[10] COMMUNICATION

OUTLINE

e Communication

Requirements

Inter-Thread Communication
Inter-Host Communication
Inter-Process Communication

e Inter-Process Communication

Concept
fork(2),wait(2)
Signals

Pipes

Named Pipes / FIFOs
Shared Memory Segments
Files

Unix Domain Sockets

COMMUNICATION

 Communication
= Requirements
= [Inter-Thread Communication
= Inter-Host Communication
= [Inter-Process Communication
e Inter-Process Communication

REQUIREMENTS

For meaningful communication to take place, two or more parties have to exchange
information according to a protocol.

e Data transferred must be in a commonly-understood format (syntax)

e Data transferred must have mutually-agreed meaning (semantics)

e Data must be transferred according to mutually understood rules
(synchronisation)

In computer communications, the parties in question come in a range of forms,
typically:

e Threads
e Processes
e Hosts

Ilgnore problems of discovery, identification, errors, etc. for now

INTER-THREAD COMMUNICATION

It is a common requirement for two running threads to need to communicate
e E.g.,to coordinate around access to a shared variable

If coordination is not implemented, then all sorts of problems can occur. Range of
mechanisms to manage this:

e Mutexes

Semaphores

Monitors

Lock-Free Data Structures

Not discussed here!

e You'll get into the details next year in Concurrent and Distributed Systems
e (Particularly the first half, on Concurrency)

INTER-HOST COMMUNICATION

Passing data between different hosts:

e Traditionally different physical hosts
» Nowadays often virtual hosts

Key distinction is that there is now no shared memory, so some form of
transmission medium must be used — networking

Also not discussed here!

e In some sense it is "harder” than IPC because real networks are inherently:

= Unreliable: data can be lost
= Asynchronous: even if data is not lost, no guarantees can be given about

when it arrived
e You'll see a lot more of this next year in Computer Networking

INTER-PROCESS COMMUNICATION

In the context of this course, we are concerned with Inter-Process Communication
(IPC)

e What it says on the tin — communication between processes on the same host
o Key point — it is possible to share memory between those processes

Given the protection boundaries imposed by the OS, by design, the OS must be
involved in any communication between processes

e Otherwise it would be tantamount to allowing one process to write over

another's address space
o We'll focus on POSIX mechanisms

INTER-PROCESS
COMMUNICATION

o Communication
e Inter-Process Communication
= Concept
= fork(2),wait(2)
= Signals
= Pipes
= Named Pipes / FIFOs
= Shared Memory Segments
= Files
= Unix Domain Sockets

CONCEPT

For IPC to be a thing, first you need multiple processes

e |nitially created by running processes from a shell
o Subsequently may be created by those processes, ad infinitum
e (...until your machine dies from your fork bomb...)

Basic process mechanisms: fork (2) followed by execve (2) and/orwait(2)

Will look at that plus several other common POSIX mechanisms

FORK(2),WAIT(2)
Simply put, fork (2) allows a process to clone itself:

e Parent process creates child process
o Child receives copy-on-write (COW) snapshot of parent’s address space

Parent typically then either:

e Detaches from child — hands responsibility back to init process
e Waits for child — callingwait (2), parent blocks until child exits

SIGNALS

Simple asynchronous notifications on another process

e A range of signals (28 at my last count), defined as numbers

Mapped to standard #defines, a few of which have standard mappings to
numbers

Among the more common ones:

SIGHUP: hangup the terminal (1)

SIGINT: terminal interrupt (2)

SIGKILL: terminate the process [cannot be caught or ignored] (9)
SIGTERM: terminate process (15)

SIGSEGV: segmentation fault — process made an invalid memory reference
SIGUSR1/2:two user signals [system defined numbers]

Use sigaction(2) to specify what function the signalled process should invoke
on receipt of a given signal

PIPES

free space old data
new data

Process A Process B

write(fd, buf, n) read(fd, buf, n)

Simplest form of IPC: pipe (2) returns a pair of file descriptors
e (£d[0], £d[1]) are the (read, write) fds
Coupled with fork(2), can now communicate between processes:

e Invoke pipe(2) to get read/write fds
e fork(2) to create child process
e Parent and child then both have read/write fds available, and can communicate

NAMED PIPES / FIFOS

The same as pipe(2) — except that it has a name, and isn't just an array of two
fds

e This means that the two parties can coordinate without needing to be in a
parent/child relationship
o All they need is to share the (path)name of the FIFO

Then simply treat as a file:

e open(2)
e read(2)
e write(2)

open (2) will block by default, until some other process opens the FIFO for reading

e Can set non-blocking via O NDELAY

SHARED MEMORY SEGMENTS

What it says on the tin — obtain a segment of memory that is shared between two
(or more) processes

e shmget (2) to get a segment
e shmat(2) to attach to it

Then read and write simply via pointers — need to impose concurrency control to
avoid collisions though

Finally:

e shmdt (2) to detach
e shmctl(2) to destroy once you know no-one still using it

FILES

Locking can be mandatory (enforced) or advisory (cooperative)

e Advisory is more widely available

e fcntl (2) sets, tests and clears the lock status

e Processes can then coordinate over access to files

e read(2),write(2), seek(2) to interact and navigate

Memory Mapped Files present a simpler — and often more efficient — API

e mmap(2) ‘'maps” a file into memory so you interact with it via a pointer
 Still need to lock or use some other concurrency control mechanism

UNIX DOMAIN SOCKETS

Sockets are commonly used in network programming — but there is (effectively) a
shared memory version for use between local processes, having the same API.

e socket (2) creates a socket, using AF UNIX

e bind(2) attaches the socket to a file

e The interact as with any socket
m accept(2),listen(2),recv(2),send(2)
= sendto(2),recvfrom(2)

Finally, socketpair (2) uses sockets to create a full-duplex pipe

e Can read/write from both ends

SUMMARY

e Communication

= Requirements

» [nter-Thread Communication

= [nter-Host Communication

= |nter-Process Communication
e |nter-Process Communication

= Concept

» fork(2),wait(2)

= Signals

= Pipes

= Named Pipes / FIFOs

= Shared Memory Segments

= Files

= Unix Domain Sockets

