Theorem. A partial function is computable if and only if it is λ -definable.

We already know that

Register Machine computable

- = Turing computable
- = partial recursive.

Using this, we break the theorem into two parts:

- every partial recursive function is λ -definable
- λ -definable functions are RM computable

Recall: _

Representing primitive recursion

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and

 $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G,

we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$

where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a},a) \triangleq if a = 0 then f(\vec{a})$$

else $g(\vec{a},a-1,h(\vec{a},a-1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and

 $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G,

we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$

where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by... Strategy:

• show that
$$\Phi_{f,g}$$
 is λ -definable;
 $\lambda z \overline{\lambda} x$. If $(Eq_{0}x)(F \overline{\lambda})(G \overline{\lambda})(F z \overline{\lambda})(E \overline{\lambda})(F \overline{\lambda})$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and

 $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G,

we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$

where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by... Strategy:

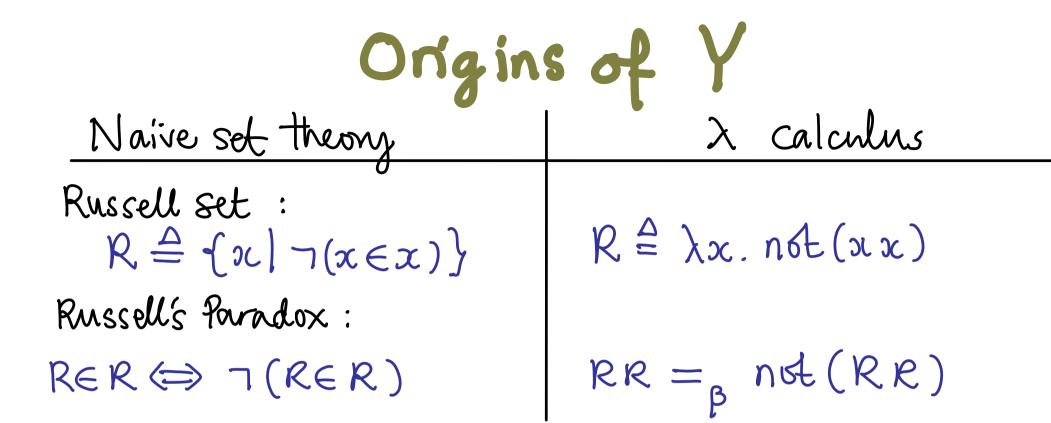
• show that $\Phi_{f,g}$ is λ -definable;

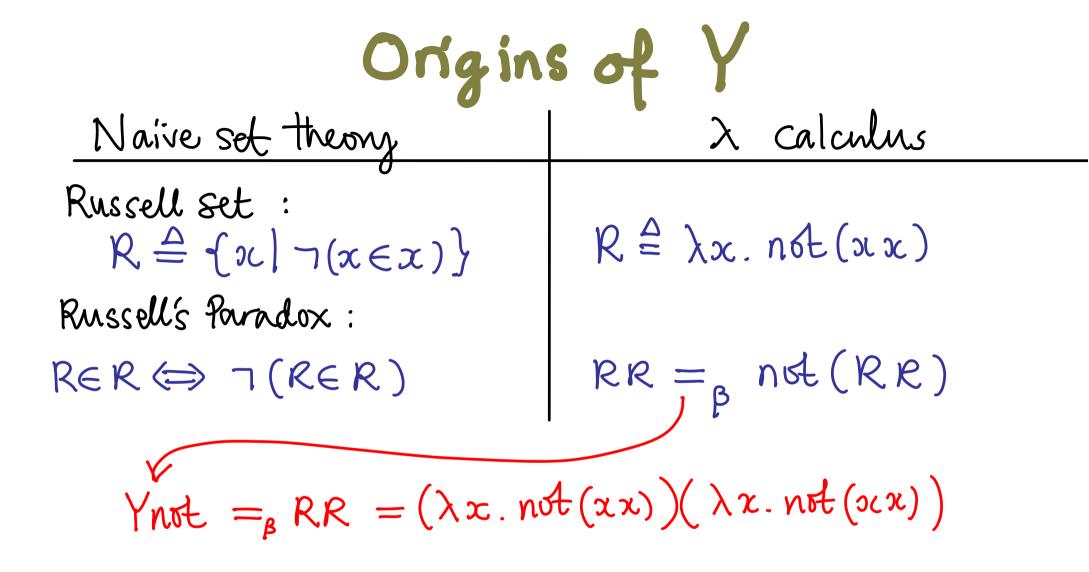
• show that we can solve fixed point equations X = M X up to β -conversion in the λ -calculus.

Curry's fixed point combinator **Y** $\mathbf{Y} \triangleq \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

Origins of YNaive set theory
$$\lambda$$
 calculusRussell set : $\mathcal{R} \triangleq \{x \mid \forall (x \in x)\}$ $\mathcal{R} \triangleq \{x \mid \forall (x \in x)\}$ $\mathcal{R} \triangleq \lambda x. not(x x)$ $\mathcal{R} \triangleq \lambda b. If b False True$





Origins of YNaive set theory
$$\lambda$$
 calculusRussell set : $\chi \in \{x \mid \neg(x \in x)\}$ $R \triangleq \{x \mid \neg(x \in x)\}$ $R \triangleq \lambda x. not(x x)$ Russell's Paradox : $RR = p not(RR)$

Ynot = RR =
$$(\lambda x. not(xx))(\lambda x. not(xx))$$

Yf = $(\lambda x. f(xx))(\lambda x. f(xx))$
Y = $\lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

Curry's fixed point combinator **Y** $\mathbf{Y} \triangleq \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$

satisfies $\mathbf{Y}M \rightarrow (\lambda x.M(xx))(\lambda x.M(xx))$

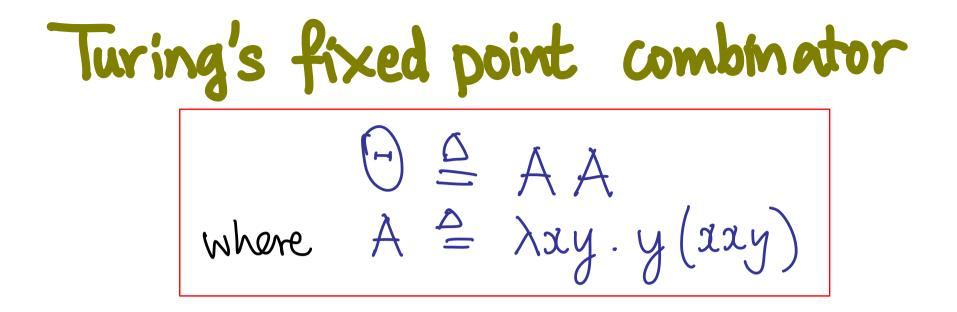
Curry's fixed point combinator **Y** $\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

satisfies $\mathbf{Y}M \rightarrow (\lambda x. M(x x))(\lambda x. M(x x))$ $\rightarrow M((\lambda x. M(x x))(\lambda x. M(x x)))$

hence $\mathbf{Y} M \rightarrow M((\lambda x. M(xx))(\lambda x. M(xx))) \leftarrow M(\mathbf{Y} M).$

So for all λ -terms M we have

 $\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$



 $\Theta M = AAM = (\lambda xy. y(\lambda xy))AM$

$$\Theta M = AAM = (\lambda xy. y(\lambda xy))AM$$

 $\rightarrow M(AAM)$
 $= M(\Theta M)$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a - 1, h(\vec{a}, a - 1))$

We now know that h can be represented by

 $Y(\lambda z \vec{x} x. \operatorname{lf}(\operatorname{Eq}_0 x)(F \vec{x})(G \vec{x}(\operatorname{Pred} x)(z \vec{x}(\operatorname{Pred} x)))).$

Recall that the class **PRIM** of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ -definability so far, we have: every $f \in PRIM$ is λ -definable.

So for λ -definability of all recursive functions, we just have to consider how to represent minimization. Recall...

Minimization

Given a partial function $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$, define $\mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N}$ by $\mu^n f(\vec{x}) \triangleq$ least x such that $f(\vec{x}, x) = 0$ and for each $i = 0, \dots, x - 1$, $f(\vec{x}, i)$ is defined and > 0(undefined if there is no such x)

So
$$\mu^{n}f(\vec{x}) = q(\vec{x},0)$$
 where in
general $g(\vec{x},x)$ satisfies
 $g(\vec{x},x) = iff(\vec{x},x) = 0$ then χ
else $g(\vec{x},x+1)$

Minimization

Given a partial function $f \in \mathbb{N}^{n+1} \to \mathbb{N}$, define $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ by $\mu^n f(\vec{x}) \triangleq$ least x such that $f(\vec{x}, x) = 0$ and for each $i = 0, \dots, x - 1$, $f(\vec{x}, i)$ is defined and > 0(undefined if there is no such x)

Can express $\mu^n f$ in terms of a fixed point equation: $\mu^n f(\vec{x}) \equiv g(\vec{x}, 0)$ where g satisfies $g = \Psi_f(g)$ with $\Psi_f \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ defined by $\Psi_f(g)(\vec{x}, x) \equiv if f(\vec{x}, x) = 0$ then x else $g(\vec{x}, x + 1)$

Representing minimization

Suppose $f \in \mathbb{N}^{n+1} \to \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \exists a \ (f(\vec{a}, a) = 0)$, so that $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^n$, $\mu^n f(\vec{a}) = g(\vec{a}, 0)$ with $g = \Psi_f(g)$ and $\Psi_f(g)(\vec{a}, a)$ given by *if* $(f(\vec{a}, a) = 0)$ *then a else* $g(\vec{a}, a + 1)$. So if f is represented by a λ -term F, then $\mu^n f$ is represented by

 $\lambda \vec{x}.\mathbf{Y}(\lambda z \, \vec{x} \, x. \, \mathbf{lf}(\mathbf{Eq}_0(F \, \vec{x} \, x)) \, x \, (z \, \vec{x} \, (\mathbf{Succ} \, x))) \, \vec{x} \, \underline{0}$

Recursive implies λ -definable

Fact: every partial recursive $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g, h \in PRIM$. (Follows from the proof that computable = partial-recursive.)

Hence every (total) recursive function is λ -definable.

More generally, every partial recursive function is λ -definable, but matching up \uparrow with $\Xi\beta$ -nf makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- code λ-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- code λ-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

Numerical coding of
$$\lambda$$
-terms
fix an emuration $x_0, x_1, x_2, ...$ of the set of variables.
For each λ -term M, define $\lceil m \rceil \in \mathbb{N}$ by
 $\lceil x_i^{\ 1} = \lceil [0, \hat{z}]^7$
 $\lceil \lambda x_i \cdot M^7 = \lceil [1, \hat{z}, \lceil M^7]^7$
 $\lceil M N^7 = \lceil [2, \lceil M^7, \lceil N^7]^7$
(where $\lceil n_0, n_1, ..., n_k \rceil^7$ is the numerical valing of lists
of numbers from P43).

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- code λ-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

The details are straightforward, if tedious.

 Formalization of intuitive notion of ALGORITHM in several equivalent ways
 Cf. "Church-Turing Thesis" 5 • Limitative results: jundecidable problems l'uncomputable functions "programs as data + diagonalization