

6.3: Minimum Spanning Tree

Frank Stajano

Thomas Sauerwald

Minimum Spanning Tree Problem

Minimum Spanning Tree Problem

- Given: undirected, connected graph $G=(V, E, w)$ with non-negative edge weights

Minimum Spanning Tree Problem

Minimum Spanning Tree Problem

- Given: undirected, connected graph $G=(V, E, w)$ with non-negative edge weights
- Goal: Find a subgraph $\subseteq E$ of minimum total weight that links all vertices

Minimum Spanning Tree Problem

Minimum Spanning Tree Problem

- Given: undirected, connected graph $G=(V, E, w)$ with non-negative edge weights
- Goal: Find a subgraph $\subseteq E$ of minimum total/weight that links all vertices

Must be necessarily a tree!

Minimum Spanning Tree Problem

Minimum Spanning Tree Problem

- Given: undirected, connected graph $G=(V, E, w)$ with non-negative edge weights
- Goal: Find a subgraph $\subseteq E$ of minimum total weight that links all vertices

Applications

- Street Networks, Wiring Electronic Components, Laying Pipes
- Weights may represent distances, costs, travel times, capacities, resistance etc.

Generic Algorithm

0 : def minimum spanningTree (G)
1: $\quad A=$ empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

Generic Algorithm

```
0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
```

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph is still a subset of a minimum spanning tree.

Generic Algorithm

```
0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
```

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph is still a subset of a minimum spanning tree.

How to find a safe edge?

Finding safe edges

Definitions

- a cut is a partition of V into at least two disjoint sets

Finding safe edges

Finding safe edges

Finding safe edges

Finding safe edges

Definitions

- a cut is a partition of V into at least two disjoint sets
- a cut respects $A \subseteq E$ if no edge of A goes across the cut

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$,

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}
- Consider now the tree $T \cup e_{\ell} \backslash e_{x}$:

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}
- Consider now the tree $T \cup e_{\ell} \backslash e_{x}$:

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}
- Consider now the tree $T \cup e_{\ell} \backslash e_{x}$:
- This tree must be a spanning tree

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}
- Consider now the tree $T \cup e_{\ell} \backslash e_{x}$:
- This tree must be a spanning tree
- If $w\left(e_{\ell}\right)<w\left(e_{X}\right)$, then this spanning tree has
 smaller cost than T (can't happen!)

Proof of Theorem

Let $A \subseteq E$ be a subset of a MST of G. Then for any cut that respects A, the lightest edge of G that goes across the cut is safe.

Proof:

- Let T be a MST containing A
- Let e_{ℓ} be the lightest edge across the cut
- If $e_{\ell} \in T$, then we are done
- If $e_{\ell} \notin T$, then adding e_{ℓ} to T introduces cycle
- This cycle crosses the cut through e_{ℓ} and another edge e_{x}
- Consider now the tree $T \cup e_{\ell} \backslash e_{x}$:
- This tree must be a spanning tree
- If $w\left(e_{\ell}\right)<w\left(e_{X}\right)$, then this spanning tree has
 smaller cost than T (can't happen!)
- If $w\left(e_{\ell}\right)=w\left(e_{x}\right)$, then $T \cup e_{\ell} \backslash e_{x}$ is a MST.

Glimpse at Kruskal's Algorithm

6.3: Minimum Spanning Tree

Glimpse at Kruskal's Algorithm

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step,

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Glimpse at Kruskal's Algorithm

Basic Strategy

- Let $A \subseteq E$ be a forest, intially empty
- At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Execution of Kruskal's Algorithm

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```


Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

Time Complexity

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

Time Complexity

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Time Complexity
 - Initialisation (I. 4-9): $\mathcal{O}(V+E \log E)$

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Time Complexity
 - Initialisation (I. 4-9): $\mathcal{O}(V+E \log E)$

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Time Complexity
 - Initialisation (I. 4-9): $\mathcal{O}(V+E \log E)$
- Main Loop (I. 11-16): $\mathcal{O}(E \cdot \alpha(n))$

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Time Complexity
 - Initialisation (l. 4-9): \(\mathcal{O}(V+E \log E)\)
 - Main Loop (l. 11-16): \(\mathcal{O}(E \cdot \alpha(n))\)
 \Rightarrow Overall: $\mathcal{O}(E \log E)=\mathcal{O}(E \log V)$

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Time Complexity
 - Initialisation (l. 4-9): \(\mathcal{O}(V+E \log E)\)
 - Main Loop (I. 11-16): \(\mathcal{O}(E \cdot \alpha(n))\)
 \Rightarrow Overall: $\mathcal{O}(E \log E)=\mathcal{O}(E \log V)$
If edges are already sorted, runtime becomes $O(E \cdot \alpha(n))$!

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

Correctness

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Correctness
 - Consider the cut of all connected components (disjoint sets)

Details of Kruskal's Algorithm

```
0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Correctness
 - Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend A by an edge that goes across the cut

Details of Kruskal's Algorithm

```
def kruskal(G)
    Apply Kruskal's algorithm to graph G
    Return set of edges that form a MST
A = Set() # Set of edges of MST; initially empty.
D = DisjointSet()
for v in G.vertices():
    D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A
```

 Correctness
 - Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend A by an edge that goes across the cut
- This edge is also the lightest edge crossing the cut (otherwise, we would have included a lighter edge before)

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

_ Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

- Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Implementation will be based on vertices!

Prim's Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Assign every vertex not in A a key which is at all stages equal to the smallest weight of an edge connecting to A

Prim's Algorithm

Basic Strategy

- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to A that does not yield cycle

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Final MST is given (implicitly) by the pointers!

Prim's Algorithm

Implementation

- Every vertex in Q has key and pointer of least-weight edge to $V \backslash Q$
- At each step:

1. extract vertex from Q with smallest key \Leftrightarrow safe edge of $\operatorname{cut}(V \backslash Q, Q)$
2. update keys and pointers of its neighbors in Q

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey(item=v, newKey=w)
```


Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
            v.key = 0
    else:
            v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                            v.predecessor = u
                            Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
            v.key = 0
    else:
            v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$,

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$,

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$,

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$,

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey(item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (l. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$ Amortized Cost

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$ \Rightarrow Overall: $\mathcal{O}(V \log V+E)$

Details of Prim's Algorithm

```
def prim(G,r)
    Apply Prim's Algorithm to graph G and root r
    Return result implicitly by modifying G:
    MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
    v.predecessor = None
    if v == r:
        v.key = 0
    else:
        v.key = Infinity
    Q.insert(v)
while not Q.isEmpty():
    u = Q.extractMin()
    for v in u.adjacent():
            w = G.weightOfEdge (u,v)
            if Q.hasItem(v) and w < v.key:
                v.predecessor = u
                    Q.decreaseKey (item=v, newKey=w)
```

Time Complexity

- Fibonacci Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot 1)$ \Rightarrow Overall: $\mathcal{O}(V \log V+E)$

- Binary/Binomial Heaps:

Init (I. 6-13): $\mathcal{O}(V)$, ExtractMin (15): $\mathcal{O}(V \cdot \log V)$, DecreaseKey (16-20): $\mathcal{O}(E \cdot \log V)$ \Rightarrow Overall: $\mathcal{O}(V \log V+E \log V)$

Summary (Kruskal and Prim)

Generic Idea

- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting A

Summary (Kruskal and Prim)

Generic Idea

- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting A

Kruskal's Algorithm

- Gradually transforms a forest into a MST by merging trees
- invokes disjoint set data structure
- Runtime $\mathcal{O}(E \log V)$

Summary (Kruskal and Prim)

Generic Idea

- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting A

Kruskal's Algorithm

- Gradually transforms a forest into a MST by merging trees
- invokes disjoint set data structure
- Runtime $\mathcal{O}(E \log V)$

Prim's Algorithm

- Gradually extends a tree into a MST by adding incident edges
- invokes Fibonacci heaps (priority queue)
- Runtime $\mathcal{O}(V \log V+E)$

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Outlook: Reverse-Delete Algorithm

Basic Idea

- Let A be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from A as long as all vertices are connected by A

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM'1995

- randomised MST algorithm with expected runtime $O(E)$
- based on Boruvka’s algorithm (from 1926)

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM'1995

- randomised MST algorithm with expected runtime $O(E)$
- based on Boruvka’s algorithm (from 1926)

Chazelle, JACM'2000

- deterministic MST algorithm with runtime $O(E \cdot \alpha(n))$

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM'1995

- randomised MST algorithm with expected runtime $O(E)$
- based on Boruvka's algorithm (from 1926)

Chazelle, JACM'2000

- deterministic MST algorithm with runtime $O(E \cdot \alpha(n))$

Pettie, Ramachandran, JACM'2002

- deterministic MST algorithm with asymptotically optimal runtime
- however, the runtime itself is not known...

