Recall:

λ -Terms, M

are built up from a given, countable collection of

► variables *x*, *y*, *z*, ...

by two operations for forming λ -terms:

- λ-abstraction: (λx.M)
 (where x is a variable and M is a λ-term)
- application: (MM')
 (where M and M' are λ-terms).

Some random examples of λ -terms:

 $x \quad (\lambda x.x) \quad ((\lambda y.(xy))x) \quad (\lambda y.((\lambda y.(xy))x))$

β -Reduction

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

So the natural notion of computation for $\lambda\text{-terms}$ is given by stepping from a

 β -redex $(\lambda x.M)N$

to the corresponding

 β -reduct M[N/x]

Substitution *N*[*M*/*x*]

$$x[M/x] = M$$

$$y[M/x] = y \quad \text{if } y \neq x$$

$$(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

Substitution N[M/x]

$$x[M/x] = M$$

$$y[M/x] = y \quad \text{if } y \neq x$$

$$(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding". E.g. if $x \neq y$

 $(\lambda y.x)[y/x] \neq \lambda y.y$

Substitution N[M/x]

$$x[M/x] = M$$

$$y[M/x] = y \quad \text{if } y \neq x$$

$$(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

$$(A x = 0) \quad \text{or } x = 0 \quad \text{or } x = 0$$

$$(A x = 0) \quad \text{or } x = 0 \quad \text{or } x = 0$$

$$(A x = 0) \quad \text{or } x = 0 \quad \text{or } x = 0$$

 $(\lambda y.x)[y/x] =_{\alpha} (\lambda z.x)[y/x] = \lambda z.y$

In fact $N \mapsto N[M/x]$ induces a totally defined function from the set of α -equivalence classes of λ -terms to itself.

 $\lambda x, (\lambda z. z) y x [\lambda z. y/y]$

no possible Capture $\lambda_{\infty}, (\lambda_{z}, z) y x [\lambda_{z}, y/y]$

 $\lambda x. (\lambda z.z) y x [\lambda z.y/y]$ $= \lambda x. (\lambda z. z)(\lambda z. y) x$

 $\lambda x. (\lambda u. u) x y [\lambda y. x / y]$

 $\lambda x. (\lambda z. z) y x [\lambda x. y/y]$ $= \lambda x. (\lambda z. z) (\lambda x. y) x$

$$\lambda x. (\lambda u. u) x y [\lambda y. x / y] possible capture$$

$$\lambda x. (\lambda z. z) y x [\lambda x. y/y]$$

= $\lambda x. (\lambda z. z) (\lambda x. y) x$

$$\lambda x. (\lambda u. u) x y \begin{bmatrix} \lambda y. x / y \end{bmatrix} possible capture...$$

= $\lambda z. (\lambda u. u) z y \begin{bmatrix} \lambda y. x / y \end{bmatrix} \dots \alpha - convert to avoid$

 $\lambda x. (\lambda z. z) y x [\lambda x. y/y]$ $= \lambda x. (\lambda z.z)(\lambda x.y) x$

$$\lambda x. (\lambda u.u) x y \begin{bmatrix} \lambda y.x / y \end{bmatrix} possible capture ... = \lambda Z. (\lambda u.u) Z y \begin{bmatrix} \lambda y.x / y \end{bmatrix} ... \alpha - convert to avoid$$

= $\lambda Z \cdot (\lambda u \cdot u) Z (\lambda y \cdot x)$

One-step β -reduction, $M \rightarrow M'$:

$$\frac{M \to M'}{(\lambda x.M)N \to M[N/x]} \qquad \frac{M \to M'}{\lambda x.M \to \lambda x.M'}$$

$$\frac{M \to M'}{MN \to M'N} \qquad \frac{M \to M'}{NM \to NM'}$$

$$\frac{N =_{\alpha} M \qquad M \to M' \qquad M' =_{\alpha} N'}{N \to N'}$$

E.g. $((\lambda y.\lambda z.z)u)y$ $(\lambda x.x y)((\lambda y.\lambda z.z)u)$ $\overrightarrow{}(\lambda z.z)y \longrightarrow y$ $(\lambda x.x y)(\lambda z.z)$

E.g. $((\lambda y.\lambda z.z)u)y$ $(\lambda x.x y)((\lambda y.\lambda z.z)u)$ $\overrightarrow{}(\lambda z.z)y \longrightarrow y$ $(\lambda x.x y)(\lambda z.z)$

E.g. $((\lambda y.\lambda z.z)u)y$ $\rightarrow (\lambda z.z) y \longrightarrow y$ $(\lambda x.x y)((\lambda y.\lambda z.z)u)$ $(\lambda x.x y)(\lambda z.z)$

E.g. $((\lambda y.\lambda z.z)u)y$ $\rightarrow (\lambda z.z) y \longrightarrow y$ $(\lambda x.x y)((\lambda y.\lambda z.z)u)$ $(\lambda x.x y)(\lambda z.z)$

E.g. $((\lambda y.\lambda z.z)u)y$ $(\lambda x.x y)((\lambda y.\lambda z.z)u)$ $\overrightarrow{}(\lambda z.z)y \longrightarrow y$ $(\lambda x.x y)(\lambda z.z)$

Many-step β -reduction, $M \rightarrow M'$:

$$\frac{M =_{\alpha} M'}{M \twoheadrightarrow M'} \left[\begin{array}{c} M \rightarrow M' \\ \overline{M \twoheadrightarrow M'} \\ \text{(no steps)} \end{array} \right] \left[\begin{array}{c} M \rightarrow M' \\ \overline{M \twoheadrightarrow M'} \\ \text{(1 step)} \end{array} \right] \left[\begin{array}{c} M \rightarrow M' \\ \overline{M \twoheadrightarrow M''} \\ \text{(1 more step)} \end{array} \right]$$

E.g.

 $(\lambda x.x y)((\lambda y z.z)u) \twoheadrightarrow y$

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$ and so we have

 $u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y)$

Informally: $M =_{\beta} N$ holds if N can be obtained from M by performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g. $u((\lambda x y, v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$ and so we have $u((\lambda x u, v x)u) =_{\lambda} u((\lambda x u', v x)u)$

$$\begin{array}{rcl} u\left((\lambda x \, y. \, v \, x)y\right) &=_{\alpha} & u\left((\lambda x \, y'. \, v \, x)y\right) \\ & \rightarrow & u(\lambda y'. \, v \, y) & \text{reduction} \end{array}$$

Informally: $M =_{\beta} N$ holds if N can be obtained from Mby performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g.
$$u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$$

because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$
and so we have

$$\begin{array}{ll} u\left((\lambda x \, y. \, v \, x)y\right) &=_{\alpha} & u\left((\lambda x \, y'. \, v \, x)y\right) \\ & \to & u(\lambda y'. \, v \, y) & \text{reduction} \\ &=_{\alpha} & u(\lambda x. \, v \, y) \end{array}$$

Informally: $M =_{\beta} N$ holds if N can be obtained from Mby performing zero or more steps of α -equivalence, β -reduction, or β -expansion (= inverse of a reduction).

E.g.
$$u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$$

because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$
and so we have

$$\begin{array}{ll} u\left((\lambda x \, y. \, v \, x)y\right) &=_{\alpha} & u\left((\lambda x \, y'. \, v \, x)y\right) \\ & \to & u(\lambda y'. \, v \, y) & \text{reduction} \\ &=_{\alpha} & u(\lambda x. \, v \, y) \\ & \leftarrow & (\lambda x. \, u \, x)(\lambda x. \, v \, y) & \text{expansion} \end{array}$$

 β -Conversion $M =_{\beta} N$

is the binary relation inductively generated by the rules:

$\frac{M =_{\alpha} M'}{M =_{\beta} M'}$	$rac{M o M'}{M =_{eta} M'}$	$\frac{M =_{\beta} M'}{M' =_{\beta} M}$
$\frac{M =_{\beta} M' \qquad N}{M =_{\beta} N}$		$\frac{M =_{\beta} M'}{\lambda x.M =_{\beta} \lambda x.M'}$
$\frac{M =_{\beta} M' \qquad N =_{\beta} N'}{M N =_{\beta} M' N'}$		

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

[Proof omitted.]

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. Two show that two terms are β -convertible, it suffices to show that they both reduce to the same term. More precisely: $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely,

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \twoheadrightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \leftarrow M_2 \longrightarrow M' \leftarrow M_3$

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \twoheadrightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser

theorem: $M_1 \longrightarrow M \ll M_2 \longrightarrow M' \ll M_3$ $C-R \swarrow M'_2$

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \twoheadrightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_1 =_{\beta} M_2$ implies $\exists M (M_1 \twoheadrightarrow M' \leftarrow M_2)$.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

Note that if N is a β -nf and $N \rightarrow N'$, then it must be that $N =_{\alpha} N'$ (why?).

Hence if $N_1 =_{\beta} N_2$ with N_1 and N_2 both β -nfs, then $N_1 =_{\alpha} N_2$. (For if $N_1 =_{\beta} N_2$, then by Church-Rosser $N_1 \rightarrow M' \leftarrow N_2$ for some M', so $N_1 =_{\alpha} M' =_{\alpha} N_2$.)

So the β -nf of M is unique up to α -equivalence if it exists.

Non-termination

Some λ terms have no β -nf.

- E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies
 - $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
 - $\Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

Non-termination

Some λ terms have no β -nf.

- E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies
 - $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
 - $\Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

A term can possess both a β -nf and infinite chains of reduction from it.

E.g. $(\lambda x.y)\Omega \to y$, but also $(\lambda x.y)\Omega \to (\lambda x.y)\Omega \to \cdots$.

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first.

- left-most: reduce M before N in MN, and then
- outer-most: reduce (λx.M)N rather than either of M or N.
- (cf. call-by-name evaluation).
- **Fact:** normal-order reduction of M always reaches the β -nf of M if it possesses one.

$$\frac{M_{1} = M_{1}^{1} \quad M_{1}^{1} \rightarrow_{NOR} M_{2}^{1} \quad M_{2}^{1} = M_{2}}{M_{1} \rightarrow_{NOR} M_{2}}$$

$$\frac{M_{1} \rightarrow_{NOR} M_{2}}{M_{1} \rightarrow_{NOR} M_{1}}$$

$$\frac{M \rightarrow_{NOR} M_{1}^{1}}{\lambda x. M \rightarrow_{NOR} \lambda x. M^{1}}$$

$$\frac{M_{1} \rightarrow_{NOR} M_{1}^{1}}{M_{1} M_{2} \rightarrow_{NOR} M_{1}^{1} M_{2}}$$

$$\frac{M_{1} \rightarrow_{NOR} M_{1}^{1}}{(\lambda x. M) M^{1} \rightarrow_{NOR} M[M^{1}/a]}$$

$$\frac{M \rightarrow_{NOR} M_{1}^{1}}{M M_{2} \rightarrow_{NOR} M_{1}^{1}} \qquad Where \begin{cases} U ::= x \mid UN \\ N ::= \lambda x. N \mid U \\ N ::= \lambda x. N \mid U \\ N ::= \lambda x. N \mid U \\ M = M M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{2} M_{1} M_{2} M_{2}$$