
10/12/16

1

Concurrent	systems
Lecture	2:	More	mutual	exclusion,	semaphores,

and	producer-consumer	relationships

Dr Robert	N.	M.	Watson

1

Reminder	from	last	time

• Definition	of	a	concurrent	system
• Origins	of	concurrency	within	a	computer
• Processes	and	threads
• Challenge:	concurrent	access	to	shared	
resources

• Mutual	exclusion,	race	conditions,	and	
atomicity

• Mutual	exclusion	locks	(mutexes)

2

10/12/16

2

From	last	time:	beer-buying	example

• Thread	1	(person	1)
1. Look	in	fridge
2. If	no	beer,	go	buy	beer
3. Put	beer	in	fridge	

• In	most	cases,	this	works	just	fine…
• But	if	both	people	look	(step	1)	before	either	refills	the	
fridge	(step	3)…	we’ll end	up	with	too	much	beer!

• Obviously	more	worrying	if	“look	in	fridge”	is	“check	
reactor”,	and	“buy	beer”	is	“toggle	safety	system” ;-)

• Thread	2	(person	2)
1. Look	in	fridge
2. If	no	beer,	go	buy	beer
3. Put	beer	in	fridge	

3

We	spotted	race	conditions	in	obvious	concurrent	implementations
Ad	hoc	solutions	(e.g.,	leaving	a	note)	failed

Even	naïve	application	of	atomic	operations	failed
Mutexes provide	a	general	mechanism	for	mutual	exclusion

From	last	lecture

This	time

• Implementing	mutual	exclusion
• Hardware	support	for	atomicity,	condition	
synchronisation

• Semaphores	for	mutual	exclusion,	condition	
synchronisation,	and	resource	allocation

• Two-party	and	generalised producer-
consumer	relationships

4

10/12/16

3

Implementing	mutual	exclusion

• Associate	a	mutual	exclusion	lock	with	each	
critical	section,	e.g.	a	variable	L
– (must	ensure	use	correct	lock	variable!)
ENTER_CS()	=	“LOCK(L)”
LEAVE_CS()	=	“UNLOCK(L)”

• Can	implement	LOCK()	using	read-and-set():

LOCK(L) {
while(!read-and-set(L))

; // do nothing
}

UNLOCK(L) {
L = 0;

}

5

From	last	lecture

Hardware	foundations	for	atomicity

• How	can	we	implement	atomic	read-and-set?
• Simple	pair	of	load	and	store	instructions	fail	the	
atomicity	test	(obviously	divisible!)

• Need	a	new	ISA	primitive	for	protection	against	
parallel	access	to	memory	from	another	CPU

• Two	common	flavours:
– Atomic	Compare	and	Swap	(CAS)
– Load	Linked,	Store	Conditional	(LL/SC)
– Atomic	conditionals:	if	a	race	is	lost,	software	will	retry

• NB:	May	need	to	disable	interrupts	(i.e.,	preemption)
– Typically	a	special	supervisor-only	instruction

6

10/12/16

4

Atomic	Compare	and	Swap	(CAS)
• Instruction	operands	memory	address,	prior	+	new	values

– If	prior	value	matches	in-memory	value,	new	value	stored
– If	prior	value	does	not	match	in-memory	value,	instruction	fails
– Software	checks	return	value,	can	loop	on	failure

• Found	on	CISC	systems	such	as	x86	(cmpxchg)
– Atomic	Test	and	Set	(TAS)	another	variation
– NB:	Also	added	to	recent	ARMv8	ISA	revision	– why?

7

mov %edx, 1 # New value -> register
spin:

mov %eax, [foo_lock] # Load prior value
test %eax, %eax # If non-zero (owned),
jnz spin # loop
lock cmpxchg [foo_lock], %edx # If *foo_lock == %eax,
test %eax, %eax # swap in value from
jnz spin # %edx; else loop

Load	Linked-Store	Conditional	(LL/SC)

• Found	on	RISC	systems	(MIPS,	Alpha,	ARM,	…)
– Load	value	from	memory	location	with	LL
– Manipulate	value	in	register	(e.g.,	add,	assign,	…)
– SC fails	if	memory	location	modified	since	LL
– SC writes	back	register	indicating	success	(or	not)
– Software	checks	return	value,	can	loop	on	failure

• Foundation	for	a	more	general	technique	seeing	early	
deployment:	Software	Transactional	Memory	(STM)

8

spin:
lld $t0, 0($a0) # Load prior value
bnez $t0, spin # If non-zero (owned), loop
dli $t0, 1 # New value (branch-delay slot)
scd $t0, 0($a0) # Conditional store to $a0
beqz $t0, spin # If failed ($t0 zero), loop
nop # Branch-delay slot

10/12/16

5

Mutual	exclusion	and	invariants
• One	important	goal	of	locking	is	to	avoid	exposing	
inconsistent	intermediate	states	to	other	threads

• This	suggests	a	more	general	invariants	strategy:
– Invariants	hold when	mutex is	acquired
– Invariants	may	be	violated	while	mutex is	held
– Invariants	must	be	restored	before	mutex is	released

• E.g.,	deletion	from	a	doubly	linked	list
– Invariant:	an	entry	is	in	the	list,	or	not	in	the	list
– Individually	non-atomic	updates	of	forward	and	backward	
pointers	around	a	deleted	object	are	fine	as	long	as	the	
lock	isn’t	released	in	between	the	two	pointer	writes

9A B C

Semaphores
• Even	with	atomic	operations,	busy	waiting	for	a	lock	is	

inefficient…
– Recall	from	last	lecture:	lock	contention
– Better	to	sleep	until	resource	available

• Dijkstra (THE,	1968)	proposed	semaphores
– New	type	of	variable
– Initialized	once	to	an	integer	value	(default	0)	

• Supports	two	operations:	wait() and	signal()
– Sometimes	called	down() and	up()
– (and originally called	P() and	V() ...	blurk!)

• Also	provides	condition	synchronisation
– Wake	up	another	waiting	thread	on	a	condition	or	event
– E.g.,	“There	is	an	item	available	for	processing	in	a	queue”

10

10/12/16

6

Semaphore	implementation

• Implemented	as	an	integer	and	a	queue	
wait(sem) {

if(sem > 0) {
sem = sem - 1;

} else suspend caller & add to queue for sem
}

signal(sem) {
if no threads are waiting {

sem = sem + 1;
} else wake up some thread on queue

}

• Method	bodies	are	implemented	atomically
• “suspend”	and	“wake”	invoke	threading	APIs

11

Hardware	support	for	wakeups:	IPIs

• CAS/LLSC/…	support	atomicity	via	shared	memory
• But	what	about	“wake	up	thread”?
– On	a	single CPU,	wakeup	triggers	context	switch
– How	to	wake	up	a	thread	on	another	CPU	that	is	already	
busy	doing	something	else?

• Inter-Processor	Interrupts	(IPIs)
– Wakeup	sends	an	interrupt	to	the	target	CPU
– IPI	handler	runs	thread	scheduler,	preempts	running	
thread,	triggers	context	switch

• Together,	shared	memory	and	IPIs	provide	atomicity
and	condition	synchronisation between	CPUs

12

10/12/16

7

Mutual	exclusion	with	a	semaphore

• Initialize	semaphore	to	1;	wait() is	lock(),	signal() is	unlock()

aSem

CS

A B

wait	(aSem)

wait	(aSem)

CS

1

0

1

0 B

C

wait	(aSem)0 B,	C

0 C

0 signal	(aSem)

signal	(aSem)

B		blocked

C		blocked

CS

signal	(aSem)

13

Condition	synchronisation

• Initialize	semaphore	to	0;	A	proceeds	only	after	B	signals

aSem
A B

wait	before	signal																																																		signal before	wait

0

wait	(aSem)

1
0 A

0

0 signal	(aSem)
0

A B

wait	(aSem)

signal	(aSem)

A	blocked “wake-up	waiting”

aSem

A	continues
A	continues

14

10/12/16

8

N-resource	allocation

• Suppose	there	are	N instances	of	a	resource
– e.g.	N printers	attached	to	a	DTP	system

• Can	manage	allocation	with	a	semaphore	sem,	
initialized	to	N	
– Anyone	wanting	printer	does	wait(sem)
– After	N people	get	a	printer,	next	will	sleep
– To	release	resource,	signal(sem)

• Will	wake	someone	if	anyone	is	waiting

• Will	typically	also	require	mutual	exclusion
– e.g.	to	decide	which	printers	are	free

15

Semaphore	design	patterns

• Semaphores	are	quite	powerful
– Can	solve	mutual	exclusion…	
– Can	also	provide	condition	synchronization

• Thread	waits	until	some	condition set	by	another	thread

• Let’s	look	at	some	examples:
1. One	producer	thread,	one	consumer	thread,	with	a	

N-slot	shared	memory	buffer
2. Any	number	of	producer	and	consumer	threads,		

again	using	an	N-slot	shared	memory	buffer
3. Multiple	reader,	single	writer	synchronization		

16

10/12/16

9

Producer-consumer	problem
• General	“pipe”	concurrent	programming	paradigm
– E.g.	pipelines	in	Unix;	staged	servers;	work	stealing;
download	thread	vs.	rendering	thread	in	web	browser

• Shared	buffer	B[]with	N slots,	initially	empty
• Producer	thread	wants	to:
– Produce	an	item
– If	there’s	room,	insert	into	next	slot;	
– Otherwise,	wait	until	there	is	room

• Consumer	thread	wants	to:	
– If	there’s	anything	in	buffer,	remove	an	item	(+consume	it)
– Otherwise,	wait	until	there	is	something

• Maintain	order,	use	parallelism,	avoid	context	switches
17

Producer-consumer	solution

// producer thread
while(true) {

item = produce();
if there is space {

buffer[in] = item;
in = (in + 1) % N;

}
}

// consumer thread
while(true) {

if there is an item {
item = buffer[out];
out = (out + 1) % N;

}
consume(item);

}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);

g h i j k l

out in0 N-1

buffer

18

10/12/16

10

Producer-consumer	solution

// producer thread
while(true) {

item = produce();
wait(spaces);

buffer[in] = item;
in = (in + 1) % N;

signal(items);
}

// consumer thread
while(true) {

wait(items);
item = buffer[out];
out = (out + 1) % N;

signal(spaces);
consume(item);

}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);

g h i j k l

out in0 N-1

buffer

19

Producer-consumer	solution

• Use	of	semaphores	for	N-resource	allocation
– In	this	case,	“resource”	is	a	slot	in	the	buffer
– “spaces”	allocates	empty	slots	(for	producer)
– “items”	allocates	full	slots	(for	consumer)

• No	explicitmutual	exclusion
– Threads	will	never	try	to	access	the	same	slot	at	
the	same	time;	if	“in	==	out”	then	either
• buffer	is	empty	(and	consumer	will	sleep	on	‘items’),	or
• buffer	is	full	(and	producer	will	sleep	on	‘spaces’)

20

10/12/16

11

Generalized	producer-consumer

• Previously	had	exactly	one	producer	thread,	
and	exactly	one	consumer	thread

• More	generally	might	have	many	threads	
adding	items,	and	many	removing	them

• If	so,	we	do	need	explicit	mutual	exclusion
– e.g.	to	prevent	two	consumers	from	trying	to	
remove	(and	consume)	the	same	item

• Can	implement	with	one	more	semaphore…

21

Generalized	P-C	solution

• Exercise:	allow	1	producer	and	1	consumer	concurrent	access

// producer threads
while(true) {

item = produce();
wait(spaces);
wait(guard);

buffer[in] = item;
in = (in + 1) % N;

signal(guard);
signal(items);

}

// consumer threads
while(true) {

wait(items);
wait(guard);

item = buffer[out];
out = (out + 1) % N;

signal(guard);
signal(spaces);
consume(item);

}

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(1); // for mutual exclusion

22

10/12/16

12

Semaphores:	summary

• Powerful	abstraction	for	implementing	
concurrency	control:
– mutual	exclusion	&	condition	synchronization

• Better	than	read-and-set()…	but correct	use	
requires	considerable	care	
– e.g.	forget	to	wait(),	can	corrupt	data
– e.g.	forget	to	signal(),	can	lead	to	infinite	delay
– generally	get	more	complex	as	add	more	semaphores

• Used	internally	in	some	OSes and	libraries,	but	
generally	deprecated	for	other	mechanisms…

23

Summary	+	next	time
• Implementing	mutual	exclusion:	hardware	support	for	

atomicity	and inter-processor	interrupts
• Semaphores	for	mutual	exclusion,	condition	

synchronisation,	and	resource	allocation
• Two-party	and	generalised producer-consumer	

relationships
• Starvation and	fairness

• Next	time:
– Conditional	critical	regions	(CCRs);	Monitors
– Condition	variables;	signal-and-wait	vs.	signal-and-continue
– Concurrency	in	practice;	concurrency	primitives	wrap-up

24

