Hoare Logic and Model Checking

Alan Mycroft

Computer Laboratory, University of Cambridge, UK http://www.cl.cam.ac.uk/am21
CST Part II - 2017/18

Acknowledgement: slides heavily based on those for Mike Gordon's 2014/15 courses

Big-picture view of second half of the course

- idea of model checking
- the models (Kripke structures), and getting them from real systems
- the formulae (temporal logics), expressing ideas in them and comparing them
- model abstraction

Dominic Mulligan's 2016/17 course to the same syllabus covers the same topics in a somewhat different way, and includes a lecture on practical use of the NuSMV model-checking tool.

- http:
//www.cl.cam.ac.uk/teaching/1617/HLog+ModC
- http://nusmv.fbk.eu/

A motivating example

```
bool flag[2] = {false, false}; int turn;
Thread 1: flag[0] = true;
    turn = 1;
    while (flag[1] && turn == 1); // busy wait
    // critical section
    flag[0] = false;
    // non-critical stuff
    repeat;
Thread 2: flag[1] = true;
    turn = 0;
    while (flag[0] && turn == 0); // busy wait
    // critical section
    flag[1] = false;
    // non-critical stuff
    repeat;
```

How can we prove this implements mutual exclusion without using locks (Peterson's algorithm)? Answer: model checking.

Hoare Logic vs Model Checking

Couldn't we use Hoare logic to prove it too? Perhaps (if we knew how to deal with concurrency!). Sometimes Hoare logic is easier, sometimes model checking.

- Hoare logic is built on proof theory, syntactically showing various formulae hold at each point in the program. Emphasis on proof, hence using inference rules R as we've seen to establish $\vdash_{R} \phi$.
- Model checking instead is built on model theory, exhaustive checking. E.g. we can prove a formula ϕ is valid or satisfiable by determining its value $\models_{l} \phi$ at every interpretation / of its free variables.

Very different techniques: Hoare-like logics are in principle more general, but automation is hard, and some primitives hard (e.g. concurrency). Model checking is automatic, but requires some form of finiteness in the problem for exhaustively enumerating states.

Revision

[1A Digital Electronics and 1B Logic and Proof]

- Are $A B+A \bar{C}+B C$ and $B C+A \bar{C}$ equivalent?
- In other words, letting ϕ be the formula

$$
(A \wedge B) \vee(A \wedge \neg C) \vee(B \wedge C) \Leftrightarrow(B \wedge C) \vee(A \wedge \neg C)
$$

does $\models \phi$ hold (in propositional logic)?

- Two methods:
- we could show $\models^{\prime} \phi$ for every interpretation I
- we could prove $\vdash_{R} \phi$ for some set of sound and complete set of rules R (e.g. algebraic equalities like $A \vee(\mathrm{~A} \wedge B)=A$)
- So far in the course (Hoare logic) we've used \vdash. But for propositional logic (e.g. modelling hardware) it's easier and faster to check that $=_{\rho} \phi$ holds in all interpretations. Why? Finiteness.
(Note that Karnaugh maps can speed up checking this.)
- Additional benefit: counter-example if something isn't true.

Revision (2)

- An interpretation for propositional logic with propositional variables P (say $\{A, B, C\}$) is a finite map from $\{A, B, C\}$ to $\{$ true, false $\}$, or equivalently, the subset of $\{A, B, C\}$ which maps to true.
- When does a formula ϕ satisfy an interpretation /? Defined by structural induction on ϕ :
- $\models_{1} P \quad$ if $P \in I$
$\models_{l} \neg \phi \quad$ if $\models_{l} \phi$ is false
$\models_{\boldsymbol{\prime}} \phi \wedge \phi^{\prime}$ if $\models_{l} \phi$ and $\models_{\boldsymbol{\prime}} \phi^{\prime}$
- Recall that an interpretation / which makes formula ϕ true is called a model of ϕ. (That's why we're doing 'model checking' - determining whether a proposed model is actually one.)
So we'll write M from now on, rather than I, for interpretations we hope are models.

Logic and notation used in this course

- In this course we write $M \models \phi$ (and sometimes $\llbracket \phi \rrbracket_{M}$) rather than the $\Gamma \models_{M} \phi$ of Logic and Proof.
- In this course we're mainly interested in whether a formula ϕ holds in some particular putative model M, not in all interpretations. If so we say that "model M satisfies ϕ ".
- We're also interested in richer formulae than propositional logic, as want to model formulae whose truth might vary over time (hence the name "temporal logic").
- We're also interested in richer models than "which propositional variables are true", so we use Kripke structures as models; these reflect systems that change state over time.
- Sometimes we write $\llbracket \phi \rrbracket_{M}$ for this (only an incidental connection to denotational semantics). So the above can alternatively be written:

$$
\begin{aligned}
& \llbracket P \rrbracket_{M}=M(P) \quad \text { (treating } M \text { as a mapping here) } \\
& \llbracket \neg \phi \rrbracket_{M}=\operatorname{not} \llbracket \phi \rrbracket_{M} \\
& \llbracket \phi \wedge \phi^{\prime} \rrbracket_{M}=\llbracket \phi \rrbracket_{M} \text { and } \llbracket \phi^{\prime} \rrbracket_{M}
\end{aligned}
$$

Observation (not mentioned in Logic and Proof):

- The definition of model satisfaction $\models \wedge \phi$ directly gives an algorithm $(O(n)$ in the size of $\phi)$.

Temporal Logic and Model Checking

- Model
- mathematical structure extracted from hardware or software; here a Kripke structure
- Temporal logic
- provides a language for specifying functional properties; here a temporal logic (LTL or CTL, see later)
- Model checking
- checks whether a given property holds of a model
- Model checking is a kind of static verification
- dynamic verification is simulation (HW) or testing (SW)

A Kripke structure

We assume given a set of atomic properties $A P$.
A Kripke structure is a 4-tuple (S, S_{0}, R, L) where S is a set of states, $S_{0} \subseteq S$ is the subset of possible initial states, R is a binary relation on states (the transition relation) and L is a labelling function mapping from S to $\mathcal{P}(A P)$.

Notes

- we often call a Kripke structure a Kripke model
- some authors omit S_{0} and only give a 3 -tuple (wrong!)
- some authors use world instead of state and accessibility relation instead of transition relation.
- note that $L(s)$ specifies a propositional model for each state $s \in S$, hence the phrase possible worlds.
- some authors write $2^{A P}$ instead of $\mathcal{P}(A P)$.

Comparison to similar structures

Computer hardware as a state machine:

- instead of R we have a transition function next : Inp $\times S \rightarrow S$ (where Inp is an input alphabet) and an output function output : Inp $\times S \rightarrow \mathcal{P}(A P)$ (viewing $A P$ as externally visible outputs)
Finite-state automata
- instead of R we have a ternary transition relation - a subset of $\Sigma \times S \times S$ - where Σ is an alphabet).
- By having accept $\in A P$, we can recover 'accepting states' s as the requirement accept $\in L(s)$.
Kripke models don't have input - they treat user-input as non-determinism. (But Part II course "Topics in Concurrency" uses richer models with an alphabet like Σ above, and a richer transition relation.)

Alan Mycroft
Hoare Logic and Model Checking
$13 / 127$
Alan Mycroft
Hoare Logic and Model Checking
$14 / 127$

Transition systems

- Start by looking at the (S, R) components of a Kripke model, this is also called a transition system
- S is a set of states
- R is a transition relation
- we could add start states S_{0} too, but doesn't add much.
- $\left(s, s^{\prime}\right) \in R$ means s^{\prime} can be reached from s in one step.

But this notation is awkward, so:

- here we mainly write $R s s$; treating relation R as being the equivalent function $R: S \rightarrow(S \rightarrow \mathbb{B}) \quad$ (where $\mathbb{B}=\{$ true, false $\}$)
- i.e. $R_{\text {(this course) }} s s^{\prime} \Leftrightarrow\left(s, s^{\prime}\right) \in R_{\text {(formaly) }}$
- some books also write $R\left(s, s^{\prime}\right) \quad$ (equivalent by currying)
- we'll consider AP later.

A simple example transition system

- A simple T.S.: $(\underbrace{\{0,1,2,3\}}_{S}, \underbrace{\lambda n n^{\prime} \cdot n^{\prime}=n+1(\bmod 4)}_{R})$
- where " $\lambda x \ldots x \cdots$ " is the function mapping x to $\cdots x \cdots$
- so $R n n^{\prime}=\left(n^{\prime}=n+1(\bmod 4)\right)$
- e.g. $R 01 \wedge R 12 \wedge R 23 \wedge R 30$

- Might be extracted from:

[^0]DIV: a software example

- Perhaps a familiar program:

$0:$	$\mathrm{R}:=\mathrm{X} ;$
$1:$	$\mathrm{Q}:=0 ;$
$2:$	$\mathrm{WHILE} \mathrm{Y} \leq \mathrm{R}$
$3:$	DO
$4:$	$(\mathrm{R}:=\mathrm{R}-\mathrm{Y} ;$
$5:$	$\mathrm{Q}:=\mathrm{Q}+1)$
5	

- State (pc, $x, y, r, q)$
- $p c \in\{0,1,2,3,4,5\}$ program counter
- $x, y, r, q \in \mathbb{Z}$ are the values of $\mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{Q}$
- Model ($S_{\text {DIV }}, R_{\text {DIV }}$) where:

$$
S_{\text {DIV }}=[0 . .5] \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \quad(\text { where }[m . . n]=\{m, m+1, \ldots, n\})
$$

$$
\forall x \text { y } r q \cdot R_{\text {DIV }}(0, x, y, r, q)(1, x, y, x, q)
$$

$$
R_{\text {DIV }}(1, x, y, r, q)(2, x, y, r, 0)
$$

$$
R_{\text {DIV }}(2, x, y, r, q)((\text { if } y \leq r \text { then } 3 \text { else 5) }, x, y, r, q) \wedge
$$

$$
R_{\text {DIV }}(3, x, y, r, q)(4, x, y,(r-y), q)
$$

$$
R_{\text {DIV }}(4, x, y, r, q)(2, x, y, r,(q+1)
$$

Alan Mycroft

RCV: example state-machine circuit specification

- Part of a handshake circuit:

- Input: dreq, Memory: (q0, dack)
- Relationships between Boolean values on wires:

q0bar	$=\neg q 0$
a0	$=q 0$ bar \wedge dack
or0	$=q 0 \vee a 0$
a1	$=$ dreq \wedge or0

- State machine: $\delta_{\mathrm{RCV}}: \mathbb{B} \times(\mathbb{B} \times \mathbb{B}) \rightarrow(\mathbb{B} \times \mathbb{B})$

$$
\delta_{\mathrm{RCV}}(\underbrace{\text { dreq }}_{\mathrm{Inp}}, \underbrace{(q 0, \text { dack })}_{\text {Mem }})=(\text { dreq, dreq } \wedge(q 0 \vee(\neg q 0 \wedge \text { dack })))
$$

- RTL model - could have lower level model with clock edges

Deriving a transition system from a state machine

- State machine transition function: $\delta: \operatorname{lnp} \times M e m \rightarrow M e m$
- Inp is a set of inputs
- Mem is a memory (set of storable values)
- Transition system is: $\left(S_{\delta}, R_{\delta}\right)$ where:
$S_{\delta}=\operatorname{lnp} \times M e m$
$R_{\delta}(i, m)\left(i^{\prime}, m^{\prime}\right)=\left(m^{\prime}=\delta(i, m)\right)$
and
- i^{\prime} arbitrary: determined by environment not by machine
- m^{\prime} determined by input and current state of machine
- Deterministic machine, non-deterministic transition relation
- inputs unspecified (determined by environment)
- so called "input non-determinism"

Alan Mycroft
Hoare Logic and Model Checking

RCV: deriving a transition system

- Circuit from previous slide:

- State represented by a triple of Booleans (dreq, q0, dack)
- By De Morgan Law: $q 0 \vee(\neg q 0 \wedge$ dack $)=q 0 \vee$ dack
- Hence δ_{RCV} corresponds to transition system ($S_{\mathrm{RCV}}, R_{\mathrm{RCV}}$) where:

$$
\begin{aligned}
& \left.S_{\mathrm{RCV}}=\mathbb{B} \times \mathbb{B} \times \mathbb{B} \quad \text { [identifying } \mathbb{B} \times \mathbb{B} \times \mathbb{B} \text { with } \mathbb{B} \times(\mathbb{B} \times \mathbb{B})\right] \\
& R_{\mathrm{RCV}}(\text { dreq, } q 0, \text { dack })\left(\text { dreq }^{\prime}, q 0^{\prime}, \text { dack }^{\prime}\right)= \\
& \quad\left(q 0^{\prime}=\text { dreq }\right) \wedge\left(\text { dack }^{\prime}=(\text { dreq } \wedge(q 0 \vee \text { dack }))\right)
\end{aligned}
$$

- but drawing R pictorially can be clearer ...
- Possible states for RCV:
$\{000,001,010,011,100,101,110,111\}$

where $b_{2} b_{1} b_{0}$ denotes state

$$
\text { dreq }=b_{2} \wedge \mathrm{q} 0=b_{1} \wedge \text { dack }=b_{0}
$$

- Graph of the transition relation:

JM1: a non-deterministic software example

- From Jhala and Majumdar's tutorial:

- Two program counters, state: $\left(p c_{1}, p c_{2}\right.$, lock,$\left.x\right)$

$$
S_{J M 1}=[0.3] \times[0 . .3] \times \mathbb{Z} \times \mathbb{Z}
$$

$\forall p c_{1} p c_{2}$ lock x. $R_{\text {JMI }}\left(0, p c_{2}, 0, x\right) \quad\left(1, p c_{2}, 1, x\right) \wedge$

$$
\left.\begin{array}{lll}
R_{\text {JM1 } 1}\left(1, p c_{2}, l o c k, x\right) & \left(2, p c_{2}, l o c k, 1\right) & \wedge \\
R_{\text {JM1 }}\left(2, p c_{2}, 1, x\right) & \left(3, p c_{2}, 0, x\right) \\
R_{\text {JM1 }} & \left(p c_{1}, 0,0, x\right) & \left(p c_{1}, 1,1, x\right) \\
R_{\text {JM1 }} & \left(p c_{1}, 1, l o c k, x\right) & \wedge \\
R_{\text {JM1 } 1}\left(p c_{1}, 2,2,1, x\right) & \left(p c_{1}, 3,0, x\right)
\end{array}\right)
$$

- Non-deterministic:
$R_{\text {JM1 } 1}(0,0,0, x)(1,0,1, x)$
$R_{\text {JM1 }}(0,0,0, x)(0,1,1, x)$
- Not so obvious that $R_{\mathrm{JM} 1}$ is a correct model

Some comments

- $R_{\text {RCV }}$ is non-deterministic and left-total
- $R_{\text {RCV }}(1,1,1)(0,1,1)$ and $R_{R C V}(1,1,1)(1,1,1)$ (where $1=$ true and $0=$ false)
- $R_{\mathrm{RCV}}\left(\right.$ dreq, $q 0$, dack) $\left(\right.$ dreq $^{\prime}$, dreq, $($ dreq $\wedge(q 0 \vee$ dack $\left.))\right)$
- $R_{\text {DIV }}$ is deterministic but not left-total
- at most one successor state
- no successor when $p c=5$
- Non-deterministic models are very common, e.g. from:
- asynchronous hardware
- parallel software (more than one thread)
- Can extend any transition relation R to be left-total, e.g. $R^{\text {total }}=R \cup\left\{(s, s) \mid \neg \exists s^{\prime}\right.$ such that $\left.\left(s, s^{\prime}\right) \in R\right\}$
- some texts require left-totality (e.g. Model Checking by Clarke et al.); this can simplify reasoning.

Atomic properties (properties of states)

- Atomic properties are true or false of individual states
- an atomic property p is a function $p: S \rightarrow \mathbb{B}$
- can also be regarded as a subset of state: $p \subseteq S$
- Example atomic properties of RCV
(where $1=$ true and $0=$ false)

Dreq $($ dreq, $q 0$, dack $)$	$=(d r e q=1)$
$\operatorname{NotQ0}(d r e q, q 0$, dack $)$	$=(q 0=0)$
Dack $($ dreq, $q 0$, dack $)$	$=($ dack $=1)$
NotDreqAndQ0 $($ dreq, $q 0$, dack $)$	$=(d r e q=0) \wedge(q 0=1)$

- Example atomic properties of DIV

AtStart $(p c, x, y, r, q)$	$=(p c=0)$
AtEnd $(p c, x, y, r, q)$	$=(p c=5)$
$\operatorname{InLoop}(p c, x, y, r, q)$	$=(p c \in\{3,4\})$
$\operatorname{YleqR}(p c, x, y, r, q)$	$=(y \leq r)$
Invariant $(p c, x, y, r, q)$	$=(x=r+(y \times q))$

Atomic properties as labellings

These properties are convenient to express:

Dreq(dreq, $q 0$, dack $)$	$=(d r e q=1)$
NotQ0(dreq, $q 0$, dack $)$	$=(q 0=0)$
$\operatorname{Dack}(d r e q, q 0$, dack	$=($ dack $=1)$
NotDreqAndQ $0(d r e q, q 0$, dack $)$	$=(d r e q=0) \wedge(q 0=1)$

But how are they related to the Kripke model requirement at "each state is labelled with a set of atomic properties"?

These are just equivalent views. Note that states ($1,0,0$), $(1,0,1),(1,1,0),(1,1,1)$ are labelled with Dreq $\in A P$, and no other state is. Similarly for NotQ0, Dack, NotDreqAndQ0.
So the labelling function $L: S \rightarrow \mathcal{P}(A P)$ is here given by

- A path of (S, R) is represented by a function $\pi: \mathbb{N} \rightarrow S$
- $\pi(i)$ is the i th element of π (first element is $\pi(0)$)
- might sometimes write πi instead of $\pi(i)$
- $\pi \downarrow i$ is the i-th tail of π so $\pi \downarrow i(n)=\pi(i+n)$
- successive states in a path must be related by R
- Path $R s \pi$ is true if and only if π is a path starting at s : Path $R s \pi=(\pi(0)=s) \wedge \forall i . R(\pi(i))(\pi(i+1))$ where:

$$
\text { Path : } \underbrace{(S \rightarrow S \rightarrow \mathbb{B})}_{\begin{array}{c}
\text { transition } \\
\text { relation }
\end{array}} \rightarrow \underbrace{S}_{\begin{array}{c}
\text { initial } \\
\text { state }
\end{array}} \rightarrow \underbrace{(\mathbb{N} \rightarrow S)}_{\text {path }} \rightarrow \mathbb{B}
$$

Model behaviour viewed as a computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of (S, R) starting from $s \in S$ as a tree:

- A path is shown in red
- Properties may look at all paths, or just a single path
- CTL: Computation Tree Logic (all paths from a state)
- LTL: Linear Temporal Logic (a single path)

RCV: example hardware properties

- Consider this timing diagram:

- Two handshake properties representing the diagram:
- following a rising edge on dreq, the value of dreq remains 1 (i.e. true) until it is acknowledged by a rising edge on dack
- following a falling edge on dreq, the value on dreq remains 0 (i.e. false) until the value of dack is 0
- A property language is used to formalise such properties. In this course this is some form of temporal logic.

DIV: example program properties

| $0:$ | $\mathrm{R}:=\mathrm{X} ;$ |
| :--- | :--- | :--- |
| $1:$ | $\mathrm{Q}:=0 ;$ |
| $2:$ | $\mathrm{WHILE} \mathrm{Y} \leq \mathrm{R}$ DO |
| $3:$ | $(\mathrm{R}:=\mathrm{R}-\mathrm{Y} ;$ |
| $4:$ | $\mathrm{Q}:=\mathrm{Q}+1)$ |
| $\mathrm{5}:$ | |

$$
\begin{array}{ll}
\text { AtStart }(p c, x, y, r, q) & =(p c=0) \\
\text { AtEnd }(p c, x, y, r, q) & =(p c=5) \\
\text { InLoop }(p c, x, y, r, q) & =(p c \in\{3,4\}) \\
\text { YleqR }(p c, x, y, r, q) & =(y \leq r) \\
\text { Invariant }(p c, x, y, r, q) & =(x=r+(y \times q))
\end{array}
$$

- Example properties of the program DIV.
- on every execution if AtEnd is true then Invariant is true and YleqR is not true
- on every execution there is a state where AtEnd is true
- on any execution if there exists a state where YleqR is true then there is also a state where InLoop is true
- Compare these with what is expressible in Hoare logic
- execution: a path starting from a state satisfying AtStart

Alan Mycroft
Hoare Logic and Model Checking
29/127

State satisfying NotAt 11 unreachable from $(0,0,0,0)$

- So can never reach $(0,1,0, x)$ or $(1,0,0, x)$
- So can't reach $(1,1,1, x)$, hence never $\left(p c_{1}=1\right) \wedge\left(p c_{2}=1\right)$
- Hence all states reachable from $(0,0,0,0)$ Satisfy NotAt11

Recall JM1: a non-deterministic program example

$$
\begin{aligned}
& \text { Thread } 1 \text { Thread 2 } \\
& \text { 0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1; } \\
& \text { 1: } x:=1 ; \quad \text { 1: } x:=2 \text {; } \\
& \text { 2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0; } \\
& S_{J M 1}=[0.3] \times[0 . .3] \times \mathbb{Z} \times \mathbb{Z} \\
& \forall p c_{1} p c_{2} \text { lock } x . R_{\text {JM1 }}\left(0, p c_{2}, 0, x\right) \quad\left(1, p c_{2}, 1, x\right) \quad \wedge \\
& R_{\text {JM1 }}\left(1, p c_{2}, \text { lock }, x\right)\left(2, p c_{2}, \text { lock }, 1\right) \wedge \\
& R_{\text {JM1 }}\left(2, p c_{2}, 1, x\right) \quad\left(3, p c_{2}, 0, x\right) \wedge \\
& R_{\text {JM } 1}\left(p c_{1}, 0,0, x\right) \quad\left(p c_{1}, 1,1, x\right) \quad \wedge \\
& R_{\text {JM1 }}\left(p c_{1}, 1, \text { lock }, x\right)\left(p c_{1}, 2, \text { lock }, 2\right) \wedge \\
& R_{\text {JM } 1}\left(p c_{1}, 2,1, x\right) \quad\left(p c_{1}, 3,0, x\right)
\end{aligned}
$$

- An atomic property:
- $\operatorname{NotAt11(pc_{1},pc_{2},\text {lock},x)=\neg ((pc_{1}=1)\wedge (pc_{2}=1))~}$
- A non-atomic property:
- all states reachable from $(0,0,0,0)$ satisfy NotAt 11
- this is an example of a reachability property

Alan Mycroft
Hoare Logic and Model Checking

Reachability

- R s s' means s^{\prime} reachable from s in one step
- $R^{n} s s^{\prime}$ means s^{\prime} reachable from s in n steps $R^{0} s s^{\prime}=\left(s=s^{\prime}\right)$ $R^{n+1} s s^{\prime}=\exists s^{\prime \prime} . R s s^{\prime \prime} \wedge R^{n} s^{\prime \prime} s^{\prime}$
- $R^{*} s s^{\prime}$ means s^{\prime} reachable from s in finite steps $R^{*} s s^{\prime}=\exists n . R^{n} s s^{\prime}$
- Note: $R^{*} s s^{\prime} \Leftrightarrow \exists \pi n$. Path $R s \pi \wedge\left(s^{\prime}=\pi(n)\right)$
- The set of states reachable from s is $\left\{s^{\prime} \mid R^{*} s s^{\prime}\right\}$
- Verification problem: all states reachable from s satisfy p
- verify truth of $\forall s^{\prime} . R^{*} s s^{\prime} \Rightarrow p\left(s^{\prime}\right)$
- e.g. all states reachable from ($0,0,0,0$) satisfy NotAt11
- i.e. $\left.\forall s^{\prime} . R_{\text {JM1 }}^{*}(0,0,0,0) s^{\prime} \Rightarrow \operatorname{NotAt11(~} s^{\prime}\right)$
- Assume $M=\left(S, S_{0}, R, A P\right)$
- $M \models p$ means p true of all initial states of M
- formally $M \models p$ holds if $\forall s \in S_{0} . p \in L(s)$
- uninteresting - does not consider transitions in M (other 'possible worlds' than the initial ones)

Models and model checking

- We've defined and exemplified Kripke models
- We treat their states as externally unimportant, what is important is how the various atomic predicates change as the Kripke model evolves.
- A Kripke structure is a tuple $\left(S, S_{0}, R, L\right)$ where L is a labelling function from S to $\mathcal{P}(A P)$
- Note the two understandings of atomic properties:
- the formal one above $p \in A P$
- the previous informal, but equivalent, one $\lambda s . p \in L(s)$
- often convenient to assume $T, F \in A P$ with $\forall s: T \in L(s)$ and $\mathrm{F} \notin L(s)$
- Model checking computes whether $\left(S, S_{0}, R, L\right) \models \phi$
- ϕ is a property expressed in a property language
- informally $M \models \phi$ means "formula ϕ is true in model M "

Start with trivial and minimal property languages ...

Minimal property language: ϕ is AGp where $p \in A P$

Our first temporal operator in a very restricted form so far.

- Consider properties ϕ of form AG p where $p \in A P$
- "AG" stands for "Always Globally"
- from CTL (same meaning, more elaborately expressed)
- Assume $M=\left(S, S_{0}, R, L\right)$
- Reachable states of M are $\left\{s^{\prime} \mid \exists s \in S_{0} . R^{*} s s^{\prime}\right\}$
- i.e. the set of states reachable from an initial state
- Define Reachable $M=\left\{s^{\prime} \mid \exists s \in S_{0} . R^{*} s s^{\prime}\right\}$
- $M \models$ AG p means p true of all reachable states of M
- If $M=\left(S, S_{0}, R, L\right)$ then $M \models \phi$ formally defined by:

$$
M \models \mathbf{A G} p \Leftrightarrow \forall s^{\prime} . s^{\prime} \in \text { Reachable } M \Rightarrow p \in L\left(s^{\prime}\right)
$$

Model checking $M \models$ AG p

- $M \models \mathbf{A G} p \Leftrightarrow \forall s^{\prime} . s^{\prime} \in$ Reachable $M \Rightarrow p \in L\left(s^{\prime}\right)$

$$
\Leftrightarrow \text { Reachable } M \subseteq\left\{s^{\prime} \mid p \in L\left(s^{\prime}\right)\right\}
$$

checked by:

- first computing Reachable M
- then checking p true of all its members
- Let \mathcal{S} abbreviate $\left\{s^{\prime} \mid \exists s \in S_{0} . R^{*} s s^{\prime}\right\}$ (i.e. Reachable M)
- Compute \mathcal{S} iteratively: $\mathcal{S}=\mathcal{S}_{0} \cup \mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{n} \cup \cdots$
- i.e. $\mathcal{S}=\bigcup_{n=0}^{\infty} \mathcal{S}_{n}$
- where: $\mathcal{S}_{0}=S_{0}$ (set of initial states)
- and inductively: $\mathcal{S}_{n+1}=\mathcal{S}_{n} \cup\left\{s^{\prime} \mid \exists s \in \mathcal{S}_{n} \wedge R s s^{\prime}\right\}$
- Clearly $\mathcal{S}_{0} \subseteq \mathcal{S}_{1} \subseteq \cdots \subseteq \mathcal{S}_{n} \subseteq \cdots$
- Hence if $\mathcal{S}_{\mathrm{m}}=\mathcal{S}_{\mathrm{m}+1}$ then $\mathcal{S}=\mathcal{S}_{\mathrm{m}}$
- Algorithm: compute $\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots$, until no change; then check plabels all members of computed set

Example: RCV

- Recall the handshake circuit:

- State represented by a triple of Booleans (dreq, q0, dack)
- A model of RCV is $M_{\text {RCV }}$ where:

$$
M=\left(S_{\mathrm{RCV}},\{(1,1,1)\}, R_{\mathrm{RCV}}, L_{\mathrm{RCV}}\right)
$$

and
$R_{\text {RCV }}\left(\right.$ dreq $^{\prime}, q 0$, dack $)\left(d r e q^{\prime}, q 0^{\prime}\right.$, dack $\left.^{\prime}\right)=$ $\left(q 0^{\prime}=d r e q\right) \wedge\left(\right.$ dack $^{\prime}=(d r e q \wedge(q 0 \vee$ dack $\left.))\right)$

- AP and labelling function $L_{\text {RCV }}$ discussed later

Algorithmic issues

Compute $\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots$, until no change;
then check p holds of all members of computed set

- Does the algorithm terminate?
- yes, if set of states is finite, because then no infinite chains:

$$
\mathcal{S}_{0} \subset \mathcal{S}_{1} \subset \cdots \subset \mathcal{S}_{n} \subset \cdots
$$

- How to represent $\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots$?
- explicitly (e.g. lists or something more clever)
- symbolic expression
- Huge literature on calculating set of reachable states

RCV as a transition system

- Possible states for RCV:
$\{000,001,010,011,100,101,110,111\}$
where $b_{2} b_{1} b_{0}$ denotes state
dreq $=b_{2} \wedge q 0=b_{1} \wedge$ dack $=b_{0}$
- Graph of the transition relation:

Computing Reachable $M_{\text {RCV }}$

- Define:

$$
\begin{aligned}
\mathcal{S}_{0}= & \left\{b_{2} b_{1} b_{0} \mid b_{2} b_{1} b_{0} \in\{111\}\right\} \\
= & \{111\} \\
\mathcal{S}_{i+1}= & \mathcal{S}_{i} \cup\left\{s^{\prime} \mid \exists s \in \mathcal{S}_{i} . R_{\mathrm{RCV}} s s^{\prime}\right\} \\
= & \mathcal{S}_{i} \cup\left\{b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} \mid\right. \\
& \left.\exists b_{2} b_{1} b_{0} \in \mathcal{S}_{i} .\left(b_{1}^{\prime}=b_{2}\right) \wedge\left(b_{0}^{\prime}=b_{2} \wedge\left(b_{1} \vee b_{0}\right)\right)\right\}
\end{aligned}
$$

Alan Mycroft
Hoare Logic and Model Checking
$41 / 127$

Model checking $M_{\text {Rcv }} \models$ AG p

- $M=\left(S_{\mathrm{RCV}},\{111\}, R_{\mathrm{RCV}}, L_{\mathrm{RCV}}\right)$
- To check $M_{\text {RCV }} \models$ AG p
- compute Reachable $M_{\text {RCV }}=\{111,011,000,100,010,110\}$
- check Reachable $M_{\mathrm{RCV}} \subseteq\left\{s \mid p \in L_{\mathrm{RCV}}(s)\right\}$
- i.e. check if $s \in$ Reachable $M_{R C V}$ then $p \in L_{R C V}(s)$, i.e.:

$$
\begin{aligned}
& p \in L_{\operatorname{RcV}}(111) \wedge \\
& p \in L_{\operatorname{Rcv}}(011) \wedge \\
& p \in L_{\operatorname{Rcv}}(000) \wedge \\
& p \in L_{\operatorname{Rcv}}(100) \wedge \\
& p \in L_{\operatorname{RcV}}(010) \wedge \\
& p \in L_{\operatorname{Rcv}}(110)
\end{aligned}
$$

- Example
- if $A P=\{A, B\}$
- and $L_{\text {RCV }}(s)=$ if $s \in\{001,101\}$ then $\{\mathrm{A}\}$ else $\{B\}$
- then $M_{\text {RCV }} \models \mathrm{AG}$ A is not true, but $M_{\text {RCV }} \models \mathrm{AG}$ B is true

Computing Reachable $M_{\text {RCV }}$ (continued)

- Compute:

$$
\begin{aligned}
\mathcal{S}_{0} & =\{111\} \\
\mathcal{S}_{1} & =\{111\} \cup\{011\} \\
& =\{111,011\} \\
\mathcal{S}_{2} & =\{111,011\} \cup\{000,100\} \\
& =\{111,011,000,100\} \\
\mathcal{S}_{3} & =\{111,011,000,100\} \cup\{010,110\} \\
& =\{111,011,000,100,010,110\} \\
\mathcal{S}_{i} & =\mathcal{S}_{3} \quad(i>3)
\end{aligned}
$$

- Hence Reachable $M_{\mathrm{Rcv}}=\{111,011,000,100,010,110\}$ Alan Mycroft

Explicit vs Symbolic model checking

The problem:

- Suppose we have a system with n flip-flops. Then it has up to 2^{n} states. Exploring all these exhaustively is exponentially horrid - even a system with three 32-bit registers has 2^{96} states which take 'forever' to explore
- In general the number of states is exponential in the number of variables and number of parallel threads.
Technology to avoid this: 'Symbolic model checking'
- Same model-checking idea
- Use symbolic representations of data (e.g. BDDs) instead of explicit state and relation representations (e.g. set of tuples of booleans)
- Do this both for states and for the transition relation
- Faster (for data-structures-and-algorithms reasons)

Symbolic Boolean model checking of reachability

- Assume states are n-tuples of Booleans $\left(b_{1}, \ldots, b_{n}\right)$
- $b_{i} \in \mathbb{B}=\{$ true, false $\}(=\{1,0\})$
- $S=\mathbb{B}^{n}$, so S is finite: 2^{n} states
- Assume n distinct Boolean variables: v_{1}, \ldots, v_{n}
- e.g. if $n=3$ then could have $v_{1}=x, v_{2}=y, v_{3}=z$
- Boolean formula $f\left(v_{1}, \ldots, v_{n}\right)$ represents a subset of S
- $f\left(v_{1}, \ldots, v_{n}\right)$ only contains variables v_{1}, \ldots, v_{n}
- $f\left(b_{1}, \ldots, b_{n}\right)$ denotes result of substituting b_{i} for v_{i}
- $f\left(v_{1}, \ldots, v_{n}\right)$ determines $\left\{\left(b_{1}, \ldots, b_{n}\right) \mid f\left(b_{1}, \ldots, b_{n}\right) \Leftrightarrow\right.$ true $\}$
- Example $\neg(\mathrm{x}=\mathrm{y})$ represents $\{($ true, false), (false, true) $\}$
- Transition relations also represented by Boolean formulae
- e.g. $R_{\text {RCV }}$ represented by:

$$
\left(q 0^{\prime}=\operatorname{dreq}\right) \wedge(\text { dack }=(d r e q \wedge(q 0 \vee(\neg q 0 \wedge \text { dack }))))
$$

BDD of a transition relation

- BDDs of

$$
\left(\mathrm{v} 1^{\prime}=(\mathrm{v} 1=\mathrm{v} 2)\right) \wedge\left(\mathrm{v} 2^{\prime}=(\mathrm{v} 1 \neq \mathrm{v} 2)\right)
$$

with two different variable orderings

- Exercise: draw BDD of R_{RCV}

Standard BDD operations

- If formulae f_{1}, f_{2} represents sets S_{1}, S_{2}, respectively then $f_{1} \wedge f_{2}, f_{1} \vee f_{2}$ represent $S_{1} \cap S_{2}, S_{1} \cup S_{2}$ respectively
- Standard algorithms compute Boolean operation on BDDs
- Abbreviate $\left(v_{1}, \ldots, v_{n}\right)$ to \vec{v}
- If $f(\vec{v})$ represents S and $g\left(\vec{v}, \vec{v}^{\prime}\right)$ represents $\left.\left\{\left(\vec{v}, \vec{v}^{\prime}\right) \mid R \vec{v} \vec{v}^{\prime}\right)\right\}$ then $\exists \vec{u} . f(\vec{u}) \wedge g(\vec{u}, \vec{v})$ represents $\{\vec{v} \mid \exists \vec{u} . \vec{u} \in S \wedge R \vec{u} \vec{v}\}$
- Can compute BDD of $\exists \vec{u}$. $h(\vec{u}, \vec{v})$ from BDD of $h(\vec{u}, \vec{v})$ - e.g. BDD of $\exists v_{1} . h\left(v_{1}, v_{2}\right)$ is BDD of $h\left(T, v_{2}\right) \vee h\left(\mathrm{~F}, v_{2}\right)$
- From BDD of formula $f\left(v_{1}, \ldots, v_{n}\right)$ can compute b_{1}, \ldots, b_{n} such that if $v_{1}=b_{1}, \ldots, v_{n}=b_{n}$ then $f\left(b_{1}, \ldots, b_{n}\right) \Leftrightarrow$ true
- b_{1}, \ldots, b_{n} is a satisfying assignment (SAT problem)
- used for counterexample generation (see later)

Alan Mycroft
Hoare Logic and Model Checking
49 / 127

Engineering BDDs is significant work

- size of BDD can depend hugely on choice of 'variable order'
- some operations (e.g. multiplication) produces big BDDs
- interleaved concurrency (think threads) can mean that the exact BDD for R is huge.
- But there are tricks beyond this course (e.g. 'disjunctive partitioning') which can calculate things like f_{n} above without computing R.
- See more-advanced courses e.g.
http://www.cs.ucsb.edu/~bultan/courses/267/

Reachable States via BDDs

- Assume $M=\left(S, S_{0}, R, L\right)$ and $S=\mathbb{B}^{n}$
- Represent R by Boolean formulae $g\left(\vec{v}, \overrightarrow{v^{\prime}}\right)$
- Iteratively define formula $f_{n}(\vec{v})$ representing \mathcal{S}_{n}
$f_{0}(\vec{v}) \quad=$ formula representing S_{0}
$f_{n+1}(\vec{v})=f_{n}(\vec{v}) \vee\left(\exists \vec{u} . f_{n}(\vec{u}) \wedge g(\vec{u}, \vec{v})\right)$
- Let $\mathcal{B}_{0}, \mathcal{B}_{R}$ be BDDs representing $f_{0}(\vec{v}), g\left(\vec{v}, \overrightarrow{v^{\prime}}\right)$
- Iteratively compute BDDs \mathcal{B}_{n} representing f_{n}

$$
\mathcal{B}_{n+1}=\mathcal{B}_{n} \underline{\vee}\left(\exists \vec{u} . \mathcal{B}_{n} \underline{[\vec{u} / \vec{v}]} \underline{\wedge} \mathcal{B}_{R} \underline{\left[\vec{u}, \vec{v} / \vec{v}, \vec{v}^{\prime}\right]}\right)
$$

- efficient using (blue underlined) standard BDD algorithms (renaming, conjunction, disjunction, quantification)
- BDD \mathcal{B}_{n} only contains variables \vec{v} : represents $\mathcal{S}_{n} \subseteq S$
- At each iteration check $\mathcal{B}_{n+1}=\mathcal{B}_{n}$ efficient using BDDs
- when $\mathcal{B}_{n+1}=\mathcal{B}_{n}$ can conclude \mathcal{B}_{n} represents Reachable M
- we call this $\operatorname{BDD} \mathcal{B}_{M}$ in a later slide (i.e. $\mathcal{B}_{M}=\mathcal{B}_{n}$)

Alan Mycroft
Hoare Logic and Model Checking

Verification and counterexamples

- Typical safety question:
- is property p true in all reachable states?
- i.e. check $M=$ AG p
- i.e. is $\forall s . s \in \operatorname{Reachable} M \Rightarrow p s$
- Check using BDDs
- compute BDD \mathcal{B}_{M} of Reachable M
- compute BDD \mathcal{B}_{p} of $p(\vec{v})$
- check if BDD of $\mathcal{B}_{M} \equiv \mathcal{B}_{p}$ is the single node
- Valid because true represented by a unique BDD (canonical property)
- If BDD is not 1 can get counterexample

Generating counterexamples (general idea)

BDD algorithms can find satisfying assignments (SAT)

- Suppose not all reachable states of model M satisfy p
- i.e. $\exists s \in$ Reachable M. $\neg(p(s))$
- Set of reachable state \mathcal{S} given by: $\mathcal{S}=\bigcup_{n=0}^{\infty} \mathcal{S}_{n}$
- Iterate to find least n such that $\exists s \in \mathcal{S}_{n} . \neg(p(s))$
- Use SAT to find b_{n} such that $b_{n} \in \mathcal{S}_{n} \wedge \neg\left(p\left(b_{n}\right)\right)$
- Use SAT to find b_{n-1} such that $b_{n-1} \in \mathcal{S}_{n-1} \wedge R b_{n-1} b_{n}$
- Use SAT to find b_{n-2} such that $b_{n-2} \in \mathcal{S}_{n-2} \wedge R b_{n-2} b_{n-1}$ \vdots
- Iterate to find $b_{0}, b_{1}, \ldots, b_{n-1}, b_{n}$ where $b_{i} \in \mathcal{S}_{i} \wedge R b_{i-1} b_{i}$
- Then $b_{0} b_{1} \cdots b_{n-1} b_{n}$ is a path to a counterexample

Alan Mycroft
Hoare Logic and Model Checking
$53 / 127$

Generating counterexamples with BDDs

BDD algorithms can find satisfying assignments (SAT)

- $M=\left(S, S_{0}, R, L\right)$ and $\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{M}, \mathcal{B}_{R}, \mathcal{B}_{p}$ as earlier
- Suppose $\mathcal{B}_{M} \Rightarrow \mathcal{B}_{p}$ is not 1
- Must exist a state $s \in$ Reachable M such that $\neg(p s)$
- Let $\mathcal{B}_{\neg p}$ be the BDD representing $\neg(p \vec{v})$
- Iterate to find first n such that $\mathcal{B}_{n} \wedge \mathcal{B}_{\neg p}$
- Use SAT to find \vec{b}_{n} such that $\left(\mathcal{B}_{n} \wedge \mathcal{B}_{\neg p}\right) \underline{\left.\vec{b}_{n} / \vec{v}\right]}$
- Use SAT to find \vec{b}_{n-1} such that $\left(\mathcal{B}_{n-1} \wedge \mathcal{B}_{R}\left[\vec{b}_{n} / \vec{v}^{\prime}\right]\right)\left[\vec{b}_{n-1} / \vec{v}\right]$
- For $0<i<n$ find \vec{b}_{i-1} such that $\left(\mathcal{B}_{i-1} \wedge \mathcal{B}_{R}\left[\vec{b}_{i} / \vec{v}^{\prime}\right]\right)\left[\vec{b}_{i-1} / \vec{v}\right]$
- $\vec{b}_{0}, \ldots, \vec{b}_{i}, \ldots, \vec{b}_{n}$ is a counterexample trace
- Sometimes can use partitioning to avoid constructing \mathcal{B}_{R}

Use SAT to find s_{n-1} such that $s_{n-1} \in \mathcal{S}_{n-1} \wedge R s_{n-1} s_{n}$

- Suppose states s, s^{\prime} symbolically represented by $\vec{v}, \vec{v}^{\prime}$
- Suppose BDD \mathcal{B}_{i} represents $\vec{v} \in \mathcal{S}_{i}(1 \leq i \leq n)$
- Suppose BDD \mathcal{B}_{R} represents $R \vec{v} \overrightarrow{v^{\prime}}$
- Then BDD
$\left(\mathcal{B}_{n-1} \wedge \mathcal{B}_{R}\left[\vec{b}_{n} / \vec{v}^{\prime}\right]\right)$
represents
$\vec{v} \in \mathcal{S}_{n-1} \wedge R \vec{v} \vec{b}_{n}$
- Use SAT to find a valuation \vec{b}_{n-1} for \vec{v}
- Then BDD
$\left(\mathcal{B}_{n-1} \wedge \mathcal{B}_{R}\left[\vec{b}_{n} / \vec{v}^{\prime}\right]\right)\left[\vec{b}_{n-1} / \vec{v}\right]$
represents
$\vec{b}_{n-1} \in \mathcal{S}_{n-1} \wedge R \vec{b}_{n-1} \vec{b}_{n}$

Alan Mycroft
Hoare Logic and Model Checking

Example (from an exam)

Consider a 3×3 array of 9 switches

Suppose each switch $1,2, \ldots, 9$ can either be on or off, and that toggling any switch will automatically toggle all its immediate neighbours. For example, toggling switch 5 will also toggle switches $2,4,6$ and 8 , and toggling switch 6 will also toggle switches 3,5 and 9 .
(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the behaviour of the array of switches

You are given the problem of getting from an initial state in which even numbered switches are on and odd numbered switches are off, to a final state in which all the switches are off.
(b) Write down predicates on your state space that characterises the initial [2 marks] and final [2 marks] states.
(c) Explain how you might use a model checker to find a sequences of switches to toggle to get from the initial to final state. [6 marks]
You are not expected to actually solve the problem, but only to explain how to represent it in terms of model checking.

Solution

A state is a vector (v1,v2,v3,v4,v5,v6,v7,v8,v9), where $\mathrm{vi} \in \mathbb{B}$ A transition relation Trans is then defined by:

```
Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1',v2',v3',v4',v5',v6',v7',v8',v9')
= ((v1'=\negv1)^(v2'=\negv2)^(v3'=v3)\wedge(v4'= vv4)^(v5'=v5)^
    (v\mp@subsup{6}{}{\prime}=\textrm{v}6)\wedge(\textrm{v}\mp@subsup{7}{}{\prime}=\textrm{v}7)\wedge(\textrm{v}\mp@subsup{8}{}{\prime}=\textrm{v}8)\wedge(\textrm{v}\mp@subsup{9}{}{\prime}=\textrm{v}9))\quad (toggle switch 1)
```



```
        (v\mp@subsup{6}{}{\prime}=v6)\wedge(v7'=v7)\wedge(v8'=v8)\wedge(v9'=v9))\quad(toggle switch 2)
\vee ((v1'=v1)^(v2'= vv2)^(v3'=\negv3)^(v4'=v4)^(v5'=v5)^
        (v\mp@subsup{6}{}{\prime}=\negv6)\wedge(v7'=v7)^(v8'=v8)\wedge(v9'=v9)) (toggle switch 3)
```



```
        (v\mp@subsup{6}{}{\prime}=\textrm{v}6)\wedge(\textrm{v}\mp@subsup{7}{}{\prime}=\neg\textrm{v}7)\wedge(\textrm{v}\mp@subsup{8}{}{\prime}=\textrm{v}8)\wedge(\textrm{v}\mp@subsup{9}{}{\prime}=\textrm{v}9))\quad(toggle switch 4)
\vee ((v1'=v1)^(v2'=\negv2)^(v3'=v3)^(v4'=\negv4)^(v5'= = vv5)^
        (v6'=
\vee ((v1'=v1)^(v2'=v2)^(v3'=\negv3)^(v4'=v4)^(v5'= = v5 ) ^
        (v\mp@subsup{6}{}{\prime}=\neg\textrm{v}6)\wedge(v7'=v7)\wedge(v8'=v8)^(v9'= \v9)) (toggle switch 6)
\vee ((v\mp@subsup{1}{}{\prime}=v1)\wedge(v2'=v2)^(v\mp@subsup{3}{}{\prime}=v3)\wedge(v4
        (v\mp@subsup{6}{}{\prime}=\textrm{v}6)\wedge(v7'=\negv7)^(v8'= = v% ) ^(v9'=v9)) (toggle switch 7)
v ((v1'=v1)^(v2'=v2)^(v3'=v3)^(v4'=v4)^(v5'==\negv5)^
        (v6'=v6)^(v7'=\negv7)^(v8'=\negv8)^(v9'=\negv9)) (toggle switch 8)
\vee ((v1'=v1)^(v2'=v2)^(v3'= =v3)^(v4'=v4)^(v5'=v5)^
        (v\mp@subsup{6}{}{\prime}=\negv6)\wedge(v7'=v7)\wedge(v8'=\negv8)\wedge(v9'=\negv9)) (toggle switch 9)
```


More Interesting Properties (1): LTL

Solution (continued)

Predicates Init, Final characterising the initial and final states, respectively, are defined by:

```
Init(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
\negv1 ^ v2 ^ नv3 ^ v4 ^ नv5 ^ v6 ^ नv7 ^ v8 ^ नv9
Final(v1,v2,v3,v4,v5,v6,v7,v8,v9) =
\negv1 ^ ᄀv2 ^ ᄀv3 ^ ᄀV4 ^ ᄀv5 ^ ᄀv6 ^ ᄀV7 ^ ᄀv8 ^ ᄀV9
```

Model checkers can find counter-examples to properties, and sequences of transitions from an initial state to a counter-example state. Thus we could use a model checker to find a trace to a counter-example to the property that
\neg Final (v1, v2, v3, v4, v5, v6, v7, v8, v9)

More General Properties

- $\forall s \in S_{0} . \forall s^{\prime} . R^{*} s s^{\prime} \Rightarrow p s^{\prime}$ says p true in all reachable states
- Might want to verify other properties

1. DeviceEnabled holds infinitely often along every path
2. From any state it is possible to get to a state where Restart holds
3. After a three or more consecutive occurrences of Req there will eventually be an Ack

- Temporal logic can express such properties
- There are several temporal logics in use
- LTL is good for the first example above
- CTL is good for the second example
- PSL is good for the third example
- Model checking:
- Emerson, Clarke \& Sifakis: Turing Award 2008
- widely used in industry: first hardware, later software

Temporal logic selected history

Prior (1914-1969) devised 'tense logic' for investigating: "the relationship between tense and modality attributed to the Megarian philosopher Diodorus Cronus (ca. 340-280 BCE)".

More details:
http://plato.stanford.edu/entries/prior/

- Temporal logic: deductive system for reasoning about time
- temporal formulae for expressing temporal statements
- deductive system for proving theorems
- Temporal logic model checking
- uses semantics to check truth of temporal formulae in models
- Temporal logic proof systems are also of interest (but not in this course).

Alan Mycroft
Hoare Logic and Model Checking

Linear Temporal Logic (LTL)

- Grammar of LTL formulae ϕ
$\phi \quad::=p$
(Atomic formula: $p \in A P$)
| $\neg \phi$
(Negation)
$\mid \phi_{1} \vee \phi_{2}$
(Disjunction)
$\mathbf{X} \phi \quad$ (successor)
$\mathrm{F} \phi$ (sometimes)
G ϕ (always)
[$\left.\phi_{1} \mathbf{U} \phi_{2}\right]$ (Until)
- Details differ from Prior's tense logic - but similar ideas
- Semantics define when ϕ true in model M
- where $M=\left(S, S_{0}, R, L\right)$ - a Kripke structure
- notation: $M \models \phi$ means ϕ true in model M
- model checking algorithms compute this (when decidable)
- previously we only discussed the case $\phi=$ AG p

Temporal logic selected history (2)

- Many different languages capturing temporal statements as formulae
- linear time (LTL)
- branching time (CTL)
- finite intervals (SEREs)
- industrial languages (PSL, SVA)
- Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are several possibilities for what the next moment may be like - and for each possible next moment, there are several possibilities for the moment after that. Thus the situation takes the form, not of a linear sequence, but of a 'tree'. [Saul Kripke, 1958 (aged 17, still at school)]
- CS issues different from philosophical issues
- Moshe Vardi: "Branchina vs. Linear Time: Final Showdown" http://www.computer.org/portal/web/awards/Vardi

Moshe Vardi
www.computer.org
"For fundamental and lasting contributions to the development
of logic as a unifying foundational framework and a tool for
modeling computational systems"
2011 Harry H. Goode Memorial Award Recipient
$M \models \phi$ means "formula ϕ is true in model M "

- If $M=\left(S, S_{0}, R, L\right)$ then
π is an M-path starting from s iff Path $R s \pi$
- If $M=\left(S, S_{0}, R, L\right)$ then we define $M \models \phi$ to mean:
ϕ is true on all M-paths starting from a member of S_{0}
- We will define $\llbracket \phi \rrbracket_{M}(\pi)$ to mean
ϕ is true on the M-path π
- Thus $M \models \phi$ will be formally defined by:
$M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge$ Path $R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)$
- It remains to actually define $\llbracket \phi \rrbracket_{M}$ for all formulae ϕ

Definition of $\llbracket \phi \rrbracket_{M}(\pi)$

- $\llbracket \phi \rrbracket_{M}(\pi)$ is the application of function $\llbracket \nmid \rrbracket_{M}$ to path π
- thus $\llbracket \notin \rrbracket_{M}:(\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$
- Let $M=\left(S, S_{0}, R, L\right)$
$\llbracket \phi \rrbracket_{M}$ is defined by structural induction on ϕ

```
\llbracketp\rrbracketM(\pi)
\llbracket\neg\phi\rrbracketM(\pi)
\llbracket }\mp@subsup{\phi}{1}{}\vee\mp@subsup{\phi}{2}{}\mp@subsup{\rrbracket}{M}{}(\pi)=\llbracket\mp@subsup{\phi}{1}{}\mp@subsup{\rrbracket}{M}{}(\pi)\vee\llbracket\mp@subsup{\phi}{2}{}\mp@subsup{\rrbracket}{M}{}(\pi
\X }\phi\mp@subsup{\rrbracket}{M}{\prime}(\pi)=\\llbracket|\mp@subsup{|}{M}{}(\pi\downarrow1
|F
|G|\M(\pi)}=\foralli.\llbracket$\M(\piLi
```


- We look at each of these semantic equations in turn

Alan Mycroft

Hoare Logic and Model Checking

$$
\llbracket p \rrbracket_{M}(\pi)=p(\pi 0)
$$

- Assume $M=\left(S, S_{0}, R, L\right)$
- We have: $\llbracket p \rrbracket_{M}(\pi)=p \in L(\pi 0)$
- p is an atomic property, i.e. $p \in A P$
- $\pi: \mathbb{N} \rightarrow S$ so $\pi 0 \in S$
- $\pi 0$ is the first state in path π
- $p \in L(\pi 0)$ is true iff atomic property p holds of state $\pi 0$
- $\llbracket p \rrbracket_{M}(\pi)$ means p holds of the first state in path π
- $\mathrm{T}, \mathrm{F} \in A P$ with $\mathrm{T} \in L(s)$ and $\mathrm{F} \notin L(s)$ for all $s \in S$
- 【I $\rrbracket_{M}(\pi)$ is always true
- $\llbracket \mathrm{F} \rrbracket_{M}(\pi)$ is always false

$$
\begin{aligned}
& \llbracket \neg \phi \rrbracket_{M}(\pi)=\neg\left(\llbracket \phi_{M}(\pi)\right) \\
& \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)=\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi)
\end{aligned}
$$

- $\llbracket \neg \emptyset \rrbracket_{M}(\pi)=\neg\left(\mathbb{[} \phi \rrbracket_{M}(\pi)\right)$
- $\llbracket \neg \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \not \rrbracket_{M}(\pi)$ is not true
$-\llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)=\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi)$
- $\llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)$ true iff $\llbracket \phi_{1} \rrbracket M(\pi)$ is true or $\llbracket \phi_{2} \rrbracket \rrbracket_{M}(\pi)$ is true
- $\llbracket \mathbf{X} \phi \rrbracket_{M}(\pi)=\llbracket \not \subset \rrbracket_{M}(\pi \downarrow 1)$
- $\pi \downarrow 1$ is π with the first state chopped off $\pi \downarrow 1(0)=\pi(1+0)=\pi(1)$ $\pi \downarrow 1(1)=\pi(1+1)=\pi(2)$ $\pi \downarrow 1(2)=\pi(1+2)=\pi(3)$
- $\llbracket \mathbf{X} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting at the second state of π

$$
\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)=\forall i \cdot \llbracket \phi \rrbracket_{M}(\pi \downarrow i)
$$

- $\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)=\forall i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
- $\pi \downarrow i$ is π with the first i states chopped off
- $\llbracket \phi \rrbracket_{M}(\pi \downarrow i)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting i states along π
- $\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \phi \rrbracket_{M}$ true starting anywhere along τ
- "G ϕ " is read as "always ϕ " or "globally ϕ "
- $M \models \mathbf{A G} p$ defined earlier: $M \models \mathbf{A G} p \Leftrightarrow M \models \mathbf{G}(p)$
- \mathbf{G} is definable in terms of \mathbf{F} and $\neg: \mathbf{G} \phi=\neg(\mathbf{F}(\neg \phi))$

$$
\begin{aligned}
\llbracket \neg(\mathbf{F}(\neg \phi)) \rrbracket M(\pi) & =\neg\left(\llbracket \mathbf{F}(\neg \phi) \rrbracket_{M}(\pi)\right) \\
& =\neg\left(\exists i . \llbracket \neg \phi \rrbracket_{M}(\pi \downarrow i)\right) \\
& =\neg\left(\exists i . \neg\left(\llbracket \phi \rrbracket_{M}(\pi \downarrow i)\right)\right) \\
& =\forall i . \llbracket \phi \rrbracket_{M(\pi \downarrow i)} \\
& =\llbracket \mathbf{G} \phi \rrbracket M(\pi)
\end{aligned}
$$

- $\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)=\exists i . \llbracket \not \subset \rrbracket_{M}(\pi \downarrow i)$
- $\pi l i i$ is π with the first i states chopped off
$\pi \downarrow i(0)=\pi(i+0)=\pi(i)$
$\pi \downarrow i(1)=\pi(i+1)$
$\pi \downarrow i(2)=\pi(i+2)$
- $\llbracket \pitchfork \rrbracket \rrbracket(\pi \downarrow \mid i)$ true iff $\llbracket \phi \rrbracket \rrbracket_{M}$ true starting istates along π
- $\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)$ true iff $\llbracket \nmid \rrbracket_{M}$ true starting somewhere along π
- "F ϕ " is read as "sometimes ϕ "

$$
\llbracket\left[\phi_{1} \cup \phi_{2}\right] \rrbracket_{M}(\pi)=\exists i . \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi \downarrow j)
$$

- $\llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right] \rrbracket_{M}(\pi)=\exists i . \llbracket \phi_{2} \rrbracket_{M}\left(\pi L_{i}\right) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket_{M}(\pi J j)$
- $\llbracket \phi_{2} \rrbracket_{M}(\pi-i)$ true iff $\llbracket \phi_{2} \rrbracket_{M}$ true starting i states along π
- $\llbracket \phi_{1} \rrbracket_{M}(\pi-j)$ true iff $\llbracket \phi_{1} \rrbracket_{M}$ true starting j states along π
- $\llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right]_{M}(\pi)$ is true iff
$\llbracket \phi_{2} \rrbracket_{M}$ is true somewhere along π and up to then $\llbracket \phi_{1} \rrbracket_{M}$ is true
- "[$\left.\phi_{1} \mathbf{U} \phi_{2}\right]$ " is read as " ϕ_{1} until ϕ_{2} "
- \mathbf{F} is definable in terms of $[-\mathbf{U}-]: \mathbf{F} \phi=[\mathrm{T} \mathbf{U} \phi]$
$\llbracket\left[\mathbf{T} \quad \phi \rrbracket_{M}(\pi)\right.$
$=\exists i . \llbracket \phi \rrbracket M(\pi / i) \wedge \forall j . j<i \Rightarrow \llbracket T \rrbracket_{M}(\pi \mid j)$
$=\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow$ true
$=\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i) \wedge$ true
$=\exists i . \llbracket \phi \rrbracket_{M}(\pi L i)$
$=\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)$

Review of Linear Temporal Logic (LTL)

- Grammar of LTL formulae ϕ (slide 63)
$\phi \quad::=p$
| $\neg \phi$
$\phi_{1} \vee \phi_{2}$
$\mathbf{X} \phi$
F ϕ
$\mathbf{G} \phi$
(Negation)
(Disjunction)
(successor)
(sometimes)
(always)
(Until)
- $M \models \phi$ means ϕ holds on all M-paths
- $M=\left(S, S_{0}, R, L\right)$
- $\llbracket \phi \rrbracket_{M}(\pi)$ means ϕ is true on the M-path π
- $M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge$ Path $R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)$

Alan Mycrof
Hoare Logic and Model Checking

A property not expressible in LTL

- Let $A P=\{\mathrm{P}\}$ and consider models M and M^{\prime} below

s_{0}
$M=\left(\left\{s_{0}, s_{1}\right\},\left\{s_{0}\right\},\left\{\left(s_{0}, s_{0}\right),\left(s_{0}, s_{1}\right),\left(s_{1}, s_{1}\right)\right\}, L\right)$
$M^{\prime}=\left(\left\{s_{0}\right\},\left\{s_{0}\right\},\left\{\left(s_{0}, s_{0}\right)\right\}, L\right)$
where: $L=\lambda s$. if $s=s_{0}$ then $\}$ else $\{\mathrm{P}\}$
- Every M^{\prime}-path is also an M-path
- So if ϕ true on every M-path then ϕ true on every M^{\prime}-path
- Hence in LTL for any ϕ if $M \models \phi$ then $M^{\prime} \models \phi$
- Consider $\phi_{\mathrm{P}} \Leftrightarrow$ "can always reach a state satisfying P"
- ϕ_{P} holds in M but not in M^{\prime}
- but in LTL can't have $M \models \phi_{\square}$ and not $M^{\prime} \models \phi_{\square}$
- hence ϕ_{E} not expressible in LTL

LTL examples

- "DeviceEnabled holds infinitely often along every path" G(F DeviceEnabled)
- "Eventually the state becomes permanently Done"

F(G Done)

- "Every Req is followed by an Ack"
\mathbf{G} (Req $\Rightarrow \mathbf{F}$ Ack)
Number of Req and Ack may differ - no counting
- "If Enabled infinitely often then Running infinitely often" $\mathbf{G}(\mathbf{F}$ Enabled $) \Rightarrow \mathbf{G}(\mathbf{F}$ Running $)$
- "An upward-going lift at the second floor keeps going up if a passenger requests the fifth floor"

$$
\begin{aligned}
& \text { G(AtFloor } 2 \wedge \text { DirectionUp } \wedge \text { RequestFloor5 } \\
& \quad \Rightarrow \text { [DirectionUp U AtFloor5]) }
\end{aligned}
$$

LTL expressibility limitations

"can always reach a state satisfying P"

- In LTL $M \models \phi$ says ϕ holds of all paths of M
- LTL formulae ϕ are evaluated on paths path formulae
- Want also to say that from any state there exists a path to some state satisfying p
- $\forall s$. $\exists \pi$. Path $R s \pi \wedge \exists i . p \in L(\pi(i))$
- but this isn't expressible in LTL (see slide 75)

By contrast:

- CTL properties are evaluated at a state ... state formulae
- they can talk about both some or all paths
- starting from the state they are evaluated at

More Interesting Properties (2): CTL
Computation Tree Logic (CTL)

- LTL formulae ϕ are evaluated on paths path formulae
- CTL formulae ψ are evaluated on states .. state formulae
- Syntax of CTL well-formed formulae:
$\psi \quad::=$
(Atomic formula $p \in A P$)
$\mid \quad \neg \psi$
(Negation)
$\mid \psi_{1} \wedge \psi_{2}$
$\psi_{1} \vee \psi_{2}$
(Conjunction)
$\psi_{1} \Rightarrow \psi_{2}$
(Disjunction)
$\mathbf{A X} \psi$
(Implication)
$\mathbf{E X} \psi$
(All successors)
$\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$
(Some successors)
$\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$
(Until - along all paths)
(Until - along some path)
- (Some operators can be defined in terms of others)

Alan Mycroft
Hoare Logic and Model Checking

Semantics of CTL

- Assume $M=\left(S, S_{0}, R, L\right)$ and then define:

$$
\begin{aligned}
& \llbracket p \rrbracket_{M}(s) \\
& =p \in L(s) \\
& \llbracket \neg \psi \rrbracket \rrbracket_{M}(s) \\
& =\neg(\llbracket \psi \rrbracket M(s)) \\
& \llbracket \psi_{1} \wedge \psi_{2} \rrbracket_{M}(s) \quad=\llbracket \psi_{1} \rrbracket_{M}(s) \wedge \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(s) \quad=\llbracket \psi_{1} \rrbracket_{M}(s) \vee \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \psi_{1} \Rightarrow \psi_{2} \rrbracket_{M}(s) \quad=\llbracket \psi_{1} \rrbracket_{M}(s) \Rightarrow \llbracket \psi_{2} \rrbracket_{M}(s) \\
& \llbracket \mathbf{A} \mathbf{X} \psi \rrbracket_{M}(s) \quad=\forall s^{\prime} . R s s^{\prime} \Rightarrow \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
& \llbracket \mathbf{E X} \psi \rrbracket_{M}(s) \quad=\exists s^{\prime} . R s s^{\prime} \wedge \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right) \\
& \llbracket \mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2} \rrbracket_{M}(s)=\forall \pi \text {. Path } R s \pi\right. \\
& \begin{aligned}
& \Rightarrow \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \forall j . j<i \Rightarrow \llbracket \psi_{1} \rrbracket_{M}(\pi(j))
\end{aligned} \\
& \llbracket \mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right] \rrbracket_{M}(s)=\exists \pi \text {. Path } R s \pi \\
& \wedge \exists i . \llbracket \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \forall j . j<i \Rightarrow \llbracket \psi_{1} \rrbracket_{M}(\pi(j))
\end{aligned}
$$

77/127 Alan Mycroft

The defined operator AF

- Define $\mathbf{A F} \psi=\mathbf{A}[\mathbf{T} \mathbf{U} \psi]$
- AF ψ true at s iff ψ true somewhere on every \boldsymbol{R}-path from \boldsymbol{s}

$$
\begin{aligned}
\llbracket \mathbf{A F} \psi \rrbracket_{M}(s)= & \llbracket \mathbf{A}[\mathrm{T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \forall \pi . \text { Path } R s \pi \\
& \Rightarrow \\
& \exists i \cdot \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \mathrm{~T} \rrbracket_{M}(\pi(j)) \\
= & \forall \pi \cdot \\
& \quad \text { Path } R s \pi \\
& \exists i \cdot \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { true } \\
= & \forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator EF

- Define $\mathbf{E F} \psi=\mathbf{E}[\mathrm{T} \mathbf{U} \psi]$
- EF ψ true at s iff ψ true somewhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E F} \psi \rrbracket_{M}(s)= & \llbracket \mathbf{E}[\mathrm{T} \mathbf{U} \psi] \rrbracket_{M}(s) \\
= & \exists \pi . \text { Path } R s \pi \\
& \wedge \\
& \exists i . \llbracket \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket T \rrbracket_{M}(\pi(j)) \\
= & \exists \pi . \\
& \wedge \\
& \quad \text { Path } R s \pi \\
= & \exists \pi \psi \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \text { Path } R s \pi \wedge \exists i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- "can reach a state satisfying p " is EF p

Alan Mycroft
Hoare Logic and Model Checking
$81 / 27$

The defined operator EG

- Define $\mathbf{E G} \psi=\neg \mathbf{A F}(\neg \psi)$
- EG ψ true at s iff ψ true everywhere on some R-path from s

$$
\begin{aligned}
\llbracket \mathbf{E G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{A F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{A F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\forall \pi . \text { Path } \mathrm{s} \pi \Rightarrow \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\forall \pi . \text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \neg\left(\text { Path } R s \pi \Rightarrow \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \neg\urcorner \llbracket \psi \rrbracket_{M}(\pi(i)) \\
& =\exists \pi . \text { Path } R s \pi \wedge \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

The defined operator AG

- Define $\mathbf{A G} \psi=\neg \mathbf{E F}(\neg \psi)$
- AG ψ true at s iff ψ true everywhere on every R-path from s

$$
\begin{aligned}
\llbracket \mathbf{A G} \psi \rrbracket_{M}(s) & =\llbracket \neg \mathbf{E F}(\neg \psi) \rrbracket_{M}(s) \\
& =\neg\left(\llbracket \mathbf{E F}(\neg \psi) \rrbracket_{M}(s)\right) \\
& =\neg\left(\exists \pi . \text { Path } R \pi \wedge \exists i . \llbracket \neg \psi \rrbracket_{M}(\pi(i))\right) \\
& =\neg\left(\exists \pi . \text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg\left(\text { Path } R s \pi \wedge \exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \neg\left(\exists i . \neg \llbracket \psi \rrbracket_{M}(\pi(i))\right) \\
& =\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \neg \llbracket \llbracket \rrbracket_{M}(\pi(i)) \\
& \left.=\forall \pi . \neg \text { Path } R s \pi \vee \forall i . \llbracket \psi \rrbracket_{M(\pi)}(i)\right) \\
& =\forall \pi . \text { Path } R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- AG ψ means ψ true at all reachable states
- $\llbracket \mathrm{AG}(p) \rrbracket_{M}(s) \equiv \forall s^{\prime} . R^{*} s s^{\prime} \Rightarrow p \in L\left(s^{\prime}\right)$
- "can always reach a state satisfying p " is $\mathrm{AG}(E F p)$

Alan Mycroft
Hoare Logic and Model Checking
The defined operator $\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$

- A[$\left.\psi_{1} \mathbf{W} \psi_{2}\right]$ is a 'partial correctness' version of $\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$
- It is true at s if along all R-paths from s :
- ψ_{1} always holds on the path, or
- ψ_{2} holds sometime on the path, and until it does ψ_{1} holds
- Define

$$
\begin{aligned}
& \llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s) \\
& =\llbracket \neg \mathbf{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right)\right] \rrbracket_{M}(s) \\
& =\neg \llbracket \mathbf{E}\left[\left(\psi_{1} \wedge \neg \psi_{2}\right) \mathbf{U}\left(\neg \psi_{1} \wedge \neg \psi_{2}\right) \rrbracket_{M}(s)\right. \\
& =\neg(\exists \pi . \text { Path } R s \pi \\
& \wedge \\
& \quad \exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \\
& \quad \wedge \\
& \left.\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

- Exercise: understand the next two slides!
$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (1)
- Continuing:
$\neg(\exists \pi$. Path $R s \pi$
\wedge
$\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)$
$=\forall \pi$. \neg (Path Rs π

$$
\left.\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
$$

$=\forall \pi$. Path Rs π

$$
\Rightarrow
$$

$$
\neg\left(\exists i . \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \wedge \forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
$$

$=\forall \pi$. Path Rs π

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right), ~
\end{aligned}
$$

Sanity check: A[$\psi \mathbf{W}$ F] $=\mathbf{A G} \psi$

- From last slide:
$\left.\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]\right]_{M}(s)$
$=\forall \pi$. Path $R s \pi$

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
$$

- Set ψ_{1} to ψ and ψ_{2} to F :
$\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket{ }_{M}(s)$
$=\forall \pi$. Path Rs π

$$
\Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \wedge \neg F \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \vee F \rrbracket_{M}(\pi(i))
$$

- Simplify:
$\llbracket \mathbf{A}[\psi \mathbf{W} \mathrm{F}] \rrbracket_{M}(s)$

$$
=\forall \pi . \text { Path R } s \pi \Rightarrow \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(i))
$$

- By induction on i :
$\llbracket \mathbf{A}[\psi \mathbf{W} F] \rrbracket_{M}(s)=\forall \pi$. Path $R s \pi \Rightarrow \forall i . \llbracket \psi \rrbracket_{M}(\pi(i))$
- Exercises

1. Describe the property: $\mathbf{A}[\mathrm{T} \mathbf{W} \psi]$.
2. Describe the property: $\neg \mathbf{E}\left[\neg \psi_{2} \mathbf{U} \neg\left(\psi_{1} \vee \psi_{2}\right)\right]$.
3. Define $\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]=\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right] \vee \mathbf{E} \mathbf{G} \psi_{1}$.

Describe the property: $\underset{\text { Hoare Logic and Model Checking }}{\mathbf{E}}\left[\psi_{1} \mathbf{W} \psi_{2}\right] ?$
$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$ continued (2)

- Continuing:
$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i . \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i)) \vee \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right)
\end{aligned}
$$

$=\forall \pi$. Path $R s \pi$

$$
\Rightarrow \quad \forall i . \neg\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \vee \neg \llbracket \neg \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(i))
$$

$=\forall \pi$. Path $R s \pi$

$$
\begin{aligned}
& \Rightarrow \\
& \forall i .\left(\forall j . j<i \Rightarrow \llbracket \psi_{1} \wedge \neg \psi_{2} \rrbracket_{M}(\pi(j))\right) \Rightarrow \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(\pi(i))
\end{aligned}
$$

- Exercise: explain why this is $\llbracket \mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right] \rrbracket_{M}(s)$?
- this exercise illustrates the subtlety of writing CTL!

Alan Mycroft
Hoare Logic and Model Checking

Recall model behaviour computation tree

- Atomic properties are true or false of individual states
- General properties are true or false of whole behaviour
- Behaviour of (S, R) starting from $s \in S$ as a tree:

- A path is shown in red
- Properties may look at all paths, or just a single path
- CTL: Computation Tree Logic (all paths from a state)
- LTL: Linear Temporal Logic (a single path)

Summary of CTL operators (primitive + defined)

- CTL formulae:

p	(Atomic formula - $\boldsymbol{p} \in \mathrm{AP}$)
$\neg \psi$	(Negation)
$\psi_{1} \wedge \psi_{2}$	(Conjunction)
$\psi_{1} \vee \psi_{2}$	(Disjunction)
$\psi_{1} \Rightarrow \psi_{2}$	(Implication)
$\mathbf{A X} \psi$	(All successors)
$\mathbf{E X} \psi$	(Some successors)
$\mathbf{A F} \psi$	(Somewhere - along all paths)
$\mathbf{E F} \psi$	(Somewhere - along some path)
$\mathbf{A G} \psi$	(Everywhere - along all paths)
$\mathbf{E G} \psi$	(Everywhere - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]$	(Until - along some path)
$\mathbf{A}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along all paths)
$\mathbf{E}\left[\psi_{1} \mathbf{W} \psi_{2}\right]$	(Unless - along some path)

More CTL examples (1)

- $\mathbf{A G}($ Req $\Rightarrow(\neg$ Ack $\Rightarrow \mathbf{A X}(\mathbf{A}[$ Req U Ack] $]))$

Whenever Req is true and Ack is false then Ack will eventually become true and until it does Req will remain true
Exercise: is the $\mathbf{A X}$ necessary?

- $\mathbf{A G}($ Req $\Rightarrow \mathbf{A}[$ Req U Ack] $)$

If a request Req occurs, then it continues to hold, until it is eventually acknowledged

- $\mathbf{A G}(R e q \Rightarrow \mathbf{A X}(\mathbf{A}[\neg R e q \mathbf{U} A c k]))$

Whenever Req is true either it must become false on the next cycle and remains false until Ack, or Ack must become true on the next cycle Exercise: is the $\mathbf{A X}$ necessary?

Example CTL formulae

- EF(Started $\wedge \neg$ Ready)

It is possible to get to a state where Started holds but Ready does not hold

- $\mathbf{A G}($ Req $\Rightarrow \mathbf{A F A c k})$

If a request Req occurs, then it will eventually be acknowledged by Ack

- AG(AFDeviceEnabled)

DeviceEnabled is always true somewhere along every path starting anywhere: i.e. DeviceEnabled holds infinitely often along every path

- AG(EFRestart)

From any state it is possible to get to a state for which Restart holds
Can't be expressed in LTL!

Hoare Logic and Model Checking

More CTL examples (2)

- $\mathbf{A G}($ Enabled $\Rightarrow \mathbf{A G}($ Start $\Rightarrow \mathbf{A}[\neg$ Waiting \mathbf{U} Ack $]))$ If Enabled is ever true then if Start is true in any subsequent state then Ack will eventually become true, and until it does Waiting will be false
- AG $\left(\neg R_{1} q_{1} \wedge \neg R_{2} q_{2} \Rightarrow \mathbf{A}\left[\neg R_{1} q_{1} \wedge \neg R_{2} q_{2} \mathbf{U}\left(\right.\right.\right.$ Start $\left.\left.\left.\wedge \neg R e q_{2}\right)\right]\right)$

Whenever Req ${ }_{1}$ and Req_{2} are false, they remain false until Start becomes true with Req ${ }_{2}$ still false

- $\mathbf{A G}($ Req $\Rightarrow \mathbf{A X}($ Ack $\Rightarrow \mathbf{A F} \neg R e q))$

If Req is true and Ack becomes true one cycle later, then eventually Req will become false

Some abbreviations

- $\mathbf{A X}_{i} \psi \equiv \underbrace{\boldsymbol{A X}(\mathbf{A X}(\cdots(\mathbf{A X} \psi) \cdots))}_{i \text { instances of } \mathbf{A X}}$
ψ is true on all paths i units of time later
- $\mathbf{A B F}_{i . . j} \psi \equiv \mathbf{A X}_{i} \underbrace{(\psi \vee \mathbf{A X}(\psi \vee \cdots \mathbf{A X}(\psi \vee \mathbf{A X} \psi) \cdots))}_{j-i \text { instances of } \mathbf{A X}}$
ψ is true on all paths sometime between i units of time later and j units of time later
- $\mathbf{A G}\left(\right.$ Req $\Rightarrow \mathbf{A X}\left(\right.$ Ack $_{1} \wedge \mathbf{A B F}_{1 . .6}\left(\right.$ Ack $_{2} \wedge \mathbf{A}[$ Wait U Reply] $\left.\left.)\right)\right)$ One cycle after Req, Ack ${ }_{1}$ should become true, and then Ack k_{2} becomes true 1 to 6 cycles later and then eventually Reply becomes true, but until it does Wait holds from the time of Ack_{2}
- More abbreviations in 'Industry Standard' language PSL Alan Mycroft

Hoare Logic and Model Checking
$93 / 127$
CTL model checking: $p, \mathbf{A X} \psi, \mathbf{E X}_{\psi}$

- For CTL formula ψ let $\{\psi\}_{M}=\left\{s \mid \llbracket \psi \rrbracket_{M}(s)=\right.$ true $\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_{M}$
- $\{p\}=\{s \mid p \in L(s)\}$
- scan through set of states S marking states labelled with p
- $\{p\}$ is set of marked states
- To compute $\{\mathbf{A X} \psi\}$
- recursively compute $\{\psi\}$
- marks those states all of whose successors are in $\{\psi\}$
- $\left\{\mathbf{A} \mathbf{X}_{\psi}\right\}$ is the set of marked states
- To compute $\{\mathbf{E X} \psi\}$
- recursively compute $\{\psi\}$
- marks those states with at least one successor in $\{\psi\}$
- $\{\mathbf{E X} \psi\}$ is the set of marked states

Alan Mycroft
CTL model checking

- For LTL path formulae ϕ recall that $M \models \phi$ is defined by:
$M \models \phi \Leftrightarrow \forall \pi s . s \in S_{0} \wedge$ Path $R s \pi \Rightarrow \llbracket \phi \rrbracket_{M}(\pi)$
- For CTL state formulae ψ the definition of $M \models \psi$ is: $M \models \psi \Leftrightarrow \forall s . s \in S_{0} \Rightarrow \llbracket \psi \rrbracket_{M}(s)$
- M common; LTL, CTL formulae and semantics $\llbracket \rrbracket_{M}$ differ
- CTL model checking algorithm:
- compute $\left\{s \mid \llbracket \psi \rrbracket_{M}(s)=\right.$ true $\}$ bottom up
- check $S_{0} \subseteq\left\{s \mid \llbracket \psi \rrbracket_{M}(s)=\right.$ true $\}$
- symbolic model checking represents these sets as BDDs

CTL model checking: $\left\{\mathbb{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\},\left\{\left\{\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}\right.$

- To compute $\left\{\mathbf{E}\left[\psi_{1} \quad \mathbf{U} \psi_{2}\right]\right\}$
- recursively compute $\left\{\psi_{1}\right\}$ and $\left\{\psi_{2}\right\}$
- mark all states in $\left\{\psi_{2}\right\}$
- mark all states in $\left\{\psi_{1}\right\}$ with a successor state that is marked
- repeat previous line until no change
- $\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}$ is set of marked states
- More formally: $\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}=\bigcup_{n=0}^{\infty}\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{n}$ where:

$$
\begin{aligned}
& \left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{0}=\left\{\psi_{2}\right\} \\
& \left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]_{]_{n+1}}=\left\{\mathbf{E}\left[\begin{array}{lll}
\psi_{1} & \mathbf{U} & \psi_{2}
\end{array}\right]\right\}_{n}\right. \\
& \left\{s \in\left\{\psi_{1}\right\} \mid \exists s^{\prime} \in\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\}_{n} . R s s^{\prime}\right\}
\end{aligned}
$$

- $\left\{\mathbf{A}\left[\psi_{1} \quad \mathbf{U} \psi_{2}\right]\right\}$ similar, but with a more complicated iteration
- details omitted (see Huth and Ryan)

Example: checking EF p

- $\mathbf{E F p}=\mathbf{E}[\mathbf{T} \mathbf{U} p]$
- holds if ψ holds along some path
- Note $\{T\}=S$
- Let $\mathcal{S}_{n}=\{\mathbb{E}[\mathbf{T} \cup p]\}_{n}$ then:
$\mathcal{S}_{0}=\{\mathbf{E}[\mathrm{T} \mathbf{U}]\}_{0}$
$=\{p\}$
$=\{s \mid p \in L(s)\}$
$\mathcal{S}_{n+1}=\mathcal{S}_{n} \cup\left\{s \in\{T\} \mid \exists s^{\prime} \in\{\mathbf{E}[\mathbf{T} \cup p]\}_{n} . R s s^{\prime}\right\}$
$=\mathcal{S}_{n} \cup\left\{s \mid \exists s^{\prime} \in \mathcal{S}_{n} . R s s^{\prime}\right\}$
- mark all the states labelled with p
- mark all with at least one marked successor
- repeat until no change
- $\{E F p\}$ is set of marked states

RCV as a transition system

- Possible states for RCV:
$\{000,001,010,011,100,101,110,111\}$
where $b_{2} b_{1} b_{0}$ denotes state

$$
\text { dreq }=b_{2} \wedge \mathrm{q} 0=b_{1} \wedge \text { dack }=b_{0}
$$

- Graph of the transition relation:

Example: RCV

- Recall the handshake circuit:

- State represented by a triple of Booleans (dreq, q0, dack)
- A model of RCV is $M_{R C V}$ where:
$M=\left(S_{\mathrm{RCV}}, S_{\mathrm{ORCV}}, R_{\mathrm{RCV}}, L_{\mathrm{RCV}}\right)$
and
$R_{\text {RCV }}$ (dreq, q0, dack) (dreq' q0 $^{\prime}$, dack $\left.{ }^{\prime}\right)=$

$$
\left(q 0^{\prime}=\operatorname{dreq}\right) \wedge\left(\text { dack }^{\prime}=(\text { dreq } \wedge(q 0 \vee \text { dack }))\right)
$$

Computing $\left\{\mathbf{E F}\right.$ At 111\} where At $111 \in \operatorname{L}_{\mathrm{Rcv}}(s) \Leftrightarrow s=111$

- Define:

$$
\begin{aligned}
\mathcal{S}_{0} \quad & =\left\{s \mid A t 111 \in L_{\mathrm{RcV}}(s)\right\} \\
= & \{s \mid s=111\} \\
= & \{111\} \\
\mathcal{S}_{n+1}= & \mathcal{S}_{n} \cup\left\{s \mid \exists s^{\prime} \in \mathcal{S}_{n} \cdot \mathcal{R}\left(s, s^{\prime}\right)\right\} \\
= & \mathcal{S}_{n} \cup\left\{b_{2} b_{0} b_{0} \mid\right. \\
& \left.\exists b_{2}^{\prime} b_{1}^{\prime} b_{0}^{\prime} \in \mathcal{S}_{n} .\left(b_{1}^{\prime}=b_{2}\right) \wedge\left(b_{0}^{\prime}=b_{2} \wedge\left(b_{1} \vee b_{0}\right)\right)\right\}
\end{aligned}
$$

Computing \{EF At111\} (continued)

- Compute:

$$
\begin{aligned}
& \mathcal{S}_{0}=\{111\} \\
& \mathcal{S}_{1}=\{111\} \cup\{101,110\} \\
&=\{111,101,110\} \\
& \mathcal{S}_{2}=\{111,101,10\} \cup\{100\} \\
&=\{111,101,110,100\} \\
& \mathcal{S}_{3}=\{111,101,110,100\} \cup\{000,001,010,011\} \\
&=\{111,101,110,100,000,001,010,011\} \\
& \mathcal{S}_{n}=\mathcal{S}_{3} \quad(n>3) \\
& \quad \begin{array}{l}
\text { EFF }
\end{array} \\
&\text { At 111 }\}=\mathbb{B}^{3}=S_{\text {RCV }} \\
& M_{\text {RCV }}=\mathbf{E F} \text { At } 111 \Leftrightarrow S_{0_{\text {RCV }} \subseteq S}
\end{aligned}
$$

History of Model checking

- CTL model checking due to Emerson, Clarke \& Sifakis
- Symbolic model checking due to several people:
- Clarke \& McMillan (idea usually credited to McMillan's PhD)
- Coudert, Berthet \& Madre
- Pixley
- SMV (McMillan) is a popular symbolic model checker:

```
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
Cadence extension by McMillan http://nusmv.fbk.eu/ (new implementation)
```

- Other temporal logics
- CTL*: combines CTL and LTL
- Engineer friendly industrial languages: PSL, SVA
- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of $\{\psi\},\left\{\psi_{1}\right\},\left\{\psi_{2}\right\}$ are known, then:
- BDDs of $\{\neg \psi\},\left\{\psi_{1} \wedge \psi_{2}\right\},\left\{\psi_{1} \vee \psi_{2}\right\},\left\{\psi_{1} \Rightarrow \psi_{2}\right\}$ computed using standard BDD algorithms
- BDDs of $\left.\{\mathbf{A} \mathbf{X} \psi\},\{\mathbf{E} \mathbf{X} \psi\},\left\{\mathbf{A}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right\},\left\{\mathbf{E}\left[\psi_{1} \mathbf{U} \psi_{2}\right]\right]\right\}$ computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable-states iteration

Expressibility of CTL

- Consider the property
"on every path there is a point after which p is always true on that path "
- Consider
((\star) non-deterministically chooses T or F)

- Property true, but cannot be expressed in CTL
- would need something like $\mathbf{A F} \psi$
- where ψ is something like "property p true from now on"
- but in CTL ψ must start with a path quantifier A or E
- cannot talk about current path, only about all or some paths
- AF(AG p) is false (consider path s0 s0 s0 \cdots)

LTL can express things CTL can't

- Recall:
$\llbracket \mathbf{F} \phi \rrbracket_{M}(\pi)=\exists i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
$\llbracket \mathbf{G} \phi \rrbracket_{M}(\pi)=\forall i . \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
- $\operatorname{FG} \phi$ is true if there is a point after which ϕ is always true $\llbracket \mathbf{F} \mathbf{G} \phi \rrbracket_{M}(\pi)=\llbracket \mathbf{F}(\mathbf{G}(\phi)) \rrbracket_{M}(\pi)$

$$
\begin{aligned}
& =\exists m_{1} \cdot \llbracket \mathbf{G}(\phi) \rrbracket_{M}\left(\pi \downarrow m_{1}\right) \\
& =\exists m_{1} \cdot \forall m_{2} \cdot \llbracket \phi \rrbracket_{M}\left(\left(\pi \downarrow m_{1}\right) \downarrow m_{2}\right) \\
& =\exists m_{1} \cdot \forall m_{2} \cdot \llbracket \phi \rrbracket_{M}\left(\pi \downarrow\left(m_{1}+m_{2}\right)\right)
\end{aligned}
$$

- LTL can express things that CTL can't express
- Note: it's tricky to prove CTL can't express FG ϕ
- Both state formulae (ψ) and path formulae (ϕ)
- state formulae ψ are true of a state s like CTL
- path formulae ϕ are true of a path π like LTL
- Defined mutually recursively
$\psi::=p$
(Atomic formula)
(Negation)
$\psi_{1} \vee \psi_{2}$
(Disjunction)
$\mathbf{A} \phi$
(All paths)
$\phi \quad::=$
(Some paths)
(Every state formula is a path formula) $\neg \phi$
(Negation)
$\phi_{1} \vee \phi_{2} \quad$ (Disjunction)
$\mathbf{X} \phi \quad$ (Successor)
$\mathrm{F}_{\mathrm{F}} \quad$ (Sometimes)
G $\phi \quad$ (Always)
$\left[\phi_{1}\right.$ U ϕ_{2}] (Until)
- CTL is CTL* with $\mathbf{X}, \mathrm{F}, \mathrm{G},[-\mathbf{U}-]$ preceded by A or E
- LTL consists of CTL* formulae of form $\mathbf{A} \phi$, where the only state formulae in ϕ are atomic

CTL* semantics

- Combines CTL state semantics with LTL path semantics:

$$
\begin{aligned}
& \llbracket p \rrbracket_{M}(s) \quad=p \in L(s) \\
& \begin{array}{ll}
\llbracket \neg \psi \rrbracket_{M}(S) & =\neg\left(\llbracket \psi \rrbracket_{M}(S)\right) \\
\llbracket \psi_{1} \vee \psi_{2} \rrbracket_{M}(s) & =\llbracket \psi_{1} \rrbracket_{M}(s) \vee \llbracket \psi_{2} \rrbracket_{M}(s)
\end{array} \\
& \llbracket \mathbf{A} \phi \rrbracket_{M}(s) \quad=\forall \pi \text {. Path } R s \pi \Rightarrow \phi(\pi) \\
& \llbracket \mathbf{E} \phi \rrbracket_{M}(s) \quad=\exists \pi \text {. Path } R s \pi \wedge \llbracket \phi \rrbracket_{M}(\pi) \\
& \llbracket \psi \rrbracket_{M}(\pi) \quad=\llbracket \psi \rrbracket_{M}(\pi(0)) \\
& \llbracket \neg \phi \rrbracket_{M}(\pi) \quad=\neg\left(\llbracket \phi \rrbracket_{M}(\pi)\right) \\
& \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{M}(\pi)=\llbracket \phi_{1} \rrbracket_{M}(\pi) \vee \llbracket \phi_{2} \rrbracket_{M}(\pi) \\
& \llbracket \mathbf{X} \phi \rrbracket_{M}(\pi) \quad=\llbracket \phi \rrbracket_{M}(\pi \downarrow 1) \\
& \llbracket \mathbf{F} \phi \rrbracket_{M}(\pi) \quad=\exists m . \llbracket \phi \rrbracket_{M}(\pi \downarrow m) \\
& \llbracket \mathbf{G} \phi \rrbracket_{M}(\pi) \quad=\forall m . \llbracket \phi \rrbracket_{M}(\pi \downarrow m) \\
& \llbracket\left[\phi_{1} \mathbf{U} \phi_{2}\right] \rrbracket_{M}(\pi)=\exists i . \llbracket \phi_{2} \rrbracket_{M}(\pi \downarrow i) \wedge \forall j . j<i \Rightarrow \llbracket \phi_{1} \rrbracket M(\pi \nmid j)
\end{aligned}
$$

- Note $\llbracket \psi \rrbracket_{M}: S \rightarrow \mathbb{B}$ and $\llbracket \phi \rrbracket_{M}:(\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$

LTL and CTL as CTL*

- As usual: $M=\left(S, S_{0}, R, L\right)$
- If ψ is a CTL* state formula: $M \models \psi \Leftrightarrow \forall s \in S_{0} . \llbracket \psi \rrbracket_{M}(s)$
- If ϕ is an LTL path formula then: $M \models_{\llcorner\text {гц }} \phi \Leftrightarrow M \models_{\text {сть* }} \mathbf{A} \phi$
- If R is left-total ($\forall s . \exists s^{\prime} . R s s^{\prime}$) then (exercise): $\forall s s^{\prime} . R s s^{\prime} \Leftrightarrow \exists \pi$. Path $R s \pi \wedge\left(\pi(1)=s^{\prime}\right)$
- The meanings of CTL formulae are the same in CTL*

```
|A(X)
= \forall\pi. Path R s }\pi=>\llbracket\mp@subsup{\mathbf{X}}{\psi}{|}\mp@subsup{\rrbracket}{M}{}(\pi
= \forall\pi. Path R s }\pi=>\llbracket\psi\mp@subsup{\rrbracket}{M (\pi\downarrow1)}{
= \forall\pi. Path R s }\pi=>\llbracket\psi\rrbracketM ((\pi\downarrow1)(0)
= \forall\pi. Path R s }\pi=>\llbracket\psi\rrbracketM(\pi(1)
( }\psi\mathrm{ as path formula)
(}\psi\mathrm{ as state formula)
```

$\llbracket \mathbf{A} \mathbf{X} \psi \rrbracket_{M}(\mathbf{s})$
$=\forall s^{\prime} . R s s^{\prime} \Rightarrow \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right)$
$=\forall s^{\prime} .\left(\exists \pi\right.$. Path R $\left.s \pi \wedge\left(\pi(1)=s^{\prime}\right)\right) \Rightarrow \llbracket \psi \rrbracket M\left(s^{\prime}\right)$
$=\forall s^{\prime} . \forall \pi$. Path $R s \pi \wedge\left(\pi(1)=s^{\prime}\right) \Rightarrow \llbracket \psi \rrbracket_{M}\left(s^{\prime}\right)$
$=\forall \pi$. Path $R s \pi \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(1))$

Exercise: do similar proofs for other CTL formulae

Richer Logics than LTL and CTL

- Fairness is a tricky and subtle subject
- many kinds of fairness: 'weak fairness', 'strong fairness' etc
- exist whole books on fairness
- May want to assume system or environment is 'fair'
- Example 1: fair arbiter
the arbiter doesn't ignore one of its requests forever
- not every request need be granted
- want to exclude infinite number of requests and no grant
- Example 2: reliable channel no message continuously transmitted but never received
- not every message need be received
- want to exclude an infinite number of sends and no receive
- Consider:
p holds infinitely often along a path then so does q
- In LTL is expressible as $\mathbf{G}(\mathbf{F} p) \Rightarrow \mathbf{G}(\mathbf{F} q)$
- Can't say this in CTL
- why not - what's wrong with $\mathbf{A G}(\mathbf{A F} p) \Rightarrow \mathrm{AG}(\mathbf{A F} q)$?
- in CTL* expressible as $\mathbf{A}(\mathbf{G}(\mathbf{F} p) \Rightarrow \mathbf{G}(\mathbf{F} q))$
- fair CTL model checking implemented in checking algorithm
- fair LTL just a fairness assumption like $\mathbf{G}(\mathrm{F} p)=$
[Not examinable]

Richer Logics than LTL and CTL

- Propositional modal μ-calculus
- Industrial Languages, e.g. PSL
- Modal Logics, where modes can be other than time in temporal logic. Examples:
- Logics including possibility and necessity
- Logics of belief: " P believes that Q believes F "
- Logics of authentication, e.g. BAN logic

More information can be found under "Modal Logic",
"Doxastic logic" and "Burrows-Abadi-Needham logic" on Wikipedia.

PSL/Sugar

- Used for real-life hardware verification
- Combines together LTL and CTL
- SEREs: Sequential Extended Regular Expressions
- LTL - Foundation Language formulae
- CTL - Optional Branching Extension
- Relatively simple set of primitives + definitional extension
- Boolean, temporal, verification, modelling layers
- Semantics for static and dynamic verification (needs strong/weak distinction)
- You may learn more about this in System-on-Chip Design
- You may learn this in Topics in Concurrency
- μ-calculus is an even more powerful property language
- has fixed-point operators
- both maximal and minimal fixed points
- model checking consists of calculating fixed points
- many logics (e.g. CTL*) can be translated into μ-calculus
- Strictly stronger than CTL*
- expressibility strictly increases as allowed nesting increases
- need fixed point operators nested 2 deep for CTL*
- The μ-calculus is very non-intuitive to use!
- intermediate code rather than a practical property language
- nice meta-theory and algorithms, but terrible usability!

Bisimulation equivalence: general idea

- M, M^{\prime} bisimilar if they have 'corresponding executions'
- to each step of M there is a corresponding step of M^{\prime}
- to each step of M^{\prime} there is a corresponding step of M
- Bisimilar models satisfy same CTL* properties
- Bisimilar: same truth/falsity of model properties
- Simulation gives property-truth preserving abstraction (see later)

Bisimulation relations
Bisimulation equivalence: definition and theorem

- Let $M=\left(S, S_{0}, R, L\right)$ and $M^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right)$
- $M \equiv M^{\prime}$ if:
- there is a bisimulation B between R and R^{\prime}
- $\forall s_{0} \in S_{0} . \exists s_{0}^{\prime} \in S_{0}^{\prime} . B s_{0} s_{0}^{\prime}$
- $\forall s_{0}^{\prime} \in S_{0}^{\prime} . \exists s_{0} \in S_{0} . B s_{0} s_{0}^{\prime}$
- there is a bijection $\theta: A P \rightarrow A P^{\prime}$
- $\forall s s^{\prime}$. $B s s^{\prime} \Rightarrow L(s)=L^{\prime}\left(s^{\prime}\right)$
- Theorem: if $M \equiv M^{\prime}$ then for any CTL* state formula ψ : $M \models \psi \Leftrightarrow M^{\prime} \models \psi$
- See Q14 in the Exercises

Abstraction and Abstraction Refinement

Abstraction

- Abstraction creates a simplification of a model
- separate states may get merged
- an abstract path can represent several concrete paths
- $M \preceq \bar{M}$ means \bar{M} is an abstraction of M
- to each step of M there is a corresponding step of \bar{M}
- atomic properties of M correspond to atomic properties of M
- Special case is when \bar{M} is a subset of M such that:
- $\bar{M}=\left(\overline{S_{0}}, \bar{S}, \bar{R}, \bar{L}\right)$ and $M=\left(S_{0}, S, R, L\right)$
$\bar{S} \subseteq S$
$\overline{S_{0}}=S_{0}$
$\forall s s^{\prime} \in \bar{S} . \bar{R} s s^{\prime} \Leftrightarrow R s s^{\prime}$
$\forall s \in \bar{S} . \bar{L} s=L s$
- \bar{S} contain all reachable states of M $\forall s \in \bar{S} . \forall s^{\prime} \in S . R s s^{\prime} \Rightarrow s^{\prime} \in \bar{S}$
- All paths of M from initial states are \bar{M}-paths
- hence for all CTL formulae $\psi: \bar{M} \models \psi \Rightarrow M \models \psi$

Recall Jm1

Thread 1				Thread 2					
0 :	IF	THEN	LOCK:=1;	0 :		F LOCK=0	THEN		OCK:=1;
1:	X:			1:		: = ;			
2 :	IF	THEN	LOCK:=0;	2:	IF	F LOCK=1	THEN		OCK:=0;
3:				3:					

- Two program counters, state: $\left(p c_{1}, p c_{2}\right.$, lock, $\left.x\right)$
$S_{\text {JM1 }}=[0 . .3] \times[0 . .3] \times \mathbb{Z} \times \mathbb{Z}$

$$
\begin{array}{ll|ll}
R_{J M 1}\left(0, p c_{2}, 0, x\right) & \left(1, p c_{2}, 1, x\right) & R_{\text {JM1 }}\left(p c_{1}, 0,0, x\right) & \left(p c_{1}, 1,1, x\right) \\
R_{J M 1}\left(1, p c_{2}, l o c k, x\right) & \left(2, p c_{2}, l o c k, 1\right) & R_{J M 1}\left(p c_{1}, 1, l o c k, x\right) & \left(p c_{1}, 2, l o c k, 2\right. \\
R_{\text {JM1 }}\left(2, p c_{2}, 1, x\right) & \left(3, p c_{2}, 0, x\right) & R_{\text {JM1 }}\left(p c_{1}, 2,1, x\right) & \left(p c_{1}, 3,0, x\right)
\end{array}
$$

- Assume NotAt11 $\in L_{J M 1}\left(p c_{1}, p c_{2}\right.$, lock, $\left.x\right) \Leftrightarrow \neg\left(\left(p c_{1}=1\right) \wedge\left(p c_{2}=1\right)\right)$
- Model $M_{J M 1}=\left(S_{J M 1},\{(0,0,0,0)\}, R_{J M 1}, L_{J M 1}\right)$
- $S_{\text {JM1 }}$ not finite, but actually lock $\in\{0,1\}, x \in\{0,1,2\}$
- Clear by inspection that $M_{\text {Jм1 }} \preceq \bar{M}_{\text {JM1 }}$ where:
$\bar{M}_{\mathrm{JM} 1}=\left(\bar{S}_{\mathrm{JM} 1},\{(0,0,0,0)\}, \bar{R}_{\mathrm{JM} 1}, \bar{L}_{\mathrm{JM} 1}\right)$
$-\bar{S}_{\text {JM1 }}=[0 . .3] \times[0 . .3] \times[0 . .1] \times[0 . .2]$
- $\bar{R}_{\mathrm{JM} 1}$ is $R_{\mathrm{JM} 1}$ restricted to arguments from $\bar{S}_{\mathrm{JM} 1}$
- NotAt11 $\in \bar{L}_{\text {JM1 }}\left(p c_{1}, p c_{2}\right.$, lock, $\left.x\right) \Leftrightarrow \neg\left(\left(p c_{1}=1\right) \wedge\left(p c_{2}=1\right)\right)$
- \bar{L}_{JM1} is $L_{\mathrm{JM} 1}$ restricted to arguments from \bar{S}_{JM1}

Simulation preorder: definition and theorem

- Given two models $M=\left(S, S_{0}, R, L\right)$ and $\bar{M}=\left(\bar{S}, \overline{S_{0}}, \bar{R}, \bar{L}\right)$ we say M abstracts \bar{M}, written $M \preceq \bar{M}$, if:
- there is a simulation H between R and \bar{R}
- $\forall s_{0} \in S_{0} . \exists \overline{S_{0}} \in \overline{S_{0}} . H s_{0} \overline{S_{0}}$
- $\forall s \bar{s} . H s \bar{s} \Rightarrow L(s)=\bar{L}(\bar{s})$
- We define ACTL to be the subset of CTL without E-properties and with negation only applied to atomic properties.
- e.g. AG AFp - from anywhere can always reach a p-state
- useful for abstraction:
- Theorem: if $M \preceq \bar{M}$ then for any ACTL state formula ψ : $\bar{M} \models \psi \Rightarrow M \models \psi$
- BUT: if $\bar{M} \models \psi$ fails then cannot conclude $M \models \psi$ false
- Like abstract interpretation in Optimising Compilers
- Let $R: S \rightarrow S \rightarrow \mathbb{B}$ and $\bar{R}: \bar{S} \rightarrow \bar{S} \rightarrow \mathbb{B}$ be transition relations
- H is a simulation relation between R and \bar{R} if:
- H is a relation between S and \bar{S}-i.e. $H: S \rightarrow \bar{S} \rightarrow \mathbb{B}$
- to each step of R there is a corresponding step of \bar{R} - i.e.: $\forall s \bar{s} . H s \bar{s} \Rightarrow \forall s^{\prime} \in S . R s s^{\prime} \Rightarrow \exists \overline{s^{\prime}} \in \bar{S} . \bar{R} \bar{s} \overline{s^{\prime}} \wedge H s^{\prime} \overline{s^{\prime}}$
- Also need to consider abstraction of atomic properties
- $H_{A P}: A P \rightarrow \overline{A P} \rightarrow \mathbb{B}$
- details glossed over here

Example (Grumberg)

H RED STOP \wedge
H YELLOW GO H GREEN GO $H_{A P}:\{r, y, g\} \rightarrow\{r, y g\} \rightarrow \mathbb{B}$
$H_{A P} r r \wedge$
$H_{A P}$ y $y g \wedge$
$H_{A P} g y g$

- $\bar{M} \models$ AG AF $\neg r$ hence $M \models$ AG AF $\neg r$
- but $\neg(\bar{M} \models$ AG AF $r)$ doesn't entail $\neg(M \models \mathbf{A G} \mathbf{A F} r)$
- $\llbracket \mathrm{AG} \mathbf{A F} r \rrbracket_{\bar{M}}(S T O P)$ is false
(consider \bar{M}-path π^{\prime} where $\pi^{\prime}=$ STOP.GO.GO.GO....)
- $\llbracket \mathbf{A G} \mathbf{A F} r \rrbracket_{M}(R E D)$ is true
(abstract path π^{\prime} doesn't correspond to a real path in M)
- Counter Example Guided Abstraction Refinement

- Lots of details to fill out (several different solutions)
- how to generate abstraction
- how to check counterexamples
- how to refine abstractions
- Microsoft SLAM driver verifier is a CEGAR system

THE END

[^0]: [Acknowledgement: http://eelab.usyd.edu.au/digital_tutorial/part3/t-diag.htm]

