The halting problem

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \ldots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \ldots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

► Let H' be obtained from H by replacing START → by START → $Z := R_1$ → $push Z \atop to R_2$ →

(where Z is a register not mentioned in H's program).

- Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $\longrightarrow R_0^- \longrightarrow R_0^+$.
- ▶ Let $c \in \mathbb{N}$ be the index of C's program.

L5

52

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0 if & only if H' started with H' s
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0 if & only if H started with R_1=c, R_2=\lceil [c] \rceil halts with R_0=0 if & only if R_1=c does not halt
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1 = c eventually halts
                        if & only if
      H' started with R_1 = c halts with R_0 = 0
                        if & only if
H started with R_1 = c, R_2 = \lceil [c] \rceil halts with R_0 = 0
                        if & only if
     prog(c) started with R_1 = c does not halt
                        if & only if
         C started with R_1 = c does not halt
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1 = c eventually halts
                        if & only if
      H' started with R_1 = c halts with R_0 = 0
                        if & only if
H started with R_1 = c, R_2 = \lceil [c] \rceil halts with R_0 = 0
                        if & only if
     prog(c) started with R_1 = c does not halt
                        if & only if
         C started with R_1 = c does not halt
                    —contradiction!
```

Computable functions

Recall:

```
Definition. f \in \mathbb{N}^n \rightarrow \mathbb{N} is (register machine)
computable if there is a register machine M with at least
n+1 registers R_0, R_1, ..., R_n (and maybe more)
such that for all (x_1, \ldots, x_n) \in \mathbb{N}^n and all y \in \mathbb{N},
     the computation of M starting with R_0 = 0,
     R_1 = x_1, \ldots, R_n = x_n and all other registers set
     to 0, halts with R_0 = y
if and only if f(x_1, \ldots, x_n) = y.
```

Note that the same RM M could be used to compute a unary function (n = 1), or a binary function (n = 2), etc. From now on we will concentrate on the unary case...

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$$e \mapsto \varphi_e$$

defines an <u>onto</u> function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N} .

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

So this is countable

defines an <u>onto</u> function from $\mathbb N$ to the collection of all computable partial functions from $\mathbb N$ to $\mathbb N$.

So IN - IN (uncountable, by Cantor) contains uncomputable functions

 $e \mapsto \varphi_e$

An uncomputable function

```
Let f \in \mathbb{N} \to \mathbb{N} be the partial function with graph \{(x,0) \mid \varphi_x(x) \uparrow \}.

Thus f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ undefined & \text{if } \varphi_x(x) \downarrow \end{cases}
```

An uncomputable function

```
Let f \in \mathbb{N} \to \mathbb{N} be the partial function with graph \{(x,0) \mid \varphi_x(x) \uparrow \}.

Thus f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ undefined & \text{if } \varphi_x(x) \downarrow \end{cases}
```

f is not computable, because if it were, then $f=\varphi_e$ for some $e\in\mathbb{N}$ and hence

- ▶ if $\varphi_e(e)\uparrow$, then f(e)=0 (by def. of f); so $\varphi_e(e)=0$ (since $f=\varphi_e$), hence $\varphi_e(e)\downarrow$
- ▶ if $\varphi_e(e)\downarrow$, then $f(e)\downarrow$ (since $f=\varphi_e$); so $\varphi_e(e)\uparrow$ (by def. of f)

—contradiction! So f cannot be computable.

Decision problems

Entscheidungsproblem means "decision problem". Given

a set S whose elements are finite data structures of some kind

```
(e.g. formulas of first-order arithmetic)
```

a property *P* of elements of *S* (e.g. property of a formula that it has a proof)

the associated decision problem is:

```
find an algorithm which terminates with result 0 or 1 when fed an element s \in S and yields result 1 when fed s if and only if s has property P.
```

L1

(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function

$$\chi_S \in \mathbb{N} \to \mathbb{N}$$
 is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$. Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

```
let e = R_1 and \lceil [a_1, \dots, a_n] \rceil = R_2 in
R_1 ::= \lceil (R_1 ::= a_1); \dots; (R_n ::= a_n); prog(e) \rceil;
R_2 ::= 0;
run M_0
```

Then by assumption on M_0 , H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}\$ is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}\$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out:

let
$$e = R_1$$
 in $R_1 := \lceil R_1 := 0$; $prog(e) \rceil$; run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0})—contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.

Exercise 5 If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy $\forall e \in \mathbb{N}$. $e \in S_0 \iff f(e) \in S_1$ then if S_1 is decidable, then so is S_0

Exercise 5 If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy $\forall e \in \mathbb{N}$. $e \in S_0 \iff f(e) \in S_1$ then if S_1 is decidable, then so is S_0

For
$$S_1 & S_2$$
 as on Slides $S7 & S8$ we have:
 $e \in S_0 \iff \varphi_e(0) \downarrow$
 $f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$

Exercise 5 If $f: \mathbb{N} \to \mathbb{N}$ is a RM computable function, $S_0 \subseteq \mathbb{N} \notin S_1 \subseteq \mathbb{N}$ satisfy $\forall e \in \mathbb{N}$. $e \in S_0 \iff f(e) \in S_1$ then if S_1 is decidable, then so is S_0

For S1 & S2 as on Slides 57 & 58 we have: $e \in S_o \Leftrightarrow \varphi_o(o) \downarrow$ $f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$ So can apply the Exercise to deduce undecidability of So, from undecidability of So, from undecidability of So by finding RM computable f: N > N with $\forall e, x. \ \varphi_{f(e)}(x) \equiv \varphi_{e}(0)$

Exercise 5 If $f: N \rightarrow N$ is a RM computable function, SOSINRSIGN satisfy $\forall e \in \mathbb{N}$. $e \in S_0 \iff f(e) \in S_1$ then if S, is decidable, then so is S. For S1 & S2 as on Slides 57 & 58 we have:

 $e \in S_o \iff \varphi_o(o) \downarrow$ $f(e) \in S_1 \iff \forall x \in \mathbb{N}. \ \varphi_{f(e)}(x) \downarrow$ So can apply the Exercise to deduce undecidability of So by finding RM computable f: N -> N with $\forall e, x.$ $\varphi_{f(e)}(x) \equiv \varphi_{e}(o)$ "K leene equivalence" (p 82): either LHS 8 RHS are undefined, or both are defined and equal