
1 . 1

[10] COMMUNICATION



1 . 2

OUTLINE
Communication

Requirements
Inter-Thread Communication
Inter-Host Communication
Inter-Process Communication

Inter-Process Communication
Concept
fork(2), wait(2)
Signals
Pipes
Named Pipes / FIFOs
Shared Memory Segments
Files
Unix Domain Sockets



2 . 1

COMMUNICATION
Communication

Requirements
Inter-Thread Communication
Inter-Host Communication
Inter-Process Communication

Inter-Process Communication



2 . 2

REQUIREMENTS
For meaningful communication to take place, two or more parties have to exchange
information according to a protocol:

Data transferred must be in a commonly-understood format (syntax)
Data transferred must have mutually-agreed meaning (semantics)
Data must be transferred according to mutually understood rules
(synchronisation)

In computer communications, the parties in question come in a range of forms,
typically:

Threads
Processes
Hosts

Ignore problems of discovery, identification, errors, etc. for now



2 . 3

INTER-THREAD COMMUNICATION
It is a common requirement for two running threads to need to communicate

E.g., to coordinate around access to a shared variable

If coordination is not implemented, then all sorts of problems can occur. Range of
mechanisms to manage this:

Mutexes
Semaphores
Monitors
Lock-Free Data Structures
...

Not discussed here!

You'll get into the details next year in Concurrent and Distributed Systems
(Particularly the first half, on Concurrency)



2 . 4

INTER-HOST COMMUNICATION
Passing data between different hosts:

Traditionally different physical hosts
Nowadays often virtual hosts

Key distinction is that there is now no shared memory, so some form of
transmission medium must be used — networking

Also not discussed here!

In some sense it is "harder" than IPC because real networks are inherently:
Unreliable: data can be lost
Asynchronous: even if data is not lost, no guarantees can be given about
when it arrived

You'll see a lot more of this next year in Computer Networking



2 . 5

INTER-PROCESS COMMUNICATION
In the context of this course, we are concerned with Inter-Process Communication
(IPC)

What it says on the tin — communication between processes on the same host
Key point — it is possible to share memory between those processes

Given the protection boundaries imposed by the OS, by design, the OS must be
involved in any communication between processes

Otherwise it would be tantamount to allowing one process to write over
another's address space
We'll focus on POSIX mechanisms



3 . 1

INTER-PROCESS
COMMUNICATION

Communication
Inter-Process Communication

Concept
fork(2), wait(2)
Signals
Pipes
Named Pipes / FIFOs
Shared Memory Segments
Files
Unix Domain Sockets



3 . 2

CONCEPT
For IPC to be a thing, first you need multiple processes

Initially created by running processes from a shell
Subsequently may be created by those processes, ad infinitum
(...until your machine dies from your fork bomb...)

Basic process mechanisms: fork(2) followed by execve(2) and/or wait(2)

Will look at that plus several other common POSIX mechanisms



3 . 3

FORK(2), WAIT(2)
Simply put, fork(2) allows a process to clone itself:

Parent process creates child process
Child receives copy-on-write (COW) snapshot of parent's address space

Parent typically then either:

Detaches from child — hands responsibility back to init process
Waits for child — calling wait(2), parent blocks until child exits



3 . 4

SIGNALS
Simple asynchronous notifications on another process

A range of signals (28 at my last count), defined as numbers
Mapped to standard #defines, a few of which have standard mappings to
numbers

Among the more common ones:

SIGHUP: hangup the terminal (1)
SIGINT: terminal interrupt (2)
SIGKILL: terminate the process [cannot be caught or ignored] (9)
SIGTERM: terminate process (15)
SIGSEGV: segmentation fault — process made an invalid memory reference
SIGUSR1/2: two user signals [system defined numbers]

Use sigaction(2) to specify what function the signalled process should invoke
on receipt of a given signal



3 . 5

PIPES

Simplest form of IPC: pipe(2) returns a pair of file descriptors

(fd[0], fd[1]) are the (read, write) fds

Coupled with fork(2), can now communicate between processes:

Invoke pipe(2) to get read/write fds
fork(2) to create child process
Parent and child then both have read/write fds available, and can communicate



3 . 6

NAMED PIPES / FIFOS
The same as pipe(2) — except that it has a name, and isn't just an array of two
fds

This means that the two parties can coordinate without needing to be in a
parent/child relationship
All they need is to share the (path)name of the FIFO

Then simply treat as a file:

open(2)
read(2)
write(2)

open(2) will block by default, until some other process opens the FIFO for reading

Can set non-blocking via O_NDELAY



3 . 7

SHARED MEMORY SEGMENTS
What it says on the tin — obtain a segment of memory that is shared between two
(or more) processes

shmget(2) to get a segment
shmat(2) to attach to it

Then read and write simply via pointers — need to impose concurrency control to
avoid collisions though

Finally:

shmdt(2) to detach
shmctl(2) to destroy once you know no-one still using it



3 . 8

FILES
Locking can be mandatory (enforced) or advisory (cooperative)

Advisory is more widely available
fcntl(2) sets, tests and clears the lock status
Processes can then coordinate over access to files
read(2), write(2), seek(2) to interact and navigate

Memory Mapped Files present a simpler — and often more efficient — API

mmap(2) "maps" a file into memory so you interact with it via a pointer
Still need to lock or use some other concurrency control mechanism



3 . 9

UNIX DOMAIN SOCKETS
Sockets are commonly used in network programming — but there is (effectively) a
shared memory version for use between local processes, having the same API:

socket(2) creates a socket, using AF_UNIX
bind(2) attaches the socket to a file
The interact as with any socket

accept(2), listen(2), recv(2), send(2)
sendto(2), recvfrom(2)

Finally, socketpair(2) uses sockets to create a full-duplex pipe

Can read/write from both ends



4

SUMMARY
Communication

Requirements
Inter-Thread Communication
Inter-Host Communication
Inter-Process Communication

Inter-Process Communication
Concept
fork(2), wait(2)
Signals
Pipes
Named Pipes / FIFOs
Shared Memory Segments
Files
Unix Domain Sockets


