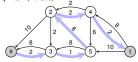


Residual Graph $G_f = (V, E_f, c_f)$:



6.6: Maximum flow

Frank Stajano

Thomas Sauerwald

Lent 2016

Outline

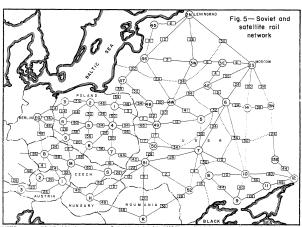
Introduction

Ford-Fulkerson

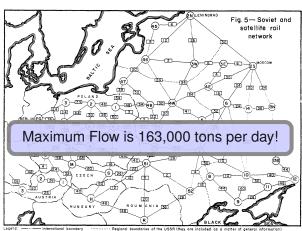
A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

History of the Maximum Flow Problem [Harris, Ross (1955)]

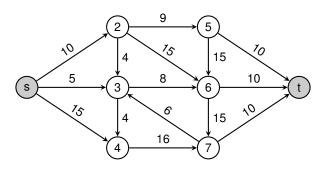


History of the Maximum Flow Problem [Harris, Ross (1955)]



Flow Network

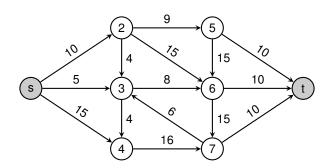
- Abstraction for material (one commodity!) flowing through the edges
- G = (V, E) directed graph without parallel edges
- distinguished nodes: source s and sink t
- every edge e has a capacity c(e)



Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- G = (V, E) directed graph without parallel edges
- distinguished nodes: source s and sink t
- every edge e has a capacity c(e)

Capacity function $c: V \times V \to \mathbb{R}^+$

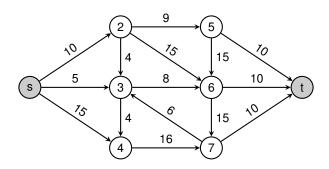


Flow Network

- Abstraction for material (one commodity!) flowing through the edges
- G = (V, E) directed graph without parallel edges
- distinguished nodes: source s and sink t
- every edge e has a capacity c(e)

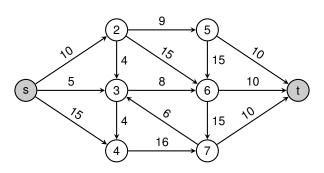
Capacity function $c: V \times V \to \mathbb{R}^+$

 $c(u,v) = 0 \Leftrightarrow (u,v) \notin E$



- Flow -

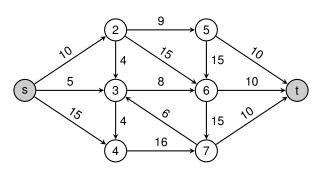
A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

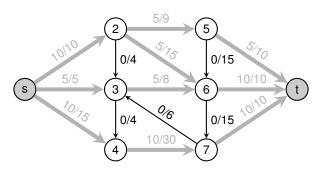
• For every $u, v \in V$, $f(u, v) \leq c(u, v)$



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

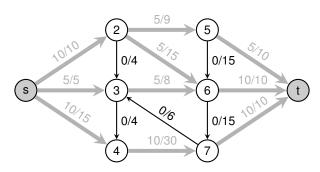
• For every $u, v \in V$, $f(u, v) \leq c(u, v)$



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

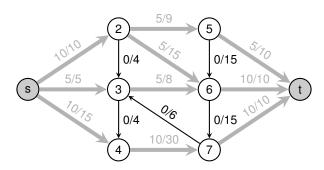
- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

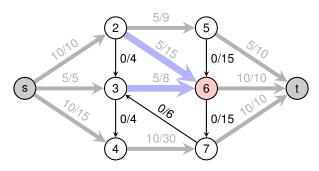
- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

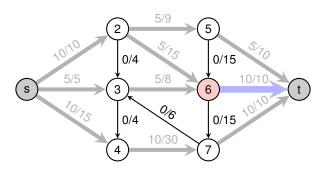
- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$



- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

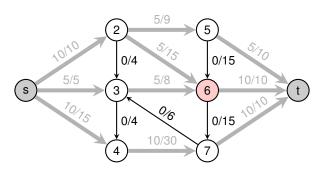


6.6: Maximum flow

- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$



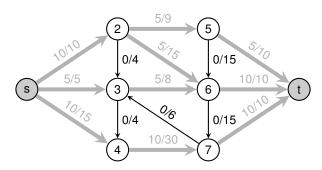
6.6: Maximum flow

- Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)

• For every $u \in V \setminus \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

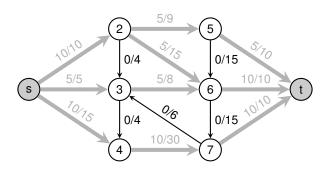


Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$



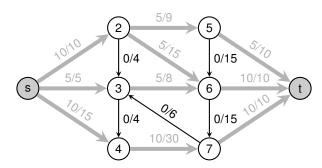
Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

$$\sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

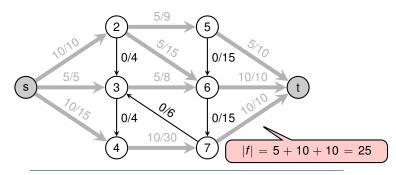


Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$



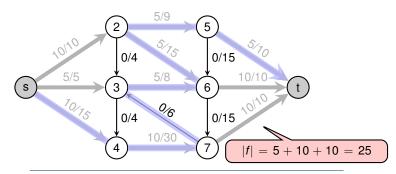
6.6: Maximum flow T.S.

Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$



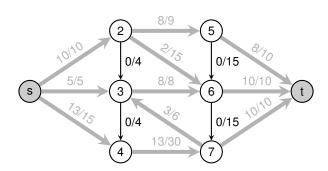
6.6: Maximum flow T.S.

Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

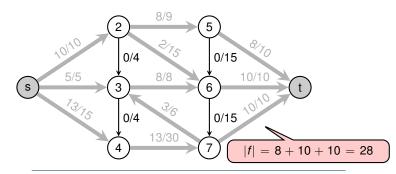


Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$



6.6: Maximum flow T.S.

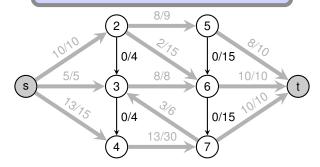
Flow

A flow is a function $f: V \times V \to \mathbb{R}$ that satisfies:

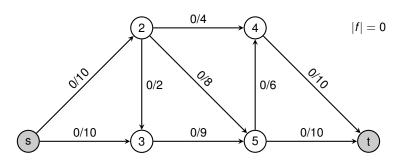
- For every $u, v \in V$, $f(u, v) \leq c(u, v)$
- For every $u, v \in V$, f(u, v) = -f(v, u)
- For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$

The value of a flow is defined as $|f| = \sum_{v \in V} f(s, v)$

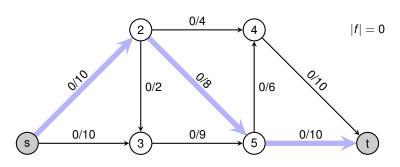
How to find a Maximum Flow?



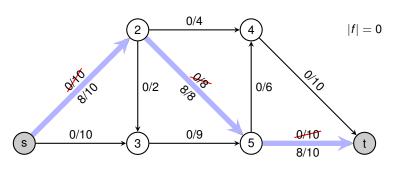
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



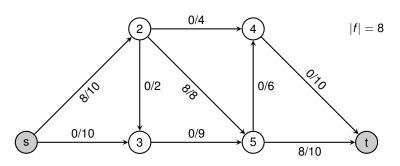
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



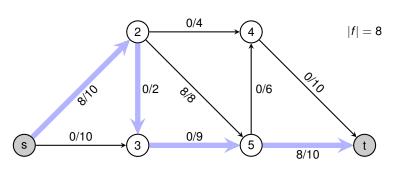
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



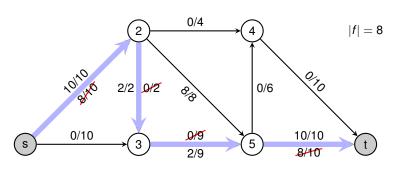
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



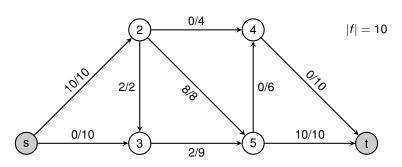
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



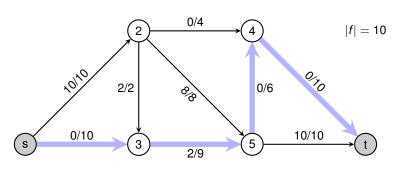
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



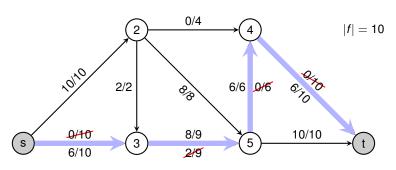
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



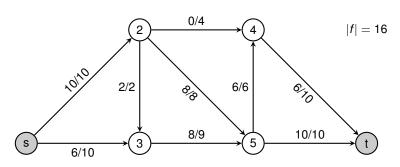
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



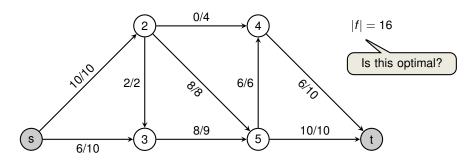
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



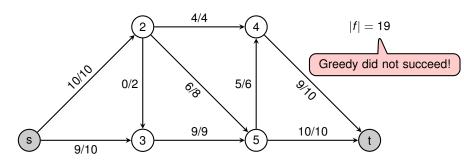
- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



- Start with f(u, v) = 0 everywhere
- Repeat as long as possible:
 - Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
 - Augment flow along p



Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Original Edge —

Edge
$$e = (u, v) \in E$$

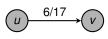
• flow f(u, v) and capacity c(u, v)

Original Edge -

Edge
$$e = (u, v) \in E$$

• flow f(u, v) and capacity c(u, v)

Graph G:



Original Edge -

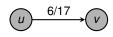
Edge
$$e = (u, v) \in E$$

• flow f(u, v) and capacity c(u, v)

Residual Capacity ----

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Graph G:



Original Edge -

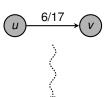
Edge
$$e = (u, v) \in E$$

• flow f(u, v) and capacity c(u, v)

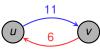
Residual Capacity ----

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Graph G:



Residual G_f :



Original Edge -

Edge
$$e = (u, v) \in E$$

• flow f(u, v) and capacity c(u, v)

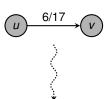
Residual Capacity ——

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Residual Graph ———

•
$$G_f = (V, E_f, c_f), E_f := \{(u, v) : c_f(u, v) > 0\}$$

Graph G:



Residual G_f :

Original Edge -

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

• flow f(u, v) and capacity c(u, v)

Graph G:



Original Edge -

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

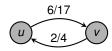
• flow f(u, v) and capacity c(u, v)

Residual Capacity ———

For every pair
$$(u, v) \in V \times V$$
,

$$c_f(u,v)=c(u,v)-f(u,v).$$

Graph G:



Original Edge ---

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

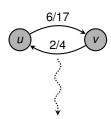
• flow f(u, v) and capacity c(u, v)

Residual Capacity ———

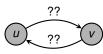
For every pair $(u, v) \in V \times V$,

$$c_f(u,v)=c(u,v)-f(u,v).$$

Graph G:



Residual G_f :



Original Edge -

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

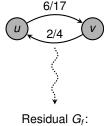
• flow f(u, v) and capacity c(u, v)

Residual Capacity ———

For every pair $(u, v) \in V \times V$,

$$c_f(u,v)=c(u,v)-f(u,v).$$

Graph G:



Residual G_f : 17-(6-2)

Original Edge -

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

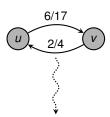
• flow f(u, v) and capacity c(u, v)

Residual Capacity ———

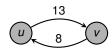
For every pair $(u, v) \in V \times V$,

$$c_f(u,v)=c(u,v)-f(u,v).$$

Graph G:



Residual G_f :



Original Edge ---

Edge
$$e = (u, v) \in E$$
 (& possibly $e' = (v, u) \in E$)

• flow f(u, v) and capacity c(u, v)

Residual Capacity ———

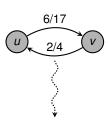
For every pair $(u, v) \in V \times V$,

$$c_f(u,v)=c(u,v)-f(u,v).$$

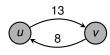
Residual Graph ———

•
$$G_f = (V, E_f, c_f), E_f := \{(u, v) : c_f(u, v) > 0\}$$

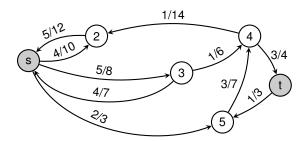
Graph G:



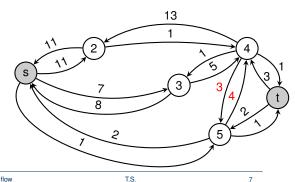
Residual G_f :



Flow network G

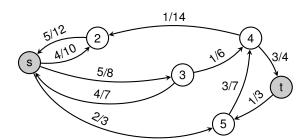


Residual Graph Gf



6.6: Maximum flow T.S.

Flow network G



7

T.S.

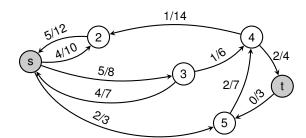
Flow network G $5 | 1 \rangle 2$ $4 | 1 \rangle 0$ $5 | 1 \rangle 0$ $4 | 1 \rangle 0$ $5 | 1 \rangle 0$

1/14

7

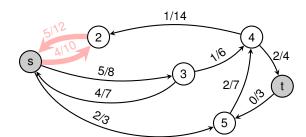
5/N² 2 4/7 4 2/4 4 2/4 5 5/8 3 2/7 5 t

Flow network G



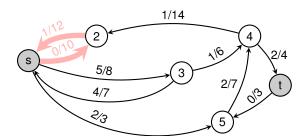
T.S.

Flow network G

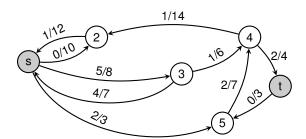


6.6: Maximum flow T.S.

7



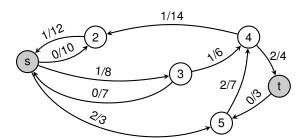
Flow network G



s 0/10 2/4 5/8 3 2/7 0/3 t

s 1/12 2 4 4 2/4 3 2/7 0/3 t

Flow network G



7

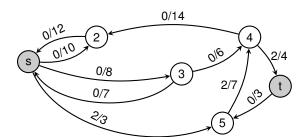
T.S.

1/14 s 0/10 1/8 0/7 2/3 5

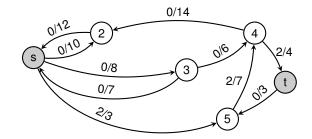
1/14 s 0/10 1/8 0/7 2/3 5

9/14 9/10

Flow network G



Flow network G



By successively eliminating cycles we can simplify and reduce the "transportation" cost of a flow.


```
0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G<sub>f</sub> can be found:
3: push as much extra flow as possible through it
```



```
0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:
3: push as much extra flow as possible through it

Augmenting path: Path from source to sink in G_f
```



```
0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G<sub>f</sub> can be found:
3: push as much extra flow as possible through it
```

If f' is a flow in G_f and f a flow in G, then f + f' is a flow in G


```
0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G<sub>f</sub> can be found:
3: push as much extra flow as possible through it
```

Questions:

- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?

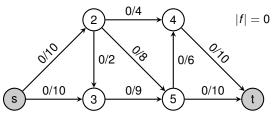

```
0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G<sub>f</sub> can be found:
3: push as much extra flow as possible through it
```

Using BFS or DFS, we can find an augmenting path in O(V + E) time.

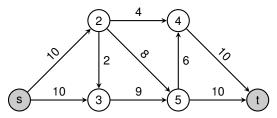
Questions:

- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?

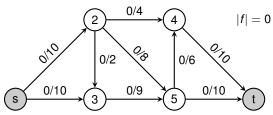
Graph G = (V, E, c):



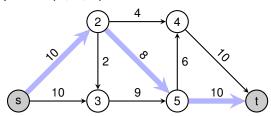
Residual Graph $G_f = (V, E_f, c_f)$:



Graph G = (V, E, c):

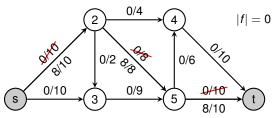


Residual Graph $G_f = (V, E_f, c_f)$:

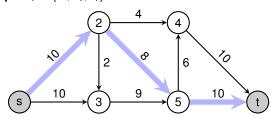


6.6: Maximum flow T.S. 9

Graph G = (V, E, c):

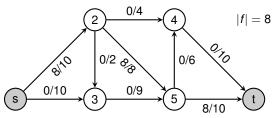


Residual Graph $G_f = (V, E_f, c_f)$:

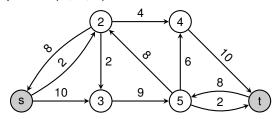


6.6: Maximum flow T.S. 9

Graph G = (V, E, c):



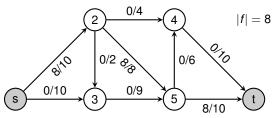
Residual Graph $G_f = (V, E_f, c_f)$:



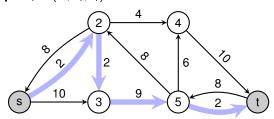
6.6: Maximum flow T.S.

9

Graph G = (V, E, c):

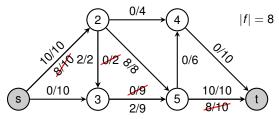


Residual Graph $G_f = (V, E_f, c_f)$:

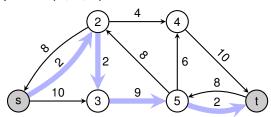


6.6: Maximum flow T.S.

Graph G = (V, E, c):

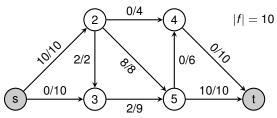


Residual Graph $G_f = (V, E_f, c_f)$:

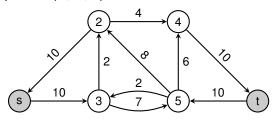


6.6: Maximum flow T.S.

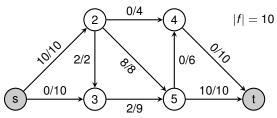
Graph G = (V, E, c):



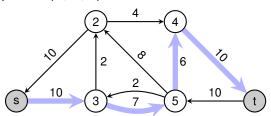
Residual Graph $G_f = (V, E_f, c_f)$:



Graph G = (V, E, c):

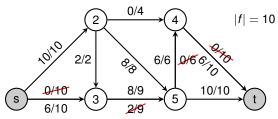


Residual Graph $G_f = (V, E_f, c_f)$:

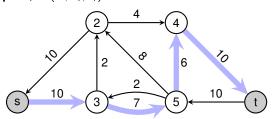


6.6: Maximum flow T.S.

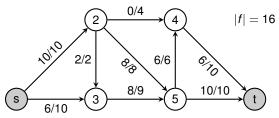
Graph G = (V, E, c):



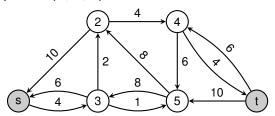
Residual Graph $G_f = (V, E_f, c_f)$:



Graph G = (V, E, c):

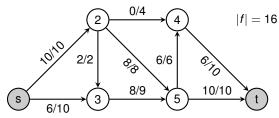


Residual Graph $G_f = (V, E_f, c_f)$:

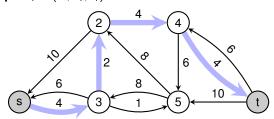


6.6: Maximum flow T.S.

Graph G = (V, E, c):

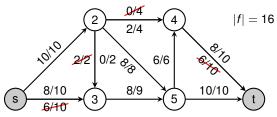


Residual Graph $G_f = (V, E_f, c_f)$:

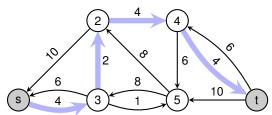


6.6: Maximum flow

Graph G = (V, E, c):

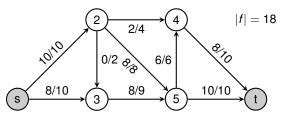


Residual Graph $G_f = (V, E_f, c_f)$:

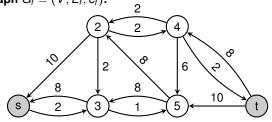


6.6: Maximum flow

Graph G = (V, E, c):

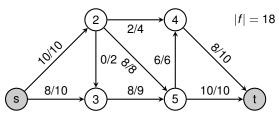


Residual Graph $G_f = (V, E_f, c_f)$:

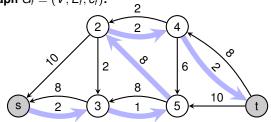


6.6: Maximum flow T.S.

Graph G = (V, E, c):

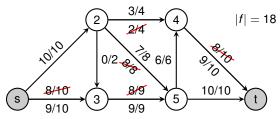


Residual Graph $G_f = (V, E_f, c_f)$:

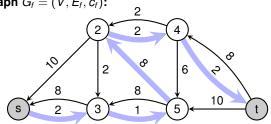


6.6: Maximum flow

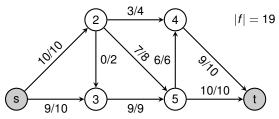
Graph G = (V, E, c):



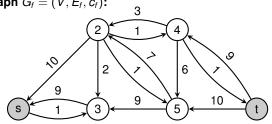
Residual Graph $G_f = (V, E_f, c_f)$:



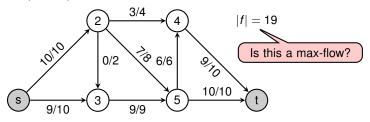
Graph G = (V, E, c):

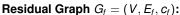


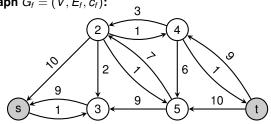
Residual Graph $G_f = (V, E_f, c_f)$:



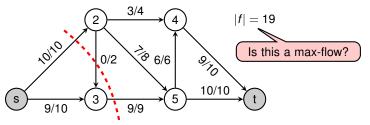
Graph G = (V, E, c):

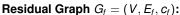


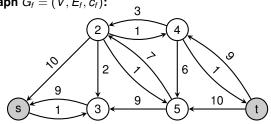




Graph G = (V, E, c):

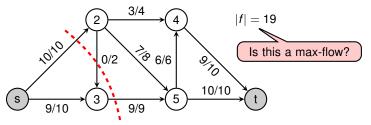


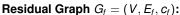


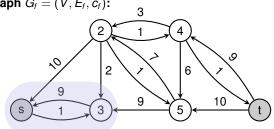


6.6: Maximum flow T.S.

Graph G = (V, E, c):







6.6: Maximum flow T.S.

Outline

Introduction

Ford-Fulkerson

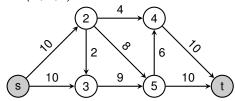
A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Cut

■ A cut (S, T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

Graph G = (V, E, c):

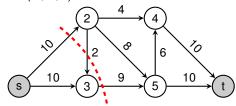


6.6: Maximum flow T.S.

— Cut ·

■ A cut (S, T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

Graph G = (V, E, c):



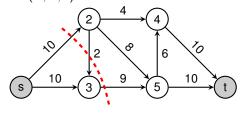
6.6: Maximum flow T.S.

— Cut

- A cut (S, T) is a partition of V into S and T = V \ S such that s ∈ S and t ∈ T.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

Graph G = (V, E, c):



6.6: Maximum flow T.S. 11

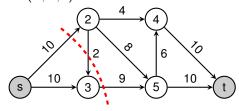
 $c({s,3},{2,4,5,t}) =$

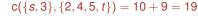
— Cut

- A cut (S, T) is a partition of V into S and T = V \ S such that s ∈ S and t ∈ T.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

Graph G = (V, E, c):





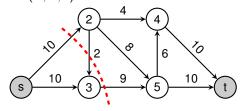
— Cut

- A cut (S, T) is a partition of V into S and T = V \ S such that s ∈ S and t ∈ T.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

 A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

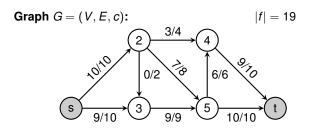
Graph G = (V, E, c):



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

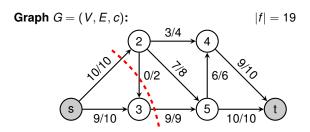
$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

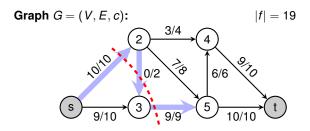
$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

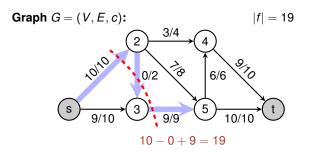
$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

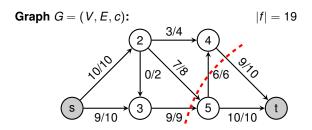


6.6: Maximum flow T.S.

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

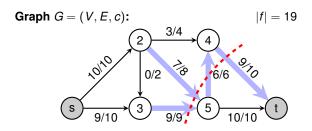
$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

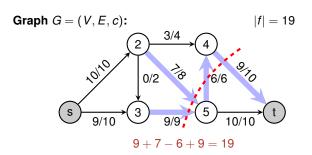
$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$



6.6: Maximum flow T.S.

Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)

1: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_f can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u,v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Flow before iteration integral & capacities in G_f are integral \Rightarrow Flow after iteration integeral

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $C := \max_{u,v} c(u, v)$ iterations and returns the maximum flow.

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $C := \max_{u,v} c(u, v)$ iterations and returns the maximum flow.

(proof omitted here, see CLRS3)

