally, the meaning is:

$$
\begin{aligned}
& \models\{P\} \subset\{Q\} \stackrel{\text { def }}{=} \\
& (\forall s, h . h \in \llbracket P \rrbracket(s) \Rightarrow \neg(\langle C,(s, h)\rangle \Downarrow \Downarrow)) \wedge \\
& \left(\forall s, s^{\prime}, h, h^{\prime}, h_{F} \cdot \operatorname{dom}(h) \cap \operatorname{dom}\left(h_{F}\right)=\emptyset \wedge\right. \\
& \quad h \in \llbracket P \rrbracket(s) \wedge\left\langle C,\left(s, h \uplus h_{F}\right)\right\rangle \Downarrow\left(s^{\prime}, h^{\prime}\right) \\
& \left.\quad \Rightarrow \exists h_{1}^{\prime} \cdot h^{\prime}=h_{1}^{\prime} \uplus h_{F} \wedge h_{1}^{\prime} \in \llbracket Q \rrbracket\left(s^{\prime}\right)\right)
\end{aligned}
$$

Hoare Logic and Model Checking

[^1]In the previous lecture, we saw the informal concepts that separation logic is based on.

This lecture will

- introduce a formal proof system for separation logic;
- present examples to illustrate the power of separation logic.

The lecture will be focused on partial correctness.

Separation logic

Separation logic inherits all the partial correctness rules from Hoare logic that you have already seen, and extends them with

- the frame rule;
- rules for each new heap primitive

Some of the derived rules for plain Hoare logic no longer hold for separation logic (e.g., the rule of constancy).

A proof system for separation logic

Separation logic triples must assert ownership of any heap cells modified by the command. The heap assignment rule thus asserts ownership of the heap location being assigned:

$$
\vdash\left\{E_{1} \mapsto ~_{-} * E_{2}={ }_{-}\right\}\left[E_{1}\right]:=E_{2}\left\{E_{1} \mapsto E_{2}\right\}
$$

It also requires that evaluating E_{2} does not fault.
($E \mapsto$, is short for $\exists v . E \mapsto v$, and $E=$, is short for $\exists v . E=v$)
Exercise: Why is $E_{1}=$ not necessary in the precondition?

Separation logic

The assignment rule introduces a new points-to assertion for each newly allocated location:

$$
\vdash\{X=x\} X:=\operatorname{cons}\left(E_{1}, \ldots, E_{n}\right)\left\{X \mapsto E_{1}[x / X], \ldots, E_{n}[x / X]\right\}
$$

The deallocation rule destroys the points-to assertion for the location to not be available anymore:

$$
\vdash\{E \mapsto-\} \text { dispose }(E)\{e m p\}
$$

Separation logic triples must ensure the command does not fault. The heap dereference rule thus asserts ownership of the given heap location to ensure the location is allocated in the heap.

$$
\vdash\{E \mapsto v \wedge X=x\} X:=[E]\{E[x / X] \mapsto v \wedge X=v\}
$$

Here, the auxiliary variable x is used to refer to the initial value of X in the postcondition.

To illustrate these rules, consider the following code snippet:

$$
C_{\text {swap }} \equiv A:=[X] ; B:=[Y] ;[X]:=B ;[Y]:=A
$$

We want to show that it swaps the values in the locations referenced by X and Y, when X and Y do not alias:

$$
\left\{X \mapsto v_{1} * Y \mapsto v_{2}\right\} C_{\text {swap }}\left\{X \mapsto v_{2} * Y \mapsto v_{1}\right\}
$$

Swap example

Below is a proof-outline of the main steps:

$$
\begin{aligned}
& \left\{X \mapsto v_{1} * Y \mapsto v_{2}\right\} \\
& A:=[X] ; \\
& \left\{X \mapsto v_{1} * Y \mapsto v_{2} \wedge A=v_{1}\right\} \\
& B:=[Y] ; \\
& \left\{X \mapsto v_{1} * Y \mapsto v_{2} \wedge A=v_{1} \wedge B=v_{2}\right\} \\
& {[X]:=B ;} \\
& \left\{X \mapsto B * Y \mapsto v_{2} \wedge A=v_{1} \wedge B=v_{2}\right\} \\
& {[Y]:=A ;} \\
& \left\{X \mapsto B * Y \mapsto A \wedge A=v_{1} \wedge B=v_{2}\right\} \\
& \left\{X \mapsto v_{2} * Y \mapsto v_{1}\right\}
\end{aligned}
$$

Swap example

To prove this first triple, we use the heap dereference rule to derive:

$$
\left\{X \mapsto v_{1} \wedge A=a\right\} A:=[X]\left\{X[a / A] \mapsto v_{1} \wedge A=v_{1}\right\}
$$

Then we existentially quantify the auxiliary variable a :

$$
\left\{\exists a . X \mapsto v_{1} \wedge A=a\right\} A:=[X]\left\{\exists a . X[a / A] \mapsto v_{1} \wedge A=v_{1}\right\}
$$

Applying the rule of consequence, we obtain:

$$
\left\{X \mapsto v_{1}\right\} A:=[X]\left\{X \mapsto v_{1} \wedge A=v_{1}\right\}
$$

Since $A:=[X]$ does not modify Y, we can frame on $Y \mapsto v_{2}$:

$$
\left\{X \mapsto v_{1} * Y \mapsto v_{2}\right\} A:=[X]\left\{\left(X \mapsto v_{1} \wedge A=v_{1}\right) * Y \mapsto v_{2}\right\}
$$

Lastly, by the rule of consequence, we obtain:

$$
\left\{X \mapsto v_{1} * Y \mapsto v_{2}\right\} A:=[X]\left\{X \mapsto v_{1} * Y \mapsto v_{2} \wedge A=v_{1}\right\}
$$

Swap example

Separation logic assertions

For the last application of consequence, we need to show that:

$$
\vdash\left(X \mapsto v_{1} \wedge A=v_{1}\right) * Y \mapsto v_{2} \Rightarrow X \mapsto v_{1} * Y \mapsto v_{2} \wedge A=v_{1}
$$

To prove this, we need proof rules for the new separation logic primitives.

Separating conjunction distributes over disjunction and semi-distributes over conjunction:

$$
\begin{aligned}
& \vdash(P \vee Q) * R \Leftrightarrow(P * R) \vee(Q * R) \\
& \vdash(P \wedge Q) * R \Rightarrow(P * R) \wedge(Q * R)
\end{aligned}
$$

Taking $R \equiv X \mapsto 1 \vee Y \mapsto 1, P \equiv X \mapsto 1$ and $Q \equiv X \mapsto 1$ yields a counterexample to distributivity over conjunction in the other direction:

$$
\not \vDash(P * R) \wedge(Q * R) \Rightarrow(P \wedge Q) * R
$$

Separation logic is very well-suited for specifying and reasoning about data structures typically found in standard libraries such as lists, queues, stacks, etc.

To illustrate, we will specify and verify a library for working with linked lists in separation logic.

An assertion is pure if it does not contain emp, \mapsto, or \hookrightarrow.

Separating conjunction and conjunction collapse for pure assertions:

$$
\begin{array}{ll}
\vdash P \wedge Q \Rightarrow P * Q & \text { when } P \text { or } Q \text { is pure } \\
\vdash P * Q \Rightarrow P \wedge Q & \text { when } P \text { and } Q \text { are pure } \\
\vdash(P \wedge Q) * R \Leftrightarrow P \wedge(Q * R) & \\
\text { when } P \text { is pure }
\end{array}
$$

Verifying abstract data types

Verifying ADTs

First, we need to define a memory representation for our linked lists.

We will use a singly-linked list, starting from some designated head variable that refers to the first element of the list and terminating with a null pointer.

For instance, we will represent a list containing the values 12,99 , and 37 as follows:

To formalise the memory representation, separation logic uses representation predicates that relate an abstract description of the state of the data structure with its concrete memory representations.

For our example, we want a predicate list(head, α) that relates a mathematical list, α, with its memory representation.

To define such a predicate formally, we need to extend the assertion logic to reason about mathematical lists, support for predicates and inductive definitions. We will elide these details.

Representation predicates

We are going to define the list(head, α) predicate by induction on the list α. We need to consider two cases: the empty list and an element x appended to a list β.

An empty list is represented as a null pointer:

$$
\operatorname{list}(\text { head, }[]) \stackrel{\text { def }}{=} \text { head }=\text { null }
$$

The list $x:: \beta$ is represented by a reference to two consecutive heap cells that contain the value x and a representation of the rest of the list, respectively:

$$
\operatorname{list}(\text { head }, x:: \beta) \stackrel{\text { def }}{=} \exists y . \text { head } \mapsto x *(\text { head }+1) \mapsto y * \operatorname{list}(y, \beta)
$$

We can specify all the operations of the library in a similar manner:

$$
\begin{array}{rll}
\{e m p\} & C_{\text {new }} & \{\operatorname{list}(H E A D,[])\} \\
\{\operatorname{list}(H E A D, \alpha) \wedge X=x\} & C_{\text {push }} & \{\operatorname{list}(H E A D, x:: \alpha)\} \\
\{\operatorname{list}(H E A D, x:: \alpha)\} & C_{\text {pop }} & \{\operatorname{list}(H E A D, \alpha) \wedge R E T=x\} \\
\{\operatorname{list}(H E A D,[])\} & C_{\text {pop }} & \{\operatorname{list}(H E A D,[]) \wedge R E T=\text { null }\} \\
\{\operatorname{list}(H E A D, \alpha)\} & C_{\text {delete }} & \{\text { emp }\}
\end{array}
$$

The push operation stores the HEAD pointer pointer into a temporary variable Y before allocating two consecutive heap cells for the new list element and updating HEAP:

$$
C_{p u s h} \equiv Y:=H E A D ; H E A D:=\operatorname{cons}(X, Y)
$$

We wish to prove it satisfies the following specification:

$$
\{\operatorname{list}(H E A D, \alpha) \wedge X=x\} C_{\text {push }}\{\operatorname{list}(H E A D, x:: \alpha)\}
$$

Proof outline for push

Here is a proof outline for the push operation:

$$
\begin{aligned}
& \{\operatorname{list}(H E A D, \alpha) \wedge X=x\} \\
& Y:=H E A D \\
& \{\operatorname{list}(Y, \alpha) \wedge X=x\} \\
& H E A D:=\operatorname{cons}(X, Y) \\
& \{\operatorname{list}(Y, \alpha) * H E A D \mapsto X, Y \wedge X=x\} \\
& \{\operatorname{list}(H E A D, X:: \alpha) \wedge X=x\} \\
& \{\operatorname{list}(H E A D, x:: \alpha)\}
\end{aligned}
$$

For the cons step, we frame off $\operatorname{list}(Y, \alpha) \wedge X=x$.

Implementation of delete

The delete operation iterates down over the list, deallocating nodes until it reaches the end of the list.

$$
\begin{aligned}
C_{\text {delete }} \equiv & X:=H E A D \\
& \text { while } X \neq N U L L \text { do } \\
& Y:=[X+1] ; \operatorname{dispose}(X) ; \operatorname{dispose}(X+1) ; X:=Y
\end{aligned}
$$

To prove that delete satisfies its intended specification,

$$
\{\operatorname{list}(H E A D, \alpha)\} C_{\text {delete }}\{e m p\}
$$

we need a suitable invariant: that we own the rest of the list.

Proof outline for the loop body of delete

```
{list(HEAD,\alpha)}
X := HEAD;
{list(X,\alpha)}
{\exists\alpha. list(X,\alpha)}
while }X\not=\mathrm{ NULL do
    {\exists\alpha. list (X,\alpha)^X\not= NULL}
    (Y := [X + 1]; dispose(X); dispose(X+1); X:= Y)
    {\exists\alpha. list(X,\alpha)}
{list(X,\alpha)^\neg(X\not= NULL)}
{emp}
```


Concurrency (not examinable)

Imagine extending our WHILE_{p} language with a parallel composition construct, $C_{1} \| C_{2}$, which executes the two statements C_{1} and C_{2} in parallel.

The statement $C_{1} \| C_{2}$ reduces by interleaving execution steps of C_{1} and C_{2}, until both have terminated, before continuing program execution.

For instance, $(X:=0| | X:=1)$; $\operatorname{print}(X)$ will randomly print 0 or 1.

Adding parallelism complicates reasoning by introducing the possibility of concurrent interference on shared state.

While separation logic does extend to reason about general concurrent interference, we will focus on two common idioms of concurrent programming with limited forms of interference:

- disjoint concurrency;
- well-synchronised shared state.

Disjoint concurrency refers to multiple commands potentially executing in parallel, but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can often be expressed using disjoint concurrency.

For instance, in a parallel merge sort, the recursive calls to merge sort operate on disjoint parts of the underlying array.

Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our resources into two disjoint parts, P_{1} and P_{2}, and give each parallel command ownership of one of them:

$$
\begin{gathered}
\vdash\left\{P_{1}\right\} C_{1}\left\{Q_{1}\right\} \quad \vdash\left\{P_{2}\right\} C_{2}\left\{Q_{2}\right\} \\
\frac{\bmod \left(C_{1}\right) \cap F V\left(P_{2}, Q_{2}\right)=\bmod \left(C_{2}\right) \cap F V\left(P_{1}, Q_{1}\right)=\emptyset}{\vdash\left\{P_{1} * P_{2}\right\} C_{1} \| C_{2}\left\{Q_{1} * Q_{2}\right\}}
\end{gathered}
$$

The third hypothesis ensures C_{1} does not modify any program variables used in the specification of C_{2}, and vice versa.

Disjoint concurrency example

Here is a simple example to illustrate two parallel increment operations that operate on disjoint parts of the heap:

$$
\begin{aligned}
& \{X \mapsto 3 * Y \mapsto 4\} \\
& \{X \mapsto 3\} \quad\{Y \mapsto 4\} \\
& A:=[X] ;[X]:=A+1 \quad \| \quad B:=[Y] ;[Y]:=B+1 \\
& \{X \mapsto 4\} \quad\{Y \mapsto 5\} \\
& \{X \mapsto 4 * Y \mapsto 5\}
\end{aligned}
$$

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency idiom of using locks to ensure exclusive access to state shared between multiple threads.

To reason about locking, Concurrent separation logic extends separation logic with lock invariants that describe the resources protected by locks.

When acquiring a lock, the acquiring thread takes ownership of the lock invariant and when releasing the lock, must give back ownership of the lock invariant.

Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write $I \vdash\{P\} C\{Q\}$ to indicate that we can derive the given triple assuming the lock invariant is I.

$$
\begin{aligned}
& I \vdash\{\text { emp }\} \text { acquire }\{I * \text { locked }\} \\
& I \vdash\{I * \text { locked }\} \text { release }\{\text { emp }\}
\end{aligned}
$$

where I is not allowed to refer to any program variables

The locked resource ensures the lock can only be released by the thread that currently has the lock.

Well-synchronised shared state example

To illustrate, consider a program with two threads that both access a number stored in shared heap cell at location X in parallel.

Thread A increments X by 1 twice, and thread B increments X by
2. The threads use a lock to ensure their accesses are well-synchronised.

Assuming X initially contains an even number, we wish to prove that X is still even after the two parallel threads have terminated

First, we need to define a lock invariant.

The lock invariant needs to own the shared heap cell at location x and should express that it always contains an even number:

$$
I \stackrel{\text { def }}{=} \exists v . x \mapsto v * \operatorname{even}(v)
$$

Well-synchronised shared state example

Assuming the lock invariant I is $\exists v . x \mapsto v * \operatorname{even}(v)$, we have:

$$
\{X=x \wedge e m p\}
$$

$$
\{X=x \wedge e m p\} \quad\{X=x \wedge e m p\}
$$

acquire;

$$
\begin{array}{ll}
\{X=x \wedge I * \text { locked }\} & \{X=x \wedge I * \text { locked }\} \\
A:=[X] ;[X]:=A+1 ; & \\
B:=[X] ;[X]:=B+1 ; & C:=[X] ;[X]:=C+ \\
\{X=x \wedge I * \text { locked }\} & \\
\text { release; } & \{X=x \wedge I * \text { locked }\} \\
\{X=x \wedge \text { release } ; \\
& \\
& \{X=x \wedge=x \wedge e m p\} \\
& \{X=x)
\end{array}
$$

Abstract data types are specified using representation predicates which relate an abstract model of the state of the data structure with a concrete memory representation.

Separation logic supports reasoning about well-synchronised concurrent programs, using lock invariants to guard access to shared state.

Papers of historical interest:

- Peter O'Hearn. Resources, Concurrency and Local Reasoning.

[^0]: Lecture 1: Informal introduction to Hoare logic
 Lecture 2: Formal semantics of Hoare logic
 Lecture 3: Examples, loop invariants, and total correctness
 Lecture 4: Mechanised program verification
 Lecture 5: Separation logic
 Lecture 6: Examples in separation logic

[^1]: Jean Pichon-Pharabod
 University of Cambridge

 CST Part II - 2017/18

