
Complexity Theory

Notes for a course of lectures for students of Part 1B of the Computer Science Tripos.

Anuj Dawar

University of Cambridge Computer Laboratory

William Gates Building

JJ Thomson Avenue
Cambridge CB3 0FD.

Easter 2017

Texts

The main texts for the course are:

1. Computational Complexity. Christos H. Papadimitriou.

2. Introduction to the Theory of Computation. Michael Sipser.

Papadimitriou’s textbook is now over twenty years old, but remains the standard textbook
at this level. It covers everything we will do in this course and much more. The notation and
concepts we follow in the course are mainly taken from here. Sipser’s book is shorter but
covers a wider range of material (including elements of computation theory, regular languages
and grammars) but in less depth. It contains very accessible coverage of the topics covered
in this course.

Other useful references include:

3. Computers and Intractability: A guide to the theory of NP-completeness. Michael R.
Garey and David S. Johnson.

4. P, NP and NP-completeness. Oded Goldreich.

5. Computability and Complexity from a Programming Perspective. Neil Jones.

The book by Garey and Johnson is a classic. It was the first book on the subject of complexity
theory when the topic first emerged in the 1970s. It is memorable for its long (and in
the 1970s, comprehensive) list of known NP-complete problems which remains a valuable
reference. The book by Goldreich is a more recent book focussing on specifically on the
complexity classes P, NP and the notion of NP-completeness. These topics are the central
part of the present course (though not all of it), and the book provides an interesting personal
perspective on them. The book by Jones provides an alternative view with an emphasis on
complexity as it relates to programming, getting away from the abstract machine classes. It
is a useful reference for the perspective it affords.

Course Outline

The following is a rough lecture-by-lecture guide, with relevant sections from the text by
Papadimitriou (or Sipser, where marked with an S).

• Algorithms and problems. 1.1–1.3.

• Time and space. 2.1–2.5, 2.7.

• Time Complexity classes. 7.1, S7.2.

• Nondeterminism. 2.7, 9.1, S7.3.

• NP-completeness. 8.1–8.2, 9.2.

1

• Graph-theoretic problems. 9.3

• Sets, numbers and scheduling. 9.4

• coNP. 10.1–10.2.

• Cryptographic complexity. 12.1–12.2.

• Space Complexity 7.1, 7.3, S8.1.

• Hierarchy 7.2, S9.1.

• Descriptive Complexity 5.7, 8.3.

2

Algorithms and Problems

The aim of complexity theory is to understand what makes certain problems difficult to
solve algorithmically. When we say that a problem is difficult, we mean not that it is hard
to come up with an algorithm for solving a problem, but that any algorithm we can devise is
inefficient, requiring inordinate amount of resources such as time and memory space. In this
course, we aim at a theoretical understanding of why some problems appear to be inherently
difficult.

The course builds upon Algorithms, where we saw how one measures the complexity of
algorithms by asymptotic measures of the number of steps the algorithm takes. It also builds
on Computation Theory, where we saw a formal, mathematical model of the concept of
algorithm, which allows us to show that some problems (such as the Halting Problem) are
not solvable at all algorithmically. We now wish to look at problems which are solvable (in
the sense of computation theory) in that there is an algorithm, but they are not practically
solvable because any algorithm is extremely inefficient. To start to make these notions
precise, we look at a specific, familiar problem, whose analysis we have seen before.

Sorting

Consider the statement.

Insertion Sort runs in time O(n2).

This is shorthand for the following statement:

If we count the number of steps performed by the Insertion Sort algorithm on an
input of size n, taking the largest such number from among all inputs of that size,
then the function of n so defined is eventually bounded by a constant multiple of
n2.

More formally, we define the notation O, Ω and θ as follows:
Definition
For functions f : IN→ IN and g : IN→ IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for all n > n0, f(n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for all n > n0, f(n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

This allows us to compare algorithms. Thus, if we consider that the running time of
Insertion Sort is also Ω(n2), then the statement

Merge Sort is an O(n logn) algorithm.

tells us that Merge Sort is an asymptotically faster algorithm than Insertion Sort. Whatever
other constant factors might be involved, any implementation of the former will be faster
than any implementation of the latter, for sufficiently large lists.

3

However, the question we are interested in is: what is the complexity of the sorting
problem? That is, what is the running time complexity of the fastest possible algorithm for
sorting a list? The analysis of Merge Sort tells us that this is no worse than O(n logn). In
general, the complexity of a particular algorithm establishes an upper bound on the complex-
ity of the problem that the algorithm solves. To establish a lower bound we need to show
that no possible algorithm, including those as yet undreamed of, can do better. This is a
much harder task, in principle, and no good general purpose methods are known.

The case of the sorting problem is an exception, in that we can actually prove a lower
bound of Ω(n log n), showing that Merge Sort is asymptotically optimal.

Lower Bound. We will now establish the lower bound on the complexity of the sorting
problem. That is, we aim to show that, for any algorithm A which sorts a list of numbers, the
worst case running time of A on a list of n numbers is Ω(n log n). We make no assumptions
about the algorithm A other than it sorts a list of numbers, and makes its decisions on the
basis of comparisons between numbers.

Suppose the algorithm sorts a list of n numbers a1, . . . , an. We can assume, without
loss of generality, that the numbers are all distinct. Thus, whenever two numbers ai and
aj are compared, the outcome is exactly one of the two possibilities: ai < aj or aj < ai.
When sorting the list of numbers a1, . . . , an, the algorithm A must reach its first decision
point, which involves the comparison of two numbers ai and aj . Based on the result of
this comparison, the algorithm will take one of two different branches, each of which may
eventually lead to another comparison, and so on. Thus, the entire computation of the
algorithm A can be represented as a tree (see Figure 1).

done done done done done

ai < aj?

ak < al?
ap < aq?

ar < as?.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1: The computation tree for a sorting algorithm

The leaves of the tree represent a completed computation. How many leaves are there?
We know that there are n! different ways that the initial collection of n numbers could have
been presented to the algorithm. Each of these must lead to a different branch through the
computation tree. If this were not the case, we could find two different orderings of the same
list, on which the algorithm performed exactly the same actions. Thus, the algorithm would
incorrectly sort at least one of them. We conclude that the computation tree must have at
least n! leaves.

4

A binary tree with n! leaves must have height at least log2(n!). However, log(n!) =
θ(n log n), establishing the result we wished to show. To see that log(n!) = θ(n log n), note
the following inequalities:

log(n!) = log(n · (n− 1) · · ·1) = log(n) + log(n− 1) + · · ·+ log(1)
< log(n) + log(n) + · · ·+ log(n) = n logn

and

log(n!) = log(n · (n− 1) · · ·1) > log(n) + log(n− 1) + · · ·+ log(n/2)
> log(n/2) + log(n/2) + · · ·+ log(n/2) = (n/2) log(n/2)

The Travelling Salesman Problem The travelling salesman problem is defined as fol-
lows:

Given a set V of vertices, along with a cost matrix, which is defined as a function
c : V ×V → IN, giving for each pair of vertices a positive integer cost, the problem
is to find an ordering of the vertices v1, . . . , vn for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.

An obvious algorithm to solve the above problem is to try all possible orderings of the
set of vertices, and compute the total cost for each one, finally choosing the one with the
lowest cost. Since there are are n! possible orderings, the running time of the algorithm is at
least n!. There are somewhat better algorithms known, but they still have exponential time
complexity.

In order to prove a lower bound on the complexity of the travelling salesman problem, we
can carry out an analysis similar to the one given above for the sorting problem. That is, we
can consider the computation tree of an arbitrary algorithm for solving this problem. Once
again we see that there must be at least one branch in the computation tree corresponding
to every possible ordering of the vertices. Thus, the computation tree must have at least
n! leaves and therefore the running time of the algorithm is Ω(n log n). However, this is a
far cry from the best known upper bound, which is O(n22n). The gap between these two
bounds sums up our state of knowledge (or lack of it) on the complexity of the travelling
salesman problem. Indeed, it is emblematic of our state of knowledge of the complexity of
many combinatorial problems.

Formalising Algorithms

As we have seen, one of the aims of complexity theory is to establish lower bounds on the
complexity of problems, not just specific algorithms. To do this, we have to be able to say
something about all algorithms for solving a particular problem. In order to say something

5

about all algorithms, it is useful to have a precise formal model of an algorithm. Fortunately,
we have one at hand, introduced in Computation Theory for exactly this purpose. It is the
Turing machine.

One important feature of the Turing machine as a formalisation of the notion of an
algorithm is that it is simple. Algorithms are composed of very few possible moves or
instructions. While this simplicity means it is not a formalism we would actually like to use
to express algorithms, it does make proofs about all algorithms easier, as there are fewer
cases to consider. By equivalence results we can prove, we can then be confident that the
proofs apply equally well to other models of computation we can construct.

Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ— a finite set of symbols, disjoint from Q and including a distinguished blank symbol
⊔ and a distinguished left-end marker ⊲;

• s ∈ Q — an initial state;

• δ : (Q× Σ)→ Q ∪ {acc, rej} × Σ× {L,R, S}
A transition function that specifies, for each state and symbol a next state (or accept
acc or reject rej), a symbol to overwrite the current symbol, and a direction for the
tape head to move (L – left, R – right, or S - stationary), with the proviso that for
any q, δ(q, ⊲) = (q′, ⊲, R) for some q′.

Informally, this is usually pictured as a box containing a finite state control, which can
be in any of the states in Q, a tape (infinite in one direction), containing a finite string
of symbols from Σ, and a read/write head pointing at a position in the tape. A complete
snapshot of the machine at a moment in time can be captured if we know three things—the
state of the control, the contents of the tape, and the position on the tape at which the head
is pointing. We choose to represent this information as the following triple:
Definition
A configuration is a triple (q, w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q, w, u) represents a machine in state q with the string wu on
its tape, and the head pointing at the last symbol in w. The configuration of a machine
determines its future behaviour.

Computation We think of a Turing machine as performing a computation by proceeding
through a series of configurations. The transition from one configuration to the next is
specified by the transition function δ. Formally,

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q, w, u) yields in

one step (q′, w′, u′), written

(q, w, u)→M (q′, w′, u′)

6

if

• w = va ;

• δ(q, a) = (q′, b, D); and

• either D = L and w′ = v u′ = bu
or D = S and w′ = vb and u′ = u
or D = R and w′ = vbc and u′ = x, where u = cx. If u is empty, then
w′ = vb⊔ and u′ is empty.

The relation →⋆
M is the reflexive and transitive closure of →M . That is, for any two

configurations c and c′, we have c →⋆
M c′ if the machine M can go from configuration c to

configuration c′ in 0 or more steps.
A computation of the machine M is a sequence of configurations c1, . . . , cn such that

ci →M ci+1 for each i.
Each machine M defines a language L(M) ⊆ Σ⋆ which it accepts. This language is

defined by:
L(M) = {x | (s, ⊲, x)→⋆

M (acc, w, u) for some w and u}
Here, ⊲ is a special symbol to denote the left end of the machine tape. By definition, this

symbol which cannot be overwritten by any other symbol, and when the head is reading ⊲,
it cannot move further to the left. We always assume that the string x does not contain any
occurrences of ⊲ or ⊔.

So, L(M) is the set of strings x such that if the machine M is started with the string
x on the input tape, it will eventually reach the accepting state acc. Note that the strings
excluded from L(M) include those which cause the machine to reach the rejecting state as
well as those which cause it to run forever. Sometimes it is useful to distinguish between
these two cases. We will use the following definition:

A machineM is said to halt on input x if there are w and u such that (s, ⊲, x)→⋆
M

(acc, w, u) or (s, ⊲, x)→⋆
M (rej, w, u)

We recall a few further definitions regarding languages that are accepted by some ma-
chine.
Definition

• A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some M .

• A language L is decidable if it is L(M) for some machineM which halts on every input.

• A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M , such that for all x,
(s, ⊲, x)→⋆

M (acc, f(x), ε)

where ε denotes the empty string. Recursively enumerable languages are also called semi-

decidable as there is a machine that will confirm membership for any string that is in the
language but may not halt on strings not in the language.

7

An example of a language that is recursively enumerable but not decidable is the Halting
Problem H . To be precise, we fix a representation of Turing machines as strings over the
alphabet {0, 1} (known as a Gödel numbering). If [M] denotes the string representing a
machine M , then Halting Problem H is defined as the language:

H = {[M], x |M halts on input x}.

An example of a language that is not recursively enumerable is the complement of H ,
denoted H̄:

H̄ = {[M], x |M does not halt on input x}.

Example Consider the machine with δ given by:

⊲ 0 1 ⊔

s s, ⊲, R rej, 0, S rej, 1, S q,⊔, R
q rej, ⊲, R q, 1, R q, 1, R q′, 0, R
q′ rej, ⊲, R rej, 0, S q′, 1, L acc,⊔, S

This machine, when started in configuration (s, ⊲,⊔1n0) eventually halts in configuration
(acc, ⊲ ⊔ 1n+10⊔, ε). To see this, note that the machine, starting in state s, will move to the
right and change state to q when it sees the blank. It will then leave all 1s unchanged as it
continues to move to the right in state q, until it encounters the 0, which will be replaced
with a 1. When it next encounters a blank, it changes state to q′, changes the blank to 0
and moves again to the right, which, as the next symbol is again blank, triggers a transition
to acc.

Our formal treatment of Turing machines can be extended easily to machines that have
multiple tapes. We only give a brief indication here of how it would be done. For instance,
if we have a machine with k tapes, we would specify it by:

• Q, Σ, s; and

• δ : (Q× Σk)→ Q ∪ {acc,rej} × (Σ× {L,R, S})k

That is, a transition is determined by the state and the k symbols that are under the k tape
heads. Moreover, the transition determines the new state, the k symbols to be written on
the tapes, and a direction for each tape head to move.

Similarly, to specify a configuration, we would need to specify the state, the contents of
all k tapes, and the positions of all k tape heads. This can be captured by a 2k+ 1 tuple as
follows:

(q, w1, u1, . . . , wk, uk).

It is known that any language that is accepted by a k-tape Turing machine is also accepted
by a one tape Turing machine.

8

Complexity

For any machine M which halts on all inputs, we define the running time of M to be the
function r : IN→ IN such that r(n) is the length of the longest accepting computation of M
on an input of length n.

For any function f : IN → IN we say that a language L is in TIME(f(n)) if there is a
machine M such that

• L = L(M); and

• the running time of M is O(f(n)).

In short, TIME(f(n)) is the set of all languages accepted by some machine with running time
O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a machine which uses
at most O(f(n)) tape cells on inputs of length n. In defining space complexity, we assume
a machine M , which has a read-only input tape, and separate work tapes. We only count
cells on the work tapes towards the complexity. That is to say that a language L is in
SPACE(f(n)) if it is L(M) for a two-tape machine M such that every transition of M leaves
the symbol on the first machine unchanged, and in any accepting computation of M on an
input of length n, the tape head on the second tape is never more than O(f(n)) cells from
the start symbol.

In general, not only can a single tape Turing machine simulate any other model of compu-
tation (multi-tape Turing machines, Random Access Machines, Java programs, the lambda
calculus, etc.), but it can do so efficiently. That is, the simulation can be carried out by a
Turing machine with only a polynomial factor increase in time and space complexity. This
leads one to what is sometimes called the strong form of the Church-Turing thesis:

Any two reasonable models of computation are polynomially equivalent, that is
each can simulate the other within a polynomial factor of complexity.

There are, however, unreasonable models of computation, where it is not clear that a
polynomial time simulation is possible. One such, for which we would dearly like to know
whether or not it can be simulated with a polynomial time factor is the nondeterministic

Turing machine.

Nondeterminism If, in the definition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a nondeterministic Turing

machine.
δ ⊆ (Q× Σ)× (Q ∪ {acc,rej} × Σ× {R,L, S}).

The notion of a configuration is unchanged. The state q, and the contents of the tape wu,
with the position of the head given by the last symbol in w still give a snapshot of the machine.
However, it is no longer the case that the configuration completely determines the future
behaviour of the machine. More precisely, the yields relation →M between configurations
is no longer functional. For a given configuration (q, w, u), there may be more than one
configuration (q′, w′, u′) such that (q, w, u)→M (q′, w′, u′).

9

We still define the language accepted by M by:

L(M) = {x | (s, ⊲, x)→⋆
M (acc, w, u) for some w and u.}

That is, it is the set of strings x for which there is some computation going from the starting
configuration to an accepting configuration. It may, however, be the case that for some x in
the language, there are other computations that lead to rejection, or that do not halt at all.

The computation of a nondeterministic machine, starting on a string x can be pictured
as a tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)
(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

Figure 2: Nondeterministic computation

We say that the machine accepts the string x if there is any path in the tree that leads
to an accepting configuration. Conversely, the machine does not accept x if all paths either
lead to a rejecting state or are infinite.

A deterministic Turing machine can simulate a nondeterministic one, essentially by car-
rying out a breadth-first search of the computation tree, until an accepting configuration is
found. Thus, for any nondeterministic machine M , there is a deterministic machine which
accepts exactly the language L(M). However, it is not clear that this simulation can be
carried out in polynomial time. To say that a nondeterministic machine runs in polynomial
time is to say that the height of the computation tree on input string x is bounded by a
polynomial p(|x|), in |x|—the length of x. However, the time required by a deterministic
algorithm to carry out a breadth first search of a tree of height p(|x|) is O(2cp(|x|)), for some
constant c.

Decidability and Complexity It is fairly straightforward to note that every decidable
language has a time complexity in the sense that, if L is decidable, there is a computable

function f such that L ∈ TIME(f(n)). To see this, take a machine M such that L = L(M)
and such that M halts on all inputs, and take f to be the function that maps n to the
maximum number of steps taken by M on any string x ∈ L of length n. To see that f
is computable, note that we can construct an algorithm which given an input number n,
simulates M on all possible strings of length n. Since we know that M halts on all inputs,
this process eventually terminates, and we can calculate the maximum number of steps taken
by M on any of the inputs.

We could well ask if this might be true for all semi-decidable language. Suppose L
is recursively enumerable but not decidable. So, there is a Turing machine M such that
L = L(M), though M might not halt on inputs not in L. So, there is still a well-defined

10

function f which maps n to the maximum over all strings x in L of length n of the number
of steps taken by M to accept x. However, we can show that f cannot be a computable
function. We can say more: there is no computable function g such that f = O(g). To see
why this is the case, suppose there were a computable function f such that for every x ∈ L
of length n, M accepts x in at most f(n) steps. We can then construct a machine M ′ that
accepts L and always halts, as follows. M ′, on input x, takes the length n of x and computes
f(n). M ′ then simulates M on input x for f(n) steps, counting them along the way. If the
simulation results in acceptance, M ′ accepts the input. However, if the simulation results in
rejection, or the computation has not been completed in f(n) steps, x is rejected. Thus, M ′

halts on all inputs, and accepts exactly the strings that M accepts, which is a contradiction,
since we assumed that L is not decidable.

In other words, we have just shown that, for any semi-decidable (but not decidable)
language L, the running time of a machine M accepting L cannot be bounded above by any
computable function.

Complexity Classes

A complexity class is a collection of languages. We determine a complexity class by specifying
three things:

1. A model of computation (such as a deterministic Turing machine, or a nondeterministic
Turing Machine, or a parallel Random Access Machine).

2. A resource (such as time, space or number of processors).

3. A set of bounds. This is a set of functions that are used to bound the amount of
resource we can use.

What resources it is reasonable to consider depends on the model of computation we have
chosen. We will, in general, consider Turing machines (either deterministic or nondetermin-
istic). The resources we are primarily concerned with are time (which means the number of
steps in a computation), and space, which means the maximum number of tape cells used in
a computation. Many other models of computation allow similar notions of time and space
to be defined. For instance, on a register machine, one could define space as the number
of registers used, though a more reasonable measure might be to count the number of bits
required to represent the numbers stored in the registers. Time could still be defined as the
number of steps in the computation.

As long as we are considering deterministic machines, if we choose our set of functions
(in item 3) to be broad enough, the languages that are included in the complexity class do
not depend on the particular model of computation. So, if we take the collection of functions
to be the set of all polynomials, it does not matter whether we consider Turing machines
or register machines, we get the same class of languages either way. This is not the case if
we take the class of all linear functions. So, whether or not a language is decidable in linear
time is not just a property of the language, but is sensitive to the model of computation.
However, it is reasonable to say that whether or not a language is decidable in polynomial
time is a property of the language itself, much like the property of being decidable itself.

11

This leads us to the first important complexity class we will be studying:

P =
∞
⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.
We identify this class of problems as those that we consider to be feasibly computable.

That is, if we show that a particular language L is in this class, we say that L is feasible or
tractable. Similarly, if we can prove that a language L is not in P, we say that L is intractable.
One might argue whether or not this is a reasonable definition. After all, an algorithm that
runs in time θ(n100) would hardly be regarded as efficient. On the other hand, there are
algorithms whose worst-case running time is provably exponential but which are commonly
used in practice and work quite well (for instance, the worst-case may simply not commonly
arise).

Our reason for adopting polynomial time as our standard of feasibility is that it is a
robustly and precisely defined class that lends itself to a thorough theoretical analysis. The
development of a deep theory around this formal notion of feasibility gives us great insight
into what makes certain problems more complex than others. This theoretical insight is
then of great value in dealing with a large number of practical problems, and we would be
deprived of the theory if we did not allow ourselves a simplifying definition of feasibility.

12

Example Problems

In this section we will look at a few classical decision problems with well-known algorithms.
While the algorithms themselves are not difficult to analyse, our aim is to classify the com-
plexity of the problem itself. The problems are chosen to represent a variety of different
domains—graphs, numbers, Boolean expressions—and as we will see, they can stand in (in
a very precise sense) for all members of a complexity class.

While we formally defined decision problems to be sets of strings, the example problems
below may be sets of numbers or graphs or other kinds of objects. They can always be
coded as sets of strings for formal purposes but at the informal level at which we define the
algorithms, we leave out details of the coding.

Reachability

The Reachability problem is defined as the problem where, given as input a directed graph
G = (V,E), and two nodes a, b ∈ V we are to decide whether there is a path from a to b
in G. A straightforward algorithm for doing this searches through the graph, proceeding as
follows:

1. mark node a, leaving other nodes unmarked, and initialise set S to {a};

2. while S is not empty, choose node i in S: remove i from S and for all j such that there
is an edge (i, j) and j is unmarked, mark j and add j to S;

3. if b is marked, accept else reject.

The algorithm as presented is somewhat vague in the details, but it can clearly be turned
into a working implementation. To give a more detailed specification, one would have to
state what data structure is used to implement S, and how the node i is chosen in step 2.
For instance, S could be implemented as a stack, which would result in a depth-first search
of the graph G, or it could be a queue, resulting in a breadth-first search. However, it should
be reasonably clear that any implementation can be carried out on a Turing machine.

What is the time and space complexity of this algorithm? During the running of the
algorithm, every edge in G must be examined at least once. Moreover, it can be seen that
each edge is not examined more than once. This is because no vertex is added to S more
than once, since once it is added, it is marked, and each edge is examined only when the
vertex at its source is removed from S. So, we can safely say, if n is the number of vertices
in the graph, that the running time of the algorithm is O(n2). An actual implementation on
a Turing machine may require more time, but it can certainly be done in polynomial time,
a point that has been emphasised several time earlier.

In terms of space, the only requirements for work space are the two sets—S and the set
of marked vertices. Each can be implemented using n bits, one for each vertex. We may
need some additional counters, each of log n bits, but the total work space requirement can
be bounded by O(n).

So, the above algorithm establishes that Reachability is a problem in P, and in SPACE(O(n)).
However, the latter upper bound can be improved. As we shall see later, we can decide
Reachability in less than linear space, at the expense of requiring extra time.

13

Euclid’s Algorithm

Euclid’s algorithm is the familiar algorithm for determining the greatest common divisor of
two positive integers. But, it is an algorithm for computing a value rather than solving a
decision problem. For our purposes, we will consider the decision problem (or language)
defined as follows.

RelPrime = {(x, y) | gcd(x, y) = 1}.
The algorithm for solving it can be described as

1. Input (x, y).

2. Repeat until y = 0: x← x mod y; Swap x and y

3. If x = 1 then accept else reject.

It is not difficult to see that after two iterations of Step 2, the value of x can be at most
half of what it was before. Thus, the number of times the second step is repeated is at most
2 log x. Since the length of the input (in bits) is log x + log y, we conclude that RelPrime is
in P. Note that if the algorithm took θ(x) steps to terminate, it would not be a polynomial
time algorithm, as x is not polynomial in the length of the input.

Boolean Expressions

We define the collection of Boolean expressions to be the set of expressions formed from a
given infinite set X = {x1, x2, . . .} of variables and the two constants true and false by
means of the following rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ) and (φ ∨ ψ).

If an expression contains no variables (that is, it is built up from just true and false using
∧, ∨, and ¬), then it can be evaluated to either true or false. If an expression φ contains
variables, then φ is not by itself true or false, Rather, we say that it is true or false for a given

assignment of truth values. A truth assignment is just a function T : X → {true, false}.
We say that T makes φ true or T satisfies φ if, when we substitute T (x) for each variable x
in φ, we get an expression that evaluates to true. Conversely, if substituting T (x) for each
x in φ results in an expression that evaluates to false, we say that T makes φ false or T
does not satisfy φ.
Examples

1. (true ∨ false) ∧ (¬false)
evaluates to true.

2. (x1 ∨ false) ∧ ((¬x1) ∨ x2)
is satisfied by some truth assignments, but not by all.

14

3. (x1 ∨ false) ∧ (¬x1)
is not satisfied by any truth assignment.

4. (x1 ∨ (¬x1)) ∧ true
is satisfied by both possible truth assignments.

Evaluation With the definition of Boolean expressions established, we can begin to look
at some algorithms for manipulating them. The first problem we look at is the evaluation
problem. That is, given a Boolean expression which does not contain any variables, determine
whether it evaluates to true or false. There is a deterministic Turing machine which can
decide this, and which runs in time O(n2) on expressions of length n. The algorithm works
by scanning the input, looking for subexpressions that match the left hand side of one of the
rules below, and replacing it by the corresponding right hand side.

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (φ ∨ false)⇒ φ

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (φ ∧ true)⇒ φ

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

Each scan of the input, taking O(n) steps must find at least one subexpression matching
one of the rules. This can be formally proved by an induction on the structure of expressions,
but should be intuitively clear. Since the application of a rule always removes at least one
symbol from the expression, we can conclude that we cannot have more than n successive
rule applications, as otherwise we would be left with no symbols at all. Thus, the algorithm
takes O(n2) steps overall.

Circuit Value Problem

While Boolean expressions are a natural way to represent a Boolean function over a set of
variables, a more compact representation is sometimes given by a circuit.

A circuit is a directed graph G = (V,E), with V = {1, . . . , n} together with a labeling:
l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i, j), then i < j;

15

• Every node in V has indegree at most 2.

• A node v has
indegree 0 iff l(v) ∈ {true, false};
indegree 1 iff l(v) = ¬;
indegree 2 iff l(v) ∈ {∨,∧}

If we allow the nodes of indegree 0 to be labeled by variables from X, we obtain a way of
representing arbitrary Boolean expressions. Moreover, the representation is more compact in
that if the Boolean expression contains repeated subexpressions, they need not be repeated
in the circuit, as we can take the output from a gate (or vertex in the directed graph) and
use it as an input to several other gates.

For now, however, we concentrate on the case of circuits without variables and define the
problem:

CVP—the circuit value problem is, given a circuit, determine the value of the result node
n.

CVP is solvable in polynomial time, by the algorithm which examines the nodes in in-
creasing order, assigning a value true or false to each node.

Prime Numbers

We now turn our attention to a particular familiar decision problem on numbers. It is simply
this: given a number n, is it prime? Or, to formulate it as a language, it is

PRIME = {x ∈ 1{0, 1}⋆ | x is the binary representation of a prime number}.

Note: the reason for considering strings from the set 1{0, 1}⋆ is that if we allow strings which
begin with 0, then a number has many different binary representations.

There is an obvious algorithm for checking whether a number n is prime. For each integer
1 < m <

√
n, check whether m divides n. This is not a polynomial time algorithm, since

it requires
√
n steps—which is exponential in the number of bits in n (remember we always

measure complexity in terms of the size of the input, and the fair way to measure the size
of a number is the number of bits it takes to represent it).

Consider also the language

COMP = {x ∈ 1{0, 1}⋆ | x is the binary representation of a composite number}

consisting of the binary representations of those numbers that are not prime. Is this language
in P? It is easy to see that if COMP is in P, then so is PRIME. But, it is not obvious whether
either of the languages is, in fact, in the class.

Satisfiability

While a Boolean expression without variables can simply be evaluated, for an expression
that contains variables, we can ask different questions. One question is whether such an
expression is satisfiable. That is, is there a truth assignment that makes it true?

16

We define SAT to be the set of all satisfiable Boolean expressions. This language can be
decided by a deterministic Turing machine which runs in time O(n22n). The straightforward
algorithm is to try all possible truth assignments. There are at most 2n possible assignments,
since there are at most n variables in the expression. For each one in turn, we can use the
O(n2) algorithm described above to see if the resulting expression without variables is true.

A related problem is checking the validity of a Boolean expression. An expression is said
to be valid if every possible assignment of truth values to its variables makes it true. We
write VAL for the set of valid expressions. By an algorithm completely analogous to the one
outlined for SAT above, we see that VAL is in time O(n22n).

VAL and SAT are dual problems in the sense that a Boolean expression φ is valid if, and
only if, the expression ¬φ is not satisfiable. This shows that an algorithm for deciding one
language can easily be converted into an algorithm for deciding the other. No polynomial
time algorithm is known for either problem, and it is widely believed that no such algorithm
exists.

Hamiltonian Graphs

In a graph G with a set of vertices V , and a set of edges E, a Hamiltonian cycle is a path,
starting and ending at the same vertex, such that every node in V appears on the cycle
exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle.1 We define
HAM to be the decision problem of determining whether a given graph is Hamiltonian. As
an example, consider the two graphs in Figure 3. The first graph is not Hamiltonian, while
the second one is.

Figure 3: Which graph is Hamiltonian?

1The name comes from William Hamilton, a nineteenth century Irish mathematician, who considered

whether there were ways of traversing the edges of platonic solids in such a way as to visit each corner

exactly once.

17

Nondeterministic Polynomial Time

It is not difficult to establish that there is a nondeterministic algorithm that decides SAT in
polynomial time. Indeed, time O(n2) suffices. The algorithm, in n nondeterministic steps,
guesses a truth value for each variable. That is, for each variable in the expression, it makes
a nondeterministic branch, where along one branch the variable is set to true and along
the other it is set to false. Since the number of variables is no more than the length of
the expression, n steps are sufficient for this process. Now, we have a Boolean expression
φ and a truth assignment T for all its variables, so we can use the O(n2) deterministic
algorithm described above to determine whether T satisfies φ. If there is any T that satisfies
φ, some path through this nondeterministic computation will result in acceptance, so φ will
be accepted.

Similarly, to determine whether a number x written in binary is in the language COMP,
it suffices to guess a number y that is less than x and then check that y does divide x. The
guessing can be implemented on a nondeterminisitic machine as a sequence of steps that
each either writes a 0 or 1 on a tape, while the checking is easily done deterministically in
polynomial time.

The problems COMP, SAT and HAM are all in the complexity class NP of problems
that can be decided by a nondeterministic machine running in polynomial time. In general,
a language in NP is characterised by a solution space which can be searched. For each
possible input string x, there is a space of possible solutions to be searched. The number
of such candidate solutions may be exponential in the length of x, but each solution can be
represented by a string whose length is bounded by a polynomial p in the length of x. In
particular, this means that the space can be searched by a backtracking search algorithm,
where the depth of nesting of choice points is never greater than p(|x|).

Another way of viewing the same class of problems is the generate and test paradigm. A
language L in NP is one that can be solved by an algorithm with two components: a Prover

and a Verifier. Given an input x, the Prover generates a proof Vx which demonstrates
that x is in L. The Verifier then checks that the proof Vx is correct. As long as the
length of Vx is bounded by a polynomial in the length of x and the Verifier runs in time
polynomial in its input, the algorithm establishes that L is in NP (Fig. 4).

yes

no
generatex c verify

Figure 4: Generate and Test

In the case of COMP, the proof Vx can consist of a non-trivial factor of x, and the
Verifier is a procedure that checks that Vx does indeed divide x, and is strictly between 1
and x. In the case of SAT, Vx could be an assignment of truth values to the variables of the
Boolean formula x that makes it true, while in the case of HAM, Vx might be an enumeration
of the vertices of the graph x in the order that they are visited by a Hamiltonian cycle.

Formally speaking, to define the class NP, we write NTIME(f) to denote the class of
those languages L which are accepted by a nondeterministic Turing machine M , such that

18

for every x ∈ L of length n, there is an accepting computation of M on x of length at most
f(n). Then

NP =
∞
⋃

k=1

NTIME(nk)

Alternatively, say that a verifier V for a language L is a deterministic algorithm such
that

L = {x | (x, c) is accepted by V for some c}
If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Now, it is not difficult to see that a language L is polynomially verifiable if, and only if,
it is in NP. To see this, suppose L is a language which has a verifier V that runs in time p(n)
for some polynomial p. The following is then a description of a nondeterministic algorithm
that accepts L.

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x, c)

Here, when we say “nondeterministically guess c” we mean that the algoritm writes a string
of length p(n) on the tape, and in doing so at each step there is a nondeterminsitic choice
of which symbol to write on the tap. It is clear that for every possible string c of length at
most p(n), there is some computation sequence that results in c being written on the string.

In the other direction, suppose M is a nondeterministic machine that accepts L and
runs in time p(n). Assume further that in any configuration, there are at most k possible
next configurations (for any machine M , there is a such a bound k). Now consider the
deterministic algorithm V that takes as input (x, c) where c is a string of length p(n) over
a k-letter alphabet and simulates M as follows. At the ith nondeterministic choice point,
V looks at the ith character in c to decide which branch to follow. If M accepts, then V
accepts, otherwise it rejects. It can then be seen that V is a polynomial verifier for L.

SAT is typical of the problems in NP in the sense that the independent choices of truth
assignments that can be made to the variables in a Boolean expression can encode the
choices of any nondeterministic computation. It is in this sense that SAT “captures” non-
deterministic time bounded computation. In the following, we make this notion of encoding
nondeterministic choices precise.

Reductions

The idea of a reduction is central to the study of computability. It is used to establish
undecidability of languages. Formally, given two languages L1 ⊆ Σ⋆

1, and L2 ⊆ Σ⋆
2, a

reduction of L1 to L2 is a computable function f : Σ⋆
1 → Σ⋆

2, such that for every string
x ∈ Σ⋆

1, f(x) ∈ L2 if, and only if, x ∈ L1.
In other words, every string in L1 is mapped by f to a string in L2, and every string that

is not in L1 is mapped to a string that is not in L2. Note that there is no requirement for f

19

Σ⋆
1 Σ⋆

2

L1 L2

x

y f

f(x)

f(y)

Figure 5: Reduction

to be surjective. In general, the range of f may be a small part of L2, and a small part of
its complement.

Reductions are useful in showing decidability (or, more usually, undecidability). If there
is a reduction from a language L1 to a language L2, and L2 is decidable, then we also know
that L1 is decidable. An algorithm to decide L1 is obtained by computing, on any input
x, f(x) and then using the decision procedure for L2 to determine a yes or no answer. If
f(x) ∈ L2, we know that x ∈ L1 and if f(x) 6∈ L2, we know that x 6∈ L1. This argument is
most useful in its contrapositive form: if there is a reduction from L1 to L2, and L1 is known
to be undecidable, then L2 is undecidable as well. So, once we have proved one language
(such as the Halting problem) to be undecidable, we can use reductions from it to prove
other problems undecidable as well.

Resource Bounded Reductions When we are concerned about polynomial time com-
putability rather than questions of decidability, we consider reductions that can be computed
within bounded resources. To be precise, if f is a reduction from L1 to L2 and f is com-
putable by an algorithm running in polynomial time, we say that L1 is polynomial time

reducible to L2, which we write as
L1 ≤P L2.

If L1 ≤P L2, we can say that L2 is at least as hard as L1, at least in the sense of being
polynomial time computable. In short, if L1 ≤P L2 and L2 ∈ P, then L1 ∈ P. This is for
reasons analogous to those for decidability. We can compose the algorithm computing the
reduction with the decision procedure for L2 to get a polynomial time decision procedure
for L1. One point to be noted is that the string f(x) produced by the reduction f on
input x must be bounded in length by a polynomial in the length of x, since it is computed
by a polynomial time algorithm. This is why the decision procedure for L2 which runs in
polynomial time on its input f(x) is still running in time polynomial in the length of x.

20

NP-Completeness

The usefulness of reductions is in allowing us to make statements about the relative com-

plexity of problems, even when we are not able to prove absolute lower bounds. So, even if
we do not know whether or not there is a polynomial time algorithm for L2, if L1 ≤P L2,
we can say if there were one, there would also be one for L1. In this sense of relative com-
plexity, Stephen Cook and Leonid Levin first showed that there are problems in NP that are
maximally difficult. This is now known as the Cook-Levin theorem.
Definition

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

What Cook showed was that the language SAT of satisfiable Boolean expressions is NP-
complete. In this sense, it is as hard as any problem in NP. A polynomial time algorithm
for SAT would yield a polynomial time algorithm for every problem in NP.

We have already seen that SAT is in NP. To prove that it is NP-complete, we need to
show that for every language L in NP, there is a polynomial time reduction from L To SAT.
Since L is in NP, we know that there is a nondeterministic machine M = (Q,Σ, s, δ) and a
polynomial p such that a string x is in L if, and only if, it is accepted by M within p(|x|)
steps. In what follows, we will assume, without loss of generality, that p is of the form nk,
where n is the length of x and k is a constant.

To establish the polynomial time reduction from L to SAT, we need to give, for each
x ∈ Σ⋆, a Boolean expression f(x) which is satisfiable if, and only if, there is an accepting
computation of M on x. We construct f(x) using the following variables:

Si,q for each i ≤ nk and q ∈ Q
Ti,j,σ for each i, j ≤ nk and σ ∈ Σ
Hi,j for each i, j ≤ nk.

The total number of variables is |Q|nk+ |Σ|n2k+n2k. The intended reading of these variables
is that Si,q will be true if the machine at time i is in state q; Ti,j,σ will be set to true if at
time i, the symbol at position j in the tape is σ; and Hi,j indicates that at time i, the head
is pointing at position j on the tape.

Of course, these meanings are not inherent in the symbols. We have to construct the
expression f(x) to enforce them. The intention is that the only way to consistently assign
truth values to these variables is to encode a possible computation of the machine M . The
expression f(x) is built up as the conjunction of the following expressions:

S1,s ∧H1,1 (1)

which asserts that at the beginning, the state is s and the head is at the beginning of the
tape.

∧

i

∧

j

(Hi,j →
∧

j′ 6=j

(¬Hi,j′)) (2)

21

which asserts that the head is never in two places at once. That is, if Hi,j is true for any i
and j, then Hi,j′ must be false for any other j′.

∧

q

∧

i

(Si,q →
∧

q′ 6=q

(¬Si,q′)) (3)

which asserts that the machine is never in two states at once. That is, for each state q and
each state i, if Si,q is true, then Si,q′ must be false for all other q′.

∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ

(¬Ti,j,σ′)) (4)

which asserts that each tape cell contains only one symbol. In other words, if Ti,j,σ is true
for any i, j and σ, then Ti,j,σ′ must be false for all other σ′.

∧

j≤n

T1,j,xj
∧

∧

n<j

T1,j,⊔ (5)

where xj denotes the jth symbol in the string x. This expression asserts that at time 1, the
tape contains the string x in its first n cells, and is blank after that.

∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ)→ Ti+1,j′,σ (6)

which asserts that the tape only changes under the head. That is, if the head at time i is at
position j, and at the same time position j′ on the tape (for some other j′) contains σ, then
position j′ still contains σ at time i+ 1.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′) (7)

where ∆ is the set of all triples (q′, σ′, D) such that ((q, σ), (q′, σ′, D)) ∈ δ and

j′ =

j if D = S
j − 1 if D = L
j + 1 if D = R.

This asserts that the change from time step i to i+1, for each i is according to the transition
relation δ. That is, if at time i, the head position is j, the state is q, and the symbol at
position j is σ, then the state q′ and head position j′ at time i+ 1, as well as the symbol at
position j at time i+ 1 are obtained by one of the possible transitions allowed by δ.

∨

i

Si,acc (8)

which asserts that at some time i, the accepting state is reached.
So, what has all this proved? We have shown that, for any nondeterministic machine

M , any polynomial p and any input string x to M , we can write down a Boolean expression
that is satisfiable if, and only if, M accepts x in time p(|x|). What’s more, in order to write
down this Boolean expression, we don’t actually have to run the machine M or perform
any backtracking search. The expression simply encodes the description of M and x. It is
therefore straightforward to check that the expression can be constructed in time polynomial
in the length of x. The degree of the polynomial may depend on M and p.

22

Conjunctive Normal Form

A Boolean expression is in conjunctive normal form (or CNF) if it is the conjunction of a
set of clauses, each of which is the disjunction of a set of literals, each of these being either
a variable or the negation of a variable. Every Boolean expression is equivalent to one in
CNF. In fact, any expression can be turned into an equivalent expression in CNF by repeated
application of DeMorgan’s laws, the laws of distributivity (of ∨ over ∧) and by the law of
double negation (which says that ¬¬φ is equivalent to φ. There is, therefore, an algorithm
for converting any Boolean expression into an equivalent expression in CNF. This is not,
however, a polynomial time algorithm. We can prove that it requires exponential time (a
rare example of a real lower bound result). This is because there are (for arbitrarily large n)
expressions φ of length n such that the shortest CNF expression equivalent to φ has length
Ω(2n).

However, if we consider the reduction constructed above from any language L in NP

to SAT, and take the Boolean expressions that result from the reduction, then there is a
polynomial time algorithm that will convert them into equivalent CNF expressions. This is
because the formulas are almost in CNF already. In particular, the expression is a conjunc-
tion of expressions, of which (1) is just a conjunction of literals (and is therefore in CNF).
The expressions in (2), (3) and (4) can be easily converted into CNF by distributing the
implication over the innermost conjunction. For example, (2) can be rewritten as

∧

i

∧

j

∧

j′ 6=j

(Hi,j → (¬Hi,j′)).

This is now in CNF (recall that φ → ψ is just shorthand for ¬φ ∨ ψ). Note also that while
(2) contains only one occurrence of the variable Hi,j for each i and j, the CNF version above
has nk − 1 occurrences of each Hi,j. This is however, a fixed polynomial increase. Similarly,
(5) and (6) are already in CNF. The expression (7) requires a bit more work, but it is not
too difficult, and is left here as an exercise.

We can conclude that, for each language L in NP, there is, in fact, a polynomial time
computable function f such that f(x) is a CNF expression for all x, and f(x) is satisfiable if,
and only if, x ∈ L. In other words, if we define CNF-SAT to be the collection of all satisfiable
CNF expressions, then we can say that we have shown that CNF-SAT is NP-complete.

We define a further restriction on our expressions. A Boolean expression φ is said to be
in 3CNF if it is in CNF, i.e. φ ≡ C1 ∧ . . . ∧ Cm, and each clause Ci is the disjunction of no
more than 3 literals. We also define 3SAT to be the set of those expressions in 3CNF that
are satisfiable.

While it is not the case that every Boolean expression is equivalent to one in 3CNF, what
we can say is that for every CNF expression φ, there is an expression φ′ in 3CNF so that φ′ is
satisfiable if, and only if, φ is. Moreover, there is an algorithm, running in polynomial time,
which will convert φ to φ′. We illustrate this with an example. Suppose we have a clause C
with four literals

C ≡ (l1 ∨ l2 ∨ l3 ∨ l4).
Introducing new variables n1 and n2, we can write down an expression ψ in 3CNF

ψ ≡ (l1 ∨ l2 ∨ n1) ∧ (¬n1 ∨ l3 ∨ n2) ∧ (¬n2 ∨ l4).

23

This expression is not equivalent to C because, for one thing, it contains variables that are
not in C. But, ψ is satisfiable if, and only if, C is. The idea can be easily generalised
to clauses with any number of variables. Moreover, we can verify that the number of new
variables and clauses introduced is no more than the number of literals in the clause being
replaced. This ensures that the conversion can be carried out in polynomial time.

What we can conclude from this is that there is a polynomial time computable reduction
from CNF-SAT to 3SAT. This can be combined with the fact that CNF-SAT is NP-complete
to show that 3SAT is also NP-complete.

24

NP-Complete Problems

The argument at the end of the last section, which takes us from the NP-completeness of
CNF-SAT to the NP-completeness of 3SAT can be formalised in terms of the composition
of reductions. That is, if for any languages L1, L2 and L3, we have that L1 ≤P L2 and
L2 ≤P L3, then it must be the case that L1 ≤P L3. In other words, the relation ≤P between
languages is transitive. The reason is that if f is a reduction from L1 to L2, and g a reduction
from L2 to L3, then their composition g ◦ f is a reduction from L1 to L3. Moreover, if both
f and g are polynomial time computable, then so is their composition, by the algorithm
that first computes f on its input x and then computes g on the result f(x). There is a
polynomial bound on the running time of this algorithm because the length of f(x) must
be bounded by a polynomial in the length of x, so even though the input to the algorithm
computing g is f(x), the total running time is bounded by a polynomial in the length of x.

By the transitivity of reducibility, and our previous proofs of NP-completeness, it follows
that if we show, for any language A in NP, that SAT ≤P A or that 3SAT ≤P A, it immediately
follows that A is NP-complete. We now use this to establish the NP-completeness of a number
of natural combinatorial problems.

Graph Problems

We begin by looking at problems involving graphs.

Independent Set Let G = (V,E) be an undirected graph with a set V of vertices, and E
of edges. We say that X ⊆ V is an independent set if there are no edges (u, v) in E, for any
u, v ∈ X. The definition gives rise to a natural algorithmic problem, namely, given a graph
G, find the largest independent set. Instead of this optimisation problem, we will consider a
decision problem which we call IND, which is defined as

The set of pairs (G,K), where G is a graph, and K is an integer, such that G
contains an independent set with K or more vertices.

That is, we turn the question into a yes/no question by explicitly setting a target size in the
input.

The problem IND is clearly in NP. We can nondeterministically generate an arbitrary
subset X of the vertices, and then in polynomial time check that X has at least K elements
and that it is an independent set.

To show that IND is NP-complete, we construct a reduction from 3SAT to IND. The
reduction maps a Boolean expression φ in 3CNF with m clauses to the pair (G,m) where G
is a graph, and m the target size. G is obtained from the expression φ as follows.

G contains m triangles, one for each clause of φ, with each node representing one
of the literals in the clause (for clauses containing fewer than three literals, we
can label more than one node in the triangle with the same literal).

Additionally, there is an edge between two nodes in different triangles if they
represent literals where one is the negation of the other.

25

As an example, if φ is the expression

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

we obtain a graph G with six nodes, connected by edges as in Figure 6, where the triangle
of vertices at the top corresponds to the first clause and the triangle at the bottom to the
second clause of φ.

x1

x2
¬x3

¬x1

¬x2
x3

Figure 6: Reduction from 3SAT to IND

To prove that this is a polynomial time reduction from 3SAT to IND, we need to show
that the transformation from φ to (G,m) can be carried out by a polynomial time algorithm.
This is not too difficult to see, as G is really just a direct encoding of φ as a graph, and m is
obtained by counting the clauses of φ. We also need to check that G contains an independent
set of m vertices if, and only if, φ is satisfiable.

For one direction, suppose φ is satisfiable, and let T be a truth assignment that satisfies
it. For each clause in φ, choose exactly one literal in the clause which is made true by T
(there must be at least one in each clause, since T satisfies φ). Let X be the set of vertices
in G corresponding to the literals we have just chosen. X cannot contain a vertex labeled
by a variable x and another vertex labeled by ¬x, otherwise T would not be a consistent
truth assignment. Also, X cannot contain two vertices from the same triangle, since we chose
exactly one vertex in each clause. So, there are no edges between vertices in X. Furthermore,
since we chose one vertex from each triangle, there are m vertices in X.

In the other direction, we have to show that if G has an independent set with m vertices,
then φ is satisfiable. Let X be such an independent set. Any two vertices arising from the
same clause are part of a triangle, and so cannot be both in X. So, X must contain exactly
one vertex from each triangle. We now define a truth assignment T for φ as follows. For any
variable x, if there is a vertex labeled x in X, then let T (x) = true, and if there is a vertex
labeled ¬x in X, then let T (x) = false. If X contains neither a vertex labeled x nor a
vertex labeled ¬x, then set T (x) arbitrarily. We can see that this is a consistent assignment
of truth values to the variables of φ, since X cannot contain both a vertex labeled x and
a vertex labeled ¬x as there would be an edge between them. Finally, we note that T is a
truth assignment that satisfies φ, since for each clause of φ, there is one literal corresponding
to a vertex in X, and which is therefore made true by T .

26

Clique A graph problem closely related to IND, and perhaps more commonly mentioned,
is the problem of finding a clique in a graph. Once again, we begin with a definition. Given
a graph G = (V,E), a subset X ⊆ V of the vertices is called a clique, if for every u, v ∈ X,
(u, v) is an edge.

Once again, there is a natural optimisation problem of finding the largest clique in a
graph, but we will consider a decision problem, which we call CLIQUE.

The set of pairs (G,K), where G is a graph, and K is an integer, such that G
contains a clique with K or more vertices.

As with IND, it is easy to see that CLIQUE is in NP. There is an algorithm which,
on input (G,K) guesses a subset X of the vertices of G containing K elements, and then
verifies that X forms a clique. To see that CLIQUE is NP-complete, it suffices to prove that
IND ≤P CLIQUE. This is easily seen by the reduction that maps a pair (G,K) to the pair
(Ḡ,K), where Ḡ is the complement graph of G. That is, Ḡ has the same set of vertices as
G, and a pair (x, y) is an edge of Ḡ if, and only if, it is not an edge of G. Clearly then, any
independent set of G is a clique in Ḡ, and conversely any clique in Ḡ is an independent set
of G, so G contains an independent set with K elements if, and only if, Ḡ contains a clique
with K elements. The reduction can, quite obviously, be carried out by a polynomial time
algorithm.

Graph Colourability If we are given a graph G = (V,E), that is a set of vertices V along
with a set of edges E, we call a colouring of G an assignment of colours to the vertices of G
such that no edge connects two vertices of the same colour. We say that G is k-colourable
if there is a colouring of G which uses no more than k colours. More formally, we say that
G is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E,

χ(u) 6= χ(v).

This sets up a decision problem for each k. Namely,

given a graph G = (V,E), is it k-colourable?

The problem 2-Colourability is in P (see Exercise Sheet 1). However, for all k > 2,
k-colourability is NP-complete. Note that here, unlike in the cases of IND and CLIQUE

considered above, the number k is not part of the input presented for the algorithm. Rather,
we are considering k as a number fixed before hand and the input is just a graph. So, we
will show that the problem 3-colourability is NP-complete. The problem is clearly in NP,
since we can guess a colour (one of a fixed set of three, say red, blue, green) for each
vertex, and then verify that the colouring is valid by checking for each edge that its endpoints
are differently coloured. The checking can be done in polynomial time, so this algorithm
establishes that 3-colourability is in NP.

27

To complete the proof that 3-colourability is NP-complete, we construct a reduction from
3SAT to 3-colourability. The reduction maps a Boolean expression φ in 3-CNF to a graph
G so that G is 3-colourable if, and only if, φ is satisfiable. Suppose φ has m clauses and n
distinct variables. G will have 2 special vertices, which we call a and b, one vertex for each
variable x and one for its negation x̄. For each x, the vertices a, x and x̄ are connected in
a triangle. In addition, there is an edge connecting a and b, and for each clause in φ, there
are five new vertices connected in the pattern shown in Figure 7, with the vertex b, and the
vertices corresponding to the three literals l1, l2 and l3 that appear in the clause.

l1

l2

l3 b

Figure 7: Gadget for the reduction from 3SAT to 3-Colourability

We now need to check that G is 3-colourable if, and only if, φ is satisfiable. In any
colouring of G, the vertex a must be assigned a colour, let’s call it red. Since there is an
edge between a and b, b must have a different colour, let’s call it blue. Furthermore, the
vertices corresponding to the literals must be coloured blue or green, as they all have edges
to a. Also, of these two colours, each vertex x must be of the opposite colour as its negation
x̄. We now claim that if there is a valid colouring of the whole graph G, then the truth
assignment that makes a variable x true if, and only if, it is coloured blue (i.e. the same
colour as b) is a satisfying truth assignment of φ. Conversely, from any satisfying truth
assignment T of φ, we can obtain a valid 3-colouring of G by colouring blue all vertices
corresponding to literals that are made true by T and colouring green all literals that are
made false by T . To see that this is the case, we only need to check that, in the gadget
shown in Figure 7, if b is blue, and l1, l2, l3 are all either blue or green, then there is a valid
colouring of the remaining vertices if, and only if, at least one of l1, l2 or l3 is blue. This can
be checked by examining all possibilities, and is left as an exercise.

Hamiltonian Graphs Recall the problem HAM of determining whether a given graph G
contains a Hamiltonian cycle. It is not too difficult to see that HAM is a problem in NP.
An algorithm for solving it can guess a permutation v1, v2, . . . , vn of the vertices in V , and
then verify that, for each i, there is an edge from vi to vi+1 and finally that there is an edge
from vn to v1. Since the verification step can be done by a polynomial time algorithm, we
conclude that HAM is in NP.

We can show that HAM is NP-hard by a reduction from 3SAT. This involves coding a
Boolean expression φ as a graph G in such a way that every satisfying truth assignment of
φ corresponds to a Hamiltonian cycle in G. The reduction is much more involved then the

28

ones we have seen for IND and 3-Colourability. The details are left out of the present notes,
and can be found, for example, in Papadimitriou (Sec. 9.3) or Sipser (Sec. 7.5).

Travelling Salesman Problem Recall that the Travelling Salesman Problem is an opti-
misation problem specified as, given

• V — a set of vertices; and

• c : V × V → IN — a cost matrix,

find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.
In order to analyse this with the theory of NP-completeness we are building up, we can

turn this too into a decision problem, by putting in an explicit target t for the cost of the
tour. That is, the problem TSP is the set of triples (V, c : V × V → IN, t), such that there is
an ordering v1, . . . , vn of V for which

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1) ≤ t.

It is fairly easy to see that if there were a polynomial time solution to the optimisation
problem, there would also be a polynomial time solution to the decision problem TSP. We
could just compute the optimal solution and then check whether its total cost was within
the budget t. Thus, a proof that TSP is NP-complete is a strong indication that there is no
polynomial time solution to the optimisation problem.

To show that TSP is NP-hard, we note that there is a reduction to it from HAM. The
reduction maps a graph G = (V,E) to the triple (V, c : V × V → IN, n), where n is the
number of vertices in V , and the cost matrix c is given by:

c(u, v) =

{

1 if (u, v) ∈ E
2 otherwise

Now, since a tour must visit all n cities, it must traverse exactly n edges in this matrix.
Thus, if it is within budget, i.e. it has a total cost at most n, then it must only use entries with
value 1 in the matrix. In other words, it only traverses edges in the original graph G and,
therefore, describes a Hamiltonian cycle in the graph. Conversely, if there is a Hamiltonian
cycle in G, there is a way of touring all the cities using only edges of cost 1, and this gives
a tour of total cost n.

29

Sets, Numbers and Scheduling

So far, the NP-complete problems we have looked at either concern the satisfiability of for-
mulas, or properties of graphs. However, NP-completeness is not about formulas and graphs.
Literally thousands of naturally-arising problems have been proved NP-complete, in areas
involving network design, scheduling, optimisation, data storage and retrieval, artificial intel-
ligence and many others, and new ones are found every day. Such problems arise naturally
whenever we have to construct a solution within constraints, and the most effective way
appears to be an exhaustive search of an exponential solution space. In this section, we
examine three more NP-complete problems, whose significance lies in that they have been
used to prove a large number of other problems NP-complete, through reductions. They
have been chosen as representative of a large class of problems dealing with sets, numbers
and schedules.

3D Matching 3D matching is an extension into 3 dimensions of the well known bipartite
matching problem. The latter is defined as the problem of determining, given two sets B
and G of equal size, and a set M ⊆ B×G of pairs, whether there is a matching, i.e. a subset
M ′ ⊆M such that each element of B and each element of G each appear in exactly one pair
M ′ (note that this implies thatM ′ has exactly n elements). The bipartite matching problem
is solvable by a polynomial time algorithm.

The problem 3D Matching, also sometimes called tripartite matching is defined by:

Given three disjoint sets X, Y and Z, and a set of triples M ⊆ X × Y ×Z, does
M contain a matching?

I.e. is there a subset M ′ ⊆ M , such that each element of X, Y and Z appears in
exactly one triple of M ′?

This problem is NP-complete. We prove the NP-hardness by a reduction from 3SAT.
We are given a Boolean expression φ in 3CNF with m clauses and n variables. For each

variable v, we include in the setX, m distinct elements xv1, . . . , xvm and in Y alsom elements
yv1, . . . , yvm. We also include in Z 2m elements for each variable v. We call these elements
zv1, . . . , zvm, z̄v1, . . . , z̄vm. The triples we include in M are (xvi, yvi, zvi) and (xvi, yv(i+1), z̄vi)
for each i < m. In the case where i = m, we put 1 instead of i + 1 in the last triple. The
situation for m = 4 is displayed in Figure 8, where the triangles represent triples of M .

In addition, for each clause c of φ, we have two elements xc ∈ X and yc ∈ Y . These
elements are additional to the m elements for each variable mentioned earlier. If, for some
variable v, the literal v occurs in clause c, we include the triple

(xc, yc, zvc)

in M , while if the literal ¬v occurs in c, we include the triple

(xc, yc, z̄vc)

in M .

30

zv1

zv2

zv3

zv4

xv1 yv1

z̄v1

z̄v2

yv2

xv2

yv3 xv3

yv4

xv4

z̄v3

z̄v4

Figure 8: Matching gadget for each variable

Note that, so far, the sets X and Y each contain mn +m elements (m elements xvi for
each variable v, and one element xc for each clause c), and the set Z contains 2mn elements,
2m for each variable. To get a valid instance of 3DM we need three sets of equal size. We
achieve this by addingm(n−1) additional elements to X and Y . These are dummy elements,
in the sense that we don’t want them to constrain possible matchings in any way, so for each
dummy x and y, and every element of z, we include the triple (x, y, z) in M . The result is
that if we can find a matching for all elements except the dummies, we can find a matching
for the whole set.

It remains to show that there is a matching for the instance we have constructed if, and
only if, the expression φ is satisfiable. Note that, for any variable v, the element xv1 of X
appears in only two triples: (xv1, yv1, zv1) and (xv1, yv2, z̄v1). A successful matching must
include exactly one of these. Moreover, once we have made the choice, this constrains the
choice for all other xvi, as can be seen from Figure 8. In fact, there are only two ways that
all the xvi can be matched, for a particular v. We can either use all the zvi or we can use all
the z̄vi. We can think of this choice as the two possible truth values that the variable v can
take.

Consider any truth assignment T satisfying the expression φ. For each variable v that
is set to true by T , we select all triples of the form (xvi, yv(i+1), z̄vi) for our matching, and
for each v that is set to false, we select the triples (xvi, yv(i), zvi). The result is that, if v
is true, the elements zvi are available to satisfy xc and yc for clauses c in which v appears
as a positive literal. Similarly, if v is false, the elements z̄vi are available to satisfy those
clauses where ¬v appears as a literal. Thus, from a satisfying truth assignment, we obtain a
matching. Conversely, we can argue that any matching yields a satisfying truth assignment.
The details of the argument are left as an exercise.

Set Covering A further two well-known NP-complete problems are established by straight-
forward reductions from 3DM. The first is Exact Cover by 3-Sets which is defined by:

Given a set U with 3n elements, and a collection S = {S1, . . . , Sm} of three-

31

element subsets of U , is there a sub collection containing exactly n of these sets
whose union is all of U?

The straightforward reduction maps an instance (X, Y, Z,M) of 3DM to the pair (U, S),
where U = X ∪Y ∪Z, and S consists of all the three element sets {x, y, z}, where (x, y, z) ∈
M .

A more general problem is Set Covering, which is defined by:

Given a set U , a collection of S = {S1, . . . , Sm} subsets of U and an integer
budget B, is there a collection of B sets in S whose union is U?2

The reduction from Exact Cover by 3-Sets to Set Covering maps a pair (U, S) to the
triple (U, S, n), where 3n is the number of elements in U .

Knapsack Knapsack is one of the most famous NP-complete problems because it is a nat-
ural generalisation of many scheduling and optimisation problems, and through a variety of
reductions has been used to show many such problems NP-hard. The optimisation problems
we have seen so far all involve attempting to either minimize some measure of cost or max-
imize some quantitative benefit. Many optimisation problems arising in practice, however,
involve tradeoffs between cost and benefit. Knapsack captures this intuition by involving
both a maximisation and a minimisation element. Formally, the problem is defined by:

We are given n items, each with a positive integer value vi and weight wi. We
are also given a maximum total weight W , and a minimum total value V .

Can we select a subset of the items whose total weight does not exceed W , and
whose total value exceeds V ?

To prove that Knapsack is NP-complete, we construct a reduction from the problem of
Exact Cover by 3 Sets (we omit the argument that Knapsack is in NP, which is easy).

We are given a set U = {1, . . . , 3n}, and a collection of 3-element subsets of U , S =
{S1, . . . , Sm}. We map this to an instance of KNAPSACK withm elements each corresponding
to one of the Si, and having weight and value

Σj∈Si
(m+ 1)j−1

and set the target weight and value both to

Σ3n−1
j=0 (m+ 1)j.

The idea is that we represent subsets of U as strings of 0s and 1s of length 3n. We treat
these strings as representations of numbers, not in base 2, but in base m+1. This guarantees
that when we add numbers corresponding to the sets Si, we never get carry from one place
to the next, as there are only m sets. Thus, the only way we can achieve the target number
(represented by 1s in all positions), is if the union of the sets we have chosen is all of U , and

2The use of an integer budget B in the definition of the problem is a clear indication that this is the

decision version of a natural optimisation problem.

32

no element of U is represented more than once—as this would result in a value greater than
1 in some place. It follows that the instance of Knapsack has a solution if, and only if, the
original pair (U, S) has an exact cover by 3-sets.

Indeed, the reduction we have constructed produces instances of Knapsack of a rather
special kind. All weights and values are equal, and the target weight is the same as the
target value. While this does prove that the general Knapsack problem is NP-complete,
it also establishes the NP-completeness of a restriction of the problem to instances where
weights and values are always equal. This problem has a particularly simple formulation,
and is known as the subset sum problem.

Given a collection of numbers v1, . . . , vn and a target t, is there a subcollection
of the numbers which adds up exactly to t?

This simple looking problem turns out to be NP-complete.

Scheduling The problem Knapsack has been used to prove a wide variety of scheduling
problems NP-complete. A few examples are given here as illustration.

Timetable Design

Given a set H of work periods, a set W of workers each with an associated subset
of H (available periods), a set T of tasks and an assignment r : W × T → IN of
required work, is there a mapping f : W × T ×H → {0, 1} which completes all
tasks?

That is, for any w ∈ W and h ∈ H there is at most one t ∈ T for which
f(w, h, t) = 1, and there is one only if w is available at h. Moreover, for each t ∈
T , and each w ∈ W , there are at least r(w, t) distinct h for which f(w, h, t) = 1.

Sequencing with Deadlines

Given a set T of tasks and for each task a length l ∈ IN, a release time r ∈ IN and
a deadline d ∈ IN, is there a work schedule which completes each task between
its release time and its deadline?

Here, a schedule is an assignment to each task t ∈ T a start time s(t), such that
s ≥ r(t), d(t) ≥ s(t) + l(t), and such that for any other t′, s(t′) ≥ s(t) + l(t).3

Finally, a multi-processor version of this is:
Job Scheduling

Given a set T of tasks, a number m ∈ IN of processors a length l ∈ IN for each
task, and an overall deadline D ∈ IN, is there a multi-processor schedule which
completes all tasks by the deadline?

3Note that this is non-preemptive scheduling.

33

Responses to NP-completeness

Having seen a number of NP-complete problems, and some varied proofs of their NP-
completeness, we have acquired at least some ability to recognise new NP-complete problems
when we see them. One question that arises is, what are we to do when we are confronted
with one. Surely, the analysis that shows that a problem is NP-complete is not the end of
the matter. We are still required to find a solution of some sort. There are a variety of
possible responses.

It might be that we are trying to solve a single instance—we might have to construct a
railway timetable, or an exam timetable, once only. The results of asymptotic complexity
do not, of course, tell us much about single instances. An algorithm whose running time
is exponential may run in reasonable time on instances up to some small size. In practice,
though, an algorithm that is exponential in running time will become completely impractical
on even reasonably small instances. One would certainly not want to use it on something as
large as a railway timetable. The running time may, after all, double with the addition of
each additional station

In general, if we are using a general purpose algorithm for the problem (rather than
exploiting features of the particular single instance), then scalability is important. A program
tested on small instances may completely seize up when confronted with an industrial scale
example.

Thus, in order to get a solution that is scalable, one has to adopt a different approach to
a brute force search. Often, this involves a closer examination of the problem at hand. Is
it really an NP-complete problem in its full generality, or is it a restriction to some special
class of instances? For instance, in many applications, the graphs that arise are necessarily
planar. Not all the NP-complete graph problems we have considered remain NP-complete
when restricted to planar graphs. The CLIQUE problem is a case in point. No planar graph
can have a clique of five or more elements. Thus, the problem of finding the largest clique in
a graph reduces to checking whether the graph contains a clique of four elements, something
that can be done by a polynomial time algorithm. While HAM and 3-Colourability are known
to be NP-complete, even when restricted to planar graphs, 4-Colourability is trivial on planar
graphs, since all planar graphs are 4-colourable.

Another approach often adopted in dealing with optimisation problems corresponding to
NP-complete problems is to settle for approximate rather than exact solutions. Often, such
problems admit polynomial time approximation algorithms, which are not guaranteed to find
the best solution, but will produce a solution which is known to be within a known factor
of the optimal. This is particularly useful in applications where we need to be able to give
performance guarantees.

A final point is that, if we are using an algorithm with potentially exponential worst-case
performance, using a backtracking search strategy, it is important to identify good heuristics

for constraining the search. These heuristics will often arise from known limitations of the
actual application area, and it is difficult to devise general purpose rules for them. However,
good heuristics can dramatically cut down the search space and home in on a solution for a
typical instance of the problem, while still requiring an exponential search in the worst-case.
An important illustration of this is the great success of SAT solvers, which routinely solve

34

instances of CNF-SAT with millions of variables.

35

Certificates, Function Classes and Cryptography

We originally defined NP as the collection of languages accepted by a nondeterministic ma-
chine in polynomial time. We have also used another equivalent notion, that of polynomial
verifiability. This is essentially the definition of NP we have been using in establishing that
various problems are in the class. We now look at a formal statement that characterises it
in this way. A language L ⊆ Σ⋆ is in NP if, and only if, it can be expressed as:

L = {x | ∃yR(x, y)},

where R is a relation on strings satisfying two conditions:

1. R is decidable in polynomial time by a deterministic machine.

2. R is polynomially balanced. That is, there is a polynomial p such that if R(x, y) and
the length of x is n, then the length of y is no more than p(n).

In such a case, if R(x, y) holds, we say that y is a certificate of the membership of x in L.
Or, as we might have said earlier, it is a “solution” to x. For example, in the case where
L is SAT and x is a Boolean expression, y would be an assignment of truth values to the
variables of x and R(x, y) would be the relation that holds if y makes x true. Similarly, in
the case of 3-colourability, x would be a graph, y an assignment of colours to the graph and
R(x, y) would hold if y was a valid colouring.

co-NP

We have seen a number of examples of languages in NP and, in each case, established this
fact by exhibiting a suitable notion of a certificate. Here is another candidate language.
Recall that the set VAL is the set of Boolean expressions that are valid, i.e. true for any
assignment of values to the variables. VAL and SAT are dual problems in the sense that a
Boolean expression φ is valid if, and only if, the expression ¬φ is not satisfiable. This shows
that a deterministic algorithm for deciding one language can easily be converted into an
algorithm for deciding the other. So, just as with SAT, VAL is in TIME(n22n). But, is VAL
in NP? What would a certificate consist in for showing that φ ∈ VAL?

Consider, instead the language VAL = {φ | φ 6∈ VAL}, the complement of VAL, i.e. the set
of Boolean expressions that are not valid. This language is clearly in NP. To check that φ is
not valid, it suffices to guess a falsifying truth assignment and verify it. Such an algorithm
does not work for VAL. In this case, we have to determine whether every truth assignment
results in true—a requirement that does not sit as well with the definition of acceptance by
a nondeterministic machine.

If we interchange accepting and rejecting states in a deterministic machine that accepts
the language L, we get one that accepts L. If a language L ∈ P, then also L ∈ P. Complexity
classes defined in terms of nondeterministic machine models are not necessarily closed under
complementation of languages.

The class of languages co-NP is defined as the complements of languages in NP. So, if
L is in co-NP, there is a polynomial time decidable and polynomially balanced relation S

36

such that L̄ = {x | ∃yS(x, y)}. In other words L = {x | ∀y¬S(x, y)}. Since P is closed
under complementation, ¬S(x, y) is decidable in polynomial time. So, we can equivalently
characterise the class co-NP as the set of languages L for which there is a polynomial-time
decidable relation R such that:

L = {x | ∀y |y| < p(|x|)→ R(x, y)}.

This situation is often summed up by saying that NP is the collection of those languages
for which there are succinct certificates of membership and co-NP is the collection of lan-
guages for which there are succinct certificates of disqualification. Another way of saying
this is that if NP is the class of problems that are polynomially verifiable, than co-NP is the
class of problem that are polynomially falsifiable.

Since every language in P is also in NP, and the complement of a language in P is itself
in P, it follows that every language in P is also in co-NP. In other words P ⊆ NP ∩ co-NP.
The situation is depicted in figure 9.

Figure 9: Relation between the classes P, NP and co-NP

Clearly, if it were the case that P = NP, it would follow that NP = co-NP. Other than
that, we know nothing about whether the containments pictured in figure 9 are proper. Any
of the following situations is consistent with what we can prove so far:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP

Validity There is a notion of completeness for co-NP entirely analogous to that of NP-
completeness.
Definition A language L is said to be co-NP-complete if L is in co-NP and for every language
A ∈ co-NP, A ≤P L.

Indeed, the complement of any NP-complete language is co-NP-complete. This is because
if f is a a reduction from a language L1 to a language L2 then it is also a reduction of L̄1–the

37

complement of L1–to L̄2–the complement of L2, as x ∈ L̄1 ⇔ x 6∈ L1 ⇔ f(x) 6∈ L2 ⇔ f(x) ∈
L̄2. So, SAT is co-NP-complete.

There is an easy reduction from SAT to VAL. It is just the function that maps a Boolean
expression φ to ¬φ. It follows that VAL is co-NP-complete. Hence, if there were a polynomial
time algorithm for solving VAL, this would imply that P = NP = co-NP. Similarly, if we
could show that VAL is in NP it would follow that every problem in co-NP is in NP by
composing the polynomial time reduction of the problem to VAL with the nondeterministic
machine deciding VAL.

Prime Numbers Recall our earlier discussion of the languages

PRIME = {x ∈ 1{0, 1}⋆ | x is the binary representation of a prime number}

and

COMP = {x ∈ 1{0, 1}⋆ | x is the binary representation of a composite number}

which are complements of each other. The straightforward algorithm for determining whether
a number n is prime is to search for a factor of n in the range 1 . . .

√
n. This actually shows

that COMP is in NP, and hence PRIME is in co-NP, since the factor is a succinct certificate
of membership in COMP.

However, Vaughn Pratt showed in 1976 that PRIME is in fact in NP. Unlike other
problems we have seen in NP, it is not immediately obvious that this is the case. Indeed,
the succinct certificates of primality that Pratt demonstrated exist are quite involved to
describe. Astoundingly, in August 2002, Manindra Agrawal and his students Neeraj Kayal
and Nitin Saxena announced that PRIME is actually in P! The algorithm they present is
quite easy to describe but the proof that its running time is bounded by a polynomial relies
on deep facts from number theory about the distribution of certain kinds of primes.

To be precise, the algorithm by Agrawal et al. embeds the problem of checking primality
into that of factoring polynomials. If a and p are co-prime integers, then the univariate
polynomial (x− a)p is equivalent to xp − a modulo p if, and only if, p is a prime. That is to
say, if p is prime, then all monomials in the expansion of (x − a)p except the first and last
vanish and if p is not prime, then at least one of them does not vanish. Of course, to check
the equivalence

(x− a)p ≡ (xp − a) (mod p)

could require exponential time. However, Agrawal et al. show that it is sufficient to check it
modulo a polynomial xr − 1 for suitable small values of r. What suitable means is spelled
out precisely in their paper, and it is then shown that the existence of such suitable values
follows from some deep results in number theory.

Function Classes

So far, in discussing complexity of problems we have only considered decision problems—
those where there is a yes/no answer for every possible input. In some cases, as with the
travelling salesman problem, this was somewhat artificial. We forced what is naturally

38

an optimisation problem into the mould of a decision problem in order to make it fit our
theory. The same could be said of the problems Clique, IND and a variety of the scheduling
problems we considered. The justification for this is that we were concerned with establishing
lower bounds. And, if we could prove that there is no polynomial time algorithm for the
decision problem TSP, we would know that there is none for the optimisation problem either.
Similarly, the proof of NP-completeness of TSP shows that if there were a polynomial-time
algorithm for the optimisation problem, then P = NP. Furthermore, there is a connection in
the other direction as well. A polynomial-time algorithm for the decision problem could also
be used to obtain a polynomial-time algorithm for the optimisation problem. This is true
for problems (TSP, Clique and IND are among them) where the maximum possible value of
the measure being optimised can be represented by a string that is at most polynomial in
the length of the input. This is because a black-box solving the decision problem could be
used by a binary search algorithm to find the optimum value. For instance, given a black
box that given a pair G,K gives a yes/no answer to the question whether G has a clique
with at least K elements, we can find out the size of the largest clique in G with log |G|
queries to the black box.4

Still, there is something interesting one can say about the complexity of functions as
opposed to decision problems and one can develop a complexity theory around such things.
While we know what the function computed by a deterministic machine is, it is not easy
to speak of the function computed by a nondeterministic machine since the string that is
produced as output for a given input x is not determined. Instead, we will talk of the
complexity of the witness functions of languages in NP.

Suppose we have a language L in NP. Then, we know

L = {x | ∃yR(x, y)}

where R is a polynomially-balanced, polynomial time decidable relation.
Definition
A witness function for L is any function f such that:

• if x ∈ L, then f(x) = y for some y such that R(x, y);

• f(x) = “no” otherwise.

The class FNP is the collection of all witness functions for languages in NP.
It is reasonably clear that if an NP-complete problem L had a polynomial-time com-

putable witness function, then P would be the same as NP. For instance, a witness function
for SAT would be a function which, for any Boolean expression φ returns a satisfying truth
assignment for φ if there is one and the string “no” otherwise.

Conversely, if P = NP, then every language in NP has a witness function that is com-
putable in polynomial time, by a binary search algorithm. To be precise, if L = {x |
∃yR(x, y)} is a language in NP, then the set L′ = {(x, z) | ∃y < zR(x, y)} is also decidable
in NP, where < is the lexicographical order on strings. So, assuming P = NP, there is a
polynomial time algorithm for L′ and we can use repeated calls to this algorithm to find,
given x, a witness y using binary search.

4Actually finding a clique is a different matter.

39

We could also define a notion of polynomial-time reduction between functions under
which one can show that there is a witness function for SAT that is FNP-complete. Still,
there are interesting functions in FNP, beside those that are associated with NP-complete
problems. We look at one such next.

Factorisation The factorisation problem is that of finding, given a positive integer n, its
prime factors. Since we also want to be able to verify that a given factorisation is correct,
we define the factorisation function as the function that maps n to a tuple

(2, k1; 3, k2; . . . ; pm, km),

where n = 2k13k2 · · ·pkmm .
This function is in FNP because it is a witness function for a trivial problem in NP, namely

the set of all positive integers. Still, it is not known whether this function is computable in
polynomial time. Indeed, public key cryptographic systems are built on the assumption that
factorisation cannot be done quickly.

Cryptography

The fundamental aim of cryptography is to enable Alice and Bob to communicate (as in
figure 10) without Eve being able to eavesdrop.

Alice Bob

Eve

Figure 10: Alice, Bob and Eve

In any cryptographic system, there are two keys: e – the encryption key and d – the
decryption key. There are also two functionsD and E such that: for any x, D(E(x, e), d) = x.
A private key system relies for its security on keeping both e and d secret.

For instance, we could take d = e and let both D and E be the exclusive or function.
This is known as the one-time pad. Since (x⊕e)⊕e = x, this satisfies the required condition
for a cryptographic system. Furthermore, the one time pad is provably secure in that the
only way that Eve would be able to decode a message is by knowing the key. For, if Eve
knows both the plain text x and the encrypted text y, she can work out the key e = x⊕ y.

In contrast, in a public key cryptographic system the key e is made public while d is
kept secret. We still have functions D and E such that: for any x, D(E(x, e), d) = x. If

40

the system is to work in reasonable time, then both D and E should be computable in
polynomial time. However, if Eve is not to be able to eavesdrop, the function that maps
E(x, e) to x without knowing d should not be computable in polynomial time. However, this
function is necessarily in the class FNP. This is because it is a witness function for the set:

{y | ∃xE(x, e) = y}.

Thus, public key cryptography is not provably secure in the way that the one-time pad is.
Instead, it relies on the unproved hypothesis that there are functions in FNP that are not in
FP (the class of functions computable in polynomial time).

One Way Functions To be more precise, in order for public-key cryptography to work,
we would like to have a one-way function, which is defined as a function f meeting the
following conditions:

1. f is one-to-one.

2. for each x, |x|1/k ≤ |f(x)| ≤ |x|k for some k.

3. f ∈ FP.

4. f−1 6∈ FP.

The reason for the first condition is obvious: we don’t want to have two distinct plain text
strings map to the same encrypted string. The second condition ensures that neither the map
from plain text to encrypted text nor the reverse map will result in a greater than polynomial
increase in the length of the string. The third condition is to ensure that encryption can be
done efficiently and the last is to ensure that decryption is difficult.

To be really useful, we would also like f to satisfy the condition that it can be easily
inverted when supplied with a decryption key d as a parameter. Note, however, that we don’t
even know whether there are any functions that satisfy the four conditions above. Indeed
to prove that such one-way functions exists would involve proving that P 6= NP. However, a
great deal of money has been invested in the belief that the RSA function, defined by:

f(x, e, p, q) = (xe mod pq, pq, e)

is a one-way function. This takes the plain text x and an encryption key e along with two
primes p and q and produces the encrypted text xe mod pq along with the public key (pq, e).

Given our inability to prove lower bounds, we are unable to prove that RSA is secure. It’s
reasonable to ask, however, whether we can place as much confidence in it as in our belief
that P and NP are different. Can we prove that, assuming P 6= NP, RSA is not invertible
in polynomial time? Indeed, can we show, under the assumption that P 6= NP that some
one-way function exists? Is there a function f that satisfies the first three conditions in the
definition of a one-way function and for which f−1 is FNP-complete? The answer to these
questions is, unfortunately, no. The existence of one-way functions is logically equivalent to
a stronger statement than P 6= NP. To understand this, we need to introduce one further
complexity class.

41

Definition
A nondeterministic machine is unambiguous if, for any input x, there is at most one accepting
computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.
Equivalently, we could say that UP is the class of languages L for which:

{x | ∃yR(x, y)},

where R is polynomial time computable, polynomially balanced, and for each x, there is at
most one y such that R(x, y). In other words, R is a partial function.

It is clear from the definitions that P ⊆ UP ⊆ NP. It is considered unlikely that there are
any NP-complete problems in UP. It is, in fact, difficult to think of any natural problems
that are in UP but not in P. However, we can show that the existence of one-way functions
is equivalent to the statement that P 6= UP.

To see why this is the case, first assume that we have a one-way function f . Then, we
can show that the language Lf defined by

Lf = {(x, y) | ∃z(z ≤ x and f(z) = y}.

Here, we are assuming that f acts on positive integers represented by binary strings. It
is not too difficult to see that Lf is in UP, since there is a nondeterministic machine that
recognises it by “guessing” a value for z and then checking that f(z) = y. Since the function
f is one-to-one, there is at most one such z and therefore the machine is unambiguous.

To see that Lf is not in P, we note that if it was, then we could compute f−1 in polynomial
time, using a binary search procedure. That is, given a value y, we know that if there is a
z such that f(z) = y, then it has z ≤ 2(log y)

k

, by condition 2 in the definition of a one-way
function. So, we can find z using a binary search procedure making at most (log y)k calls to
the algorithm that checks for membership in Lf . This gives a polynomial time algorithm for
computing f−1, contradicting the assumption that f is one-way.

We have shown that the existence of a one-way function implies that P 6= UP. Conversely,
suppose that we have a language L that is in UP but not in P and U is an unambiguous
machine accepting L. Define the function fU by the following:

if x is a string that encodes an accepting computation of U , then fU(x) = 1y where y
is the input string accepted by this computation;

fU(x) = 0x otherwise.

The function fU is one-to-one because the machine is unambiguous and therefore a given
string y cannot have more than one accepting computation. It is polynomially bounded by
the fact that machine U runs in polynomial time and therefore the lengths of computations
are bounded in the length of the input. It is also easily checked that fU is in FP and if f−1

U

were in FP, then the language L would be in P.

42

Space Complexity

Recall that we defined SPACE(f(n)) to be the languages accepted by a machine which uses
at most O(f(n)) tape cells on inputs of length n. In defining space complexity, we assume
a machine M , which has a read-only input tape, and separate work tapes. We only count
cells on the work tapes towards the complexity. Similarly, we define NSPACE(f(n)) to be
the class of languages accepted by a nondeterministic machine which uses at most O(f(n))
tape cells on inputs of length n. Since we are only counting space on the work tape, it makes
sense to consider bounding functions f that are sub-linear—it is quite possible for a machine
to accept a string x while using work space that is less than the length of x.

Constructible Functions When choosing a function f to serve as a bound of resources,
for example in defining a complexity class such SPACE(f(n)), we need to be careful. For one
thing, as we saw before, it makes sense to only consider computable functions. However,
there are some quite unnatural computable functions—for instance, a function that is 2n

for even n, and logn for odd numbers, which will naturally lead to quite unnatural classes
of languages if used in the definition of a complexity class. From now on, we restrict the
functions we use for bounds to what are called constructible functions.
Definition
A function f : IN→ IN is constructible if:

• f is non-decreasing, i.e. f(n+ 1) ≥ f(n) for all n; and

• there is a deterministic machine M which, on any input of length n, replaces the input
with the string 0f(n), and M runs in time O(n + f(n)) and uses O(f(n)) work space

(recall we do not count space on the input tape).

The intuition behind the second requirement is that computing the function f shouldn’t
require more resources than the limit imposed by f itself. This will, in particular, allow us to
compose the computation of f with any other computation that takes place within O(f(n))
time and space. Thus, we can prove results such as the following:

If L is in TIME(f(n)), then there is a machine M that accepts L, and which halts
on all inputs in O(f(n)) steps.

Examples All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are f + g, f · g, 2f and f ◦ g (this last,
provided that f(n) > n). This, together with the above examples, allows us to generate all
the constructible functions we will ever need, including all polynomials p(n), all functions
2p(n) for polynomials p, and much else besides.

43

Space Complexity Classes

As with time complexity, we are not generally interested in complexity classes defined by
single functions. We consider wider classes, in order to obtain robust definitions of complexity
classes that are independent of particular machine models. The classes we are particularly
interested in are the following:

L = SPACE(log n) The class of languages decidable using logarithmic workspace.

NL = NSPACE(log n) The class of languages recognisable by a nondeterministic ma-
chine using logarithmic workspace.

PSPACE =
⋃∞

k=1 SPACE(n
k)

The class of languages decidable in polynomial space.

NPSPACE =
⋃∞

k=1 NSPACE(n
k) The class of languages recognisable by a nondetermin-

istic machine using polynomial space.

Inclusions

We can show that the following inclusions hold among the complexity classes we have defined
above (some of these inclusions are easier to prove than others):

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE.

Moreover, since the classes L, P and PSPACE are all closed under complementation, we
can strengthen some of these to the following:

L ⊆ NL ∩ co-NL,P ⊆ NP ∩ co-NP and PSPACE ⊆ NPSPACE ∩ co-NPSPACE.

To prove these inclusions, we show the following general inclusions hold for any con-
structible function f :

1. SPACE(f(n)) ⊆ NSPACE(f(n));

2. TIME(f(n)) ⊆ NTIME(f(n));

3. NTIME(f(n)) ⊆ SPACE(f(n));

4. NSPACE(f(n)) ⊆ TIME(klogn+f(n)) for some constant k;

Of these, 1 and 2 are straightforward from the definitions, as any deterministic machine is
just a nondeterministic machine in which the transition relation δ happens to be functional.
On the other hand, 3 and 4 establish the relationships beteween time-bounded and space-
bounded complexity classes.

The inclusion in 3 is an easy simulation. A deterministic machine can simulate a non-
deterministic machine M by backtracking. In order to do this, it has to keep track of the
current configuration ofM as well as all the choices taken wherever a nondeterministic choice
was available to M . The space required to record these choices is clearly no more than a

44

constant multiple of the length of the computation. Moreover, the space required to store
the configuration of M also cannot be more than the number of steps in the computation of
M so far. So, the total work space required by the simulating machine is O(f), where f is
the time bound on M .

Inclusion 4 requires some more work to establish.

Reachability To establish the fourth of the inclusions, namely that

NSPACE(f(n)) ⊆ TIME(klogn+f(n))

we analyse the graph reachability problem. This problem is central to our understanding of
nondeterministic space complexity classes. Before we begin its study, it is worth pointing
out that the above mentioned inclusion implies that NL ⊆ P. This is because if we let f(n)
be c logn (for some constant c) in the inclusion, we have that:

NSPACE(logn) ⊆ TIME(k(c+1) logn) = TIME(n(c+1) log k).

The class on the right is clearly contained in P for constant k.
The Reachability problem is defined as the problem where, given as input a directed graph

G = (V,E), and two nodes a, b ∈ V we are to decide whether there is a path from a to b in
G. We have earlier seen an algorithm for this that requires time O(n2) and space O(n). We
now demonstrate a nondeterministic algorithm for Reachability that only requires logarithmic
workspace, thereby establishing that the problem is in NL. The algorithm is the following:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else
guess an index j (log n bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

In the above description, to “guess an index j” means to perform log n steps, each of
which has a nondeterministic choice of either writing a 0 or a 1 on a work tape and moving
to the right. At the end of these steps, log n bits have been written. Moreover, for every
index j, there is a computation path that results in j being written on the tape. Essentially,
this algorithm can be seen as trying all possible indices j in parallel. For those j for which
there is is an edge (i, j), the computation can continue. If there is any path from a to b in
the graph, there will be a computation of this machine which successively visits all the nodes
on that path.

The space requirements of the above algorithm are simple. It needs to store two indices,
each of logn bits, and therefore uses O(logn) space. Hence Reachability is in NL.

The significance of the fact that Reachability is in NL is in that this problem can stand in
for all problems in NL. There is a precise sense in which this is true. See Exercise sheet 3 for
details. Here, we will just note that the fact that there is a polynomial time deterministic

45

algorithm for Reachability can be used to show that all problems in NL are in P. In general,
we wish to show that for any constructible function f , NSPACE(f(n)) ⊆ TIME(k2f(n)).

Suppose M is a nondeterministic machine working with workspace bounded by f(n) for
inputs of length n. For a given input string x of length n there is a fixed finite number of
configurations of M that are possible. The finite state control can be in any of q states,
where q is a number which does not depend on x at all. The work tape can have one of sf(n)

strings on it, where s is the number of distinct symbols in the tape alphabet. The head on
the input tape can be in one of n different positions, and the head on the work tape can
be in one of f(n) different positions. Thus, the total number of distinct configurations is no
more than qnf(n)sf(n). For some constant c, this is less than ncf(n).

We define the configuration graph of the machine M on input x to be the graph whose
nodes are all possible configurations of M with x on the input tape, and the work tape
having at most f(|x|) symbols, and there is an edge between two configurations i and j if,
and only if, i →M j, i.e. the machine M can make the transition from configuration i to
configuration j in one step.

Then, it is clear that M accepts x if, and only if, there is a path from the starting con-
figuration (s, ⊲, x, ⊲, ε) to an accepting configuration (that is a configuration with state acc).
So, the problem of determining whether M accepts x is the same as the graph reachability
problem on the configuration graph of M on x. We have a deterministic algorithm that
solves the graph reachability problem in time O(n2). Thus, given any nondeterministic ma-
chine M that runs using workspace f(n), we can define a deterministic machine that accepts
the same language which runs by first generating the configuration graph of M on the given
input x, and then using the Reachability algorithm. The time taken by this deterministic
machine is O(g2), where g is the size of the configuration graph. That is the time is at most
c′(ncf(n))2 for some constant c′. But this is klogn+f(n), for some constant k ≤ c′c2.

In addition to establishing that NL ⊆ P, this also shows that NPSPACE ⊆ EXP.

Savitch’s Theorem

We can get more information about nondeterministic space complexity classes by examining
other algorithms for Reachability. In particular, we can show that Reachability is solvable by
a deterministic algorithm which uses only O((logn)2) space. If we are only concerned about
space, and not about time, this is an improvement on the deterministic algorithm we saw
before. Consider the following recursive algorithm for determining if there is a path in the
graph from a to b of length i or less.

Path(a,b,i).

if i=1 and a =/= b and there is no edge (a,b)

then reject

else if there is an edge (a,b) or a=b

then accept

else for each vertex x

if Path(a,x,floor(i/2)) and Path(x,b,ceil(i/2)) then accept

46

Where ceil(i/2) is ⌈i/2⌉ and floor(i/2) is ⌊i/2⌋ .
There is a path from a to b in a graph G with n vertices if, and only if, there is a path

of length n or less. So, we can solve the reachability problem by checking if Path(a, b, n)
holds. To analyse the space complexity of this algorithm, observe that the recursion can
be implemented by keeping a stack of records, each of which contains a triple (a, b, i). The
candidate middle vertex x (used as a loop variable) can be implemented as a counter that
takes values between 1 and n, and therefore requires logn bits. Each activation record on
the stack can be represented using 3 logn bits (log n for each of the three components). The
maximum depth of recursion is at most log n, since the value of i is halved at each nested
recursive call. Moreover, for each nested call, at most two activation records are placed on
the stack. Thus, we need space on the stack for at most 2 logn records. It follows that
6(logn)2 bits of space on the stack suffice. The algorithm therefore uses space O((logn)2).

We can use this algorithm to show that for any constructible function f such that f(n) ≥
log n, NSPACE(f(n)) ⊆ SPACE(f(n)2). The idea, once again, is to solve the Reachability

problem on the configuration graph of a nondeterministic machine M , which uses workspace
O(f(n)). The configuration graph has g = clogn+f(n) nodes, for some constant c, and therefore
the reachability problem can be solved using space

O((log g)2) = O((logn + f(n))2) = O((f(n))2).

The last of these equalities follows from the fact that f(n) ≥ logn. .
This would work, except that, in order to run the O((logn)2) algorithm for reachability,

we have to first produce the configuration graph on tape. And the tape that contains the
configuration graph is part of the work space of the machine that simulatesM . However, the
configuration graph has clogn+f(n) nodes, and therefore takes more than f(n)2 space. The
solution is that we do not keep the entire configuration graph on tape. Rather, whenever we
need to look up the graph, that is, when we need to check for a pair (i, j) of configurations
whether there is an edge between them, we write out the pair of configurations and check,
by looking at the machine M , whether configuration j can be reached from i in one step. In
effect, the description ofM serves as a compact description of the configuration graph. With
this, we can see that the total amount of work space needed is no more than O((f(n))2).

From the inclusion NSPACE(f(n)) ⊆ SPACE(f(n)2) follows Savitch’s theorem:
Theorem
PSPACE = NPSPACE.

From which it also follows that NPSPACE = co-NPSPACE, since PSPACE is closed under
complementation. However, a more general result about the closure of nondeterministic
space classes under complementation is known. Immerman and Szelepcśenyi proved that for
any constructible function f with f(n) ≥ logn, NSPACE(f(n)) = co-NSPACE(f(n)). The
proof is based on a still more clever algorithm for Reachability, which shows that there is a
nondeterministic machine, which with O(logn) work space determines the number of nodes
reachable from a node a.

47

Provable Intractability

Often, when we show that a problem is NP-complete, it is said that we have proved the
problem intractable. Of course, this is not, strictly speaking, correct. A proof of NP-
completeness does not show that the given problem is not in P unless we can also show
that P 6= NP. Our aim in this section is to show that there are some problems for which
it is possible to prove that they are not in P categorically, i.e. without the assumption that
P 6= NP.

Hierarchy

While proving lower bounds for specific problems such as the travelling salesman problem
remains the holy grail of complexity theory, one instance where we know how to prove lower
bounds is for problems that are constructed specifically for this purpose. That is, we can
use diagonalisation to construct a language with a specific lower bound. This allows us to
show, in particular that increasing the time (or space) bounds on a complexity class does
give us the ability to recognise more languages.

One such hierarchy theorem we can show is:
Time Hierarchy Theorem
For any constructible function f with f(n) ≥ n, TIME(f(n)) is properly contained in
TIME(f(2n+ 1)2).

To see this, we define a version of the halting problem with time bound f . That is, define
the language:

Hf = {[M], x | M accepts x in f(|x|) steps}
We now make two observations. First:

Hf ∈ TIME(f(n)2).

A machine for recognising Hf would first compute f(|x|), and on a separate work tape,
write out 0, f(|x|) times, to use as a clock for the rest of the computation. It would then
simulate machine M on input x for f(|x|) many steps, at each step looking through the
description of M given for the appropriate transition. The calculation of the time bound is
left as an exercise.

The second observation is:

Hf 6∈ TIME(f(⌊n/2⌋)).

The argument for this is similar to the argument that the halting problem H is undecid-
able. Suppose Hf ∈ TIME(f(⌊n/2⌋)). Then, we can construct a machine N which accepts
[M] if, and only if, [M], [M] 6∈ Hf . The machine simply copies [M], inserting a comma
between the two copies, and then runs the machine that accepts Hf . Moreover, the running
time of N on an input of length n is f(⌊(2n + 1)/2⌋) = f(n). We can now ask whether N
accepts the input [N], and we see that we get a contradiction either way.

From these two observations, the Time Hierarchy Theorem immediately follows.

48

Among the consequences of the Time Hierarchy Theorem is that there is no fixed k such
that all languages in P can be decided in time O(nk). Another consequence is that the
complexity class EXP, defined by:

EXP =
∞
⋃

k=1

TIME(2n
k

),

is a proper extension of P. That is, P ⊆ EXP, but EXP 6⊆ P.
Similar results can be obtained for space complexity, by proving a Space Hierarchy The-

orem. See Exercise Sheet 4.

49

Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of problems and classify them,
not on the basis of how difficult it is to compute the solutions to the problems, but on the basis
of how difficult it is to describe the problem itself. This gives an alternative perspective on
complexity theory, which is independent of particular machine models. In order to formalize
what we mean by describing a problem, we consider the definability of problems in formal
logic.

Consider the following three algorithmic problems.

1. Triangle: Given a graph G = (V,E) does it contain a triangle?

2. Reachability: Given a directed graph G = (V,E) and two of its vertices a, b ∈ V , does
G contain a path from a to b?

3. 3-Colourability Given a graph G = (V,E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever (u, v) ∈ E, χ(u) 6=
χ(v).

These problems can be distinguished by their computational complexity. The first one
can be solved in polynomial time and logarithmic space. That is to say, it is in the complexity
class L. The second one can be solved in polynomial time as we have seen, i.e. it is in P. Is it
in L? The best we can say is that this seems highly unlikely as it is NL-complete. The third
one can be solved in exponential time and polynomial space. Is it in P? Again, we can say
that this seems highly unlikely since it is NP-complete. Thus, the theory we have developed
allows us to distinguish the complexity of the three problems, but not in an absolute sense.
The distinctions are based on assumptions we do not know how to prove.

However, in terms of logical definability, there are provable distinctions we can make
between these problems. The question we ask is, in what kind of formal language can
decision problems be formalised or defined. Consider Triangle, the first of the problems
listed above. We can assert that a graph G = (V,E) contains a triange by means of the
following formula of first-order logic:

∃x, y, z ∈ V (x 6= y ∧ y 6= z ∧ x 6= z ∧ E(x, y) ∧ E(x, z) ∧ E(y, z))

Moreover, it can be proved that the other two problems, Reachability and 3-Colourability are
not definable in this sense, using only first-order quantification over vertices.

Formally, we define first-order predicate logic in the language of graphs as follows. We
have a collection of variables x, y, . . ., and we define the collection of formulas by the following
grammar:

E(x, y) | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ
If φ is a sentence (i.e. a formula without any free variables) in this logic, then we can ask of
any graph G = (V,E) whether or not φ is true in G, i.e. G |= φ. Thus, φ defines a collection
of graphs (i.e. a decision problem), those in which φ is true. The connection with complexity
comes from the fact that any property of graphs that is definable in first-order logic in this
sense is in the complexity class L.

50

To be precise, the problem of deciding whether G |= φ for a first-order formula φ can
be decided in time O(lnm) and O(m logn) space, where, l is the length of φ, n the number
of vertices of G and m is the nesting depth of quantifiers in φ. This can be established by
the straightforward algorithm which works recursively on the structure of φ. We have, at
any point, the graph G, a subformula ψ of φ and a map σ taking the free variables of ψ to
vertices of G.

• If ψ is an atomic formula, we determine G |=σ ψ by directly looking up the edges of
the graph.

• If ψ is θ1 ∧ θ2, we recursively determine G |=σ θ1 and G |=σ θ2, and similarly for the
other Boolean connectives.

• If ψ is ∃xθ, then for each v in G, we check whether G |=σ[x/v] θ.

To see that this algorithm matches the complexity bounds stated, note that there are at most
m nested for loops running over the vertices of G, giving nm running time. The additional
factor of l accounts for the Boolean connectives. The space requirements are to keep track
of σ. There are at most m free variables in any sub-formula and for each such variable x,
σ(x) is a pointer to a vertex in the graph, which can be stored using logn bits.

This tells us that to express any graph properties beyond the complexity L we need to
go beyond first-order logic. A natural step to consider is to introduce second-order quanti-
fiers. These can quantify, for example, over sets of vertices. 3-Colourability can be naturally
expressed by the following formula of second-order logic.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨Bx ∨Gx)∧
∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧
∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧
¬(Gx ∧Gy)))

Reachability can be expressed by the formula

∀S ⊆ V (a ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y))→ y ∈ S)→ b ∈ S)

This says that any set S of vertices which contains a and which is closed under the edge
relation E (i.e. whenever it contains x, it also contains y if E(x, y) holds) must also contain
b.

Full second-order logic uses, in addition to the symbols of first-order logic, a collection of
second-order variables X, Y, . . . where each variable has an associated arity a. The formulas
of the logic are obtained by adding to the defining rules of first-order logic two further clauses:

• we have atomic formulas X(t1, . . . , ta) where X is a second-order variable of arity a
and t1, . . . , ta are first-order terms; and

• if φ is a formula, so are ∃Xφ and ∀Xφ.

51

Existential second-order logic (ESO) consists of those formulas of second-order logic of the
form ∃X1 · · · ∃Xkφ where φ is a first-order formula. In other words, we do not allow universal
second-order quantifiers and moreover, all second-order quantifiers are outside the first-
order quantifiers and Boolean connectives. In our examples above, the formula expressing
3-colourability is an ESO formula but the formula expressing reachability is not. The interest
in ESO comes from the following remarkable theorem proved by Fagin.
Theorem (Fagin)
A class of graphs is definable by a formula of existential second-order logic if, and only if, it
is decidable by a nondeterminisitic machine running in polynomial time. In short:

ESO = NP

This shows that the complexity class NP has a natural characterisation which doesn’t
mention Turing machines, or nondeterminism or polynomials or time. It is simply those
properties that can be defined in existential second-order logic.

Proving one direction of the equivalence is relatively straightforward. We can show that
for any ESO sentence ∃X1 · · · ∃Xkφ we can define a nondeterministic machine which takes
a graph G and determines, in polynomial time, whether or not G |= φ. Such a machine
can nondeterministically “guess” an interpretation for the variables X1, . . . , Xk and then
check whether φ holds with this interpretation. The number of guesses required is at most
na1 + · · ·nak where a1, . . . , ak are the arities of the variables X1, . . . , Xk respectively. And
the time needed to evaluate φ is bounded by a polynomial in n by the recursive evaluation
of formulas of first-order logic given above. Thus the total running time is bounded by a
polynomial.

The other direction of Fagin’s theorem requiers a proof similar to that of the Cook-Levin
theorem. We can show, given a nondeterministic Turing machine M and a polynomial p
that we can write a sentence φM of ESO that is true in a graph G if, and only if, there is an
accepting computation of M on G of length at most p(n) where n is the number of vertices
of G.

In the light of Fagin’s theorem, a natural question we might ask is whether there is a
logic in which we can express exactly the polynomial-time decidable properties of graphs.
Such a logic would be intermediate between first-order and second-order logic. This remains
an open question and the subject of active research.

52

