Graph G= (V. E,c):

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction

6.6: Maximum flow

TS.

History of the Maximum Flow Problem [Harris, Ross (1955)]

Fig. 5— Soviet and
satellite rail
network

MoSCOW

00 1
satellites are for 400 net fons (or the equivelent)
g lines. The numbers shown in boxes are total

et e el oendery
@ operating divio
veared in twa

cxcest in Sost Germany. In East Germany, train capacities are thase of nte

interdivisional caacities

TS.

6.6: Maximum flow

History of the Maximum Flow Problem [Harris, Ross (1955)]

Fig. 5— Soviet and
satellite rail
network

MoSCOW

o raios or thelr aquivorent, Train copaciies
re for 400 net fons (or the equivelent)
e numbers shown in boxes are total

in Polanu are for 666 net tons (or the equivalent). Tr
except in East Germany. In East Germany, train capacities are tho
interdivisional casacities.

6.6: Maximum flow TS.

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink ¢

= every edge e has a capacity c(e)

6.6: Maximum flow TS. 4

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink ¢

= every edge e has a capacity c(e)
7

[Capacity functionc : V x V — R*]

6.6: Maximum flow TS. 4

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink ¢

= every edge e has a capacity c(e)
7 AN

[Capacity functionc : V x V — R* J [c(u,v) =0< (u,v) ¢ E j

S . 6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)

0/4 015
© (e ®
Q
ARG 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)

0/4 015
© (e ®
Q
ARG 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)

= Foreveryue V\ {s,t},>,c,f(u,v)=0

0/4 015
© (e ®
Q
ARG 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Foreveryu,v e V, f(u,v) < c(u,v) S :
= For every u,v € v, f(U, V) _ —f(V, U) ! ow Conservation

= Foreveryue V\ {s,t},>,c,f(u,v)=0

0/4 0/15
® (e ® ®
WIRNG 0115

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Foreveryu,v e V, f(u,v) < c(u,v) S :
= For every u,v € v, f(U, V) _ —f(V, U) ! ow Conservation

= Foreveryue V\ {s,t},>,c,f(u,v)=0

0/4 0/15
® (e O, ®
WIRNG 0115

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Foreveryu,v e V, f(u,v) < c(u,v) S :
= For every u,v € v, f(U, V) _ —f(V, U) ! ow Conservation

= Foreveryue V\ {s,t},>,c,f(u,v)=0

0/4 0/15
® (e ® ®
WIRNG 0115

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Foreveryu,v e V, f(u,v) < c(u,v) S :
= For every u,v € v, f(U, V) _ —f(V, U) ! ow Conservation

= Foreveryue V\ {s,t},>,c,f(u,v)=0

0/4 0/15
® (e O, ®
WIRNG 0115

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

0/4 015
© (e ®
Q
ARG 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

~

(Zuevf(sV) = Toey 1))

0/4 0/15
® (e O, ®
WIRNG 0115

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

© ©

0/4 0/15
® (e O, ®
WIRNG 0115
-

@ 7 [|f|=5+1o+10=25]

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

© ®

0/4 0/15
® (e O, ®
oa %6 0115
-

@ 7 [|f|=5+1o+10=25]

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

0/4 0115
® ® ®
o/ 0115

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

® ® ® ©

N
() @(|f|:8+10+10:28]

4

6.6: Maximum flow

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Foreveryu,v e V, f(u,v) < c(u,v)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

How to find a Maximum Flow?

0/4 0115
® ® ®
0/4 0115

6.6: Maximum flow TS.

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

0/4

Q}Q

Q
N
Q 0/2

@ 0/10 3 0/9
N4

oy B, 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

fl=0

©
Q¢

0/6

BAO0
> 8/10 @

oy B, 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

|fl =8

©
Q¢

8/10 @

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

|fl =8

8/10 @

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

0/4

Q
\
\Q\@?@ 22 07 g

oy B, 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

5y 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere

= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

f| = 16

X
(Is this optimal?)

X 6 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere

= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

f| =19

N

(Greedy did not succeed! j

X 6 6.6: Maximum flow TS. 5

Outline

Ford-Fulkerson

6.6: Maximum flow

TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

-'..a;. 6.6: Maximum flow TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Graph G:

@ 6/17 @

-'-.a;. 6.6: Maximum flow TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

0 otherwise.

c(u,v)—f(u,v) if(u,v)eE,
cr(u,v) =< f(v,u) if (v,u) € E,

Graph G:

@ 6/17 @

-'-.a;. 6.6: Maximum flow TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v) —f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) € E,
0 otherwise.

Graph G:
@ 6/17 @

¥

Residual G¢:
11

@ ©®

-'-.a;. 6.6: Maximum flow TS.

Residual Graph

——— Original Edge

Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v) —f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) € E,
0 otherwise.

Residual Graph

" G{ = (V, Ef, Cf), Ef = {(U, V)Z Cf(U, V) > 0}

Graph G:
@ 6/17 @

¥

Residual G¢:
11

@ ©®

-'-.a;. 6.6: Maximum flow TS.

Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
2/4

--,.a;. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity
For every pair (u,v) € V x V,

ci(u,v) =c(u,v) — f(u,v).

Graph G:

6/17

2/4

-'..a;. 6.6: Maximum flow TS.

Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)

= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4

For every pair (u,v) € V x V, :

Cf(uv V) = C(U, V) - f(u7 V)' H
v
Residual Gr:
2?

--,.a',. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4
For every pair (u,v) € V x V, :
Cf(uv V) = C(U, V) - f(u7 V)' H
v
Residual Gr:
17-(6-2)

--,.a',. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)

= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4

For every pair (u,v) € V x V, :

Cf(uv V) = C(U, V) - f(u7 V)' H

v

Residual Gr:
13

--,.a',. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity

For every pair (u,v) € V x V,

ci(u,v) =c(u,v) — f(u,v).

Residual Graph
- Gf = (V, Ef, Cf), Ef = {(U7 V): Cf(U7 V) > 0}

Graph G:

6/17

2/4

v
Residual Gr:
13

-'-.a;. 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

Residual Graph Gt

1/14

b
o 5, 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

1/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

>

Flow network G

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

>

Flow network G

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

>

Flow network G

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

0/14

b
o Y 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

0/14

Flow network G

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

. 6.6: Maximum flow TS. 7

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push a77much extra flow as possible through it

WNRrO

Augmenting path: Path
from source to sink in Gt

a1 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

N

WNRrO

If f' is a flow in Gf and f a flow
in G, then f + " is a flow in G

a1 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Questions:
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?

o
SRS, 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

(Using BFS or DFS, we can find an
, L augmenting path in O(V + E) time.
Questions:

/4
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?

a1 6.6: Maximum flow TS. 8

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

55 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

If| = 19

(Is this a max-flow?)

55 6.6: Maximum flow TS. 9

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

If| = 19

(Is this a max-flow?)

55 6.6: Maximum flow TS. 9

Illustration of the Ford-Fulkerson Method

Graph G= (V,E,c):

If| = 19

(Is this a max-flow?)

55 6.6: Maximum flow TS. 9

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

. kel
o 6.6: Maximum flow

TS.

From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

Graph G= (V,E,¢c):

6.6: Maximum flow TS. 1

From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

Graph G= (V,E,¢c):

6.6: Maximum flow TS. 1

From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= > cuv)

ueS,veT (u,v)€E(S,T)

Graph G= (V,E,¢c):

c({s,3},{2,4,5,t}) =

6.6: Maximum flow TS. 1

From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= > cuv)

ues,veT (u,v)EE(S,T)

Graph G= (V,E,¢c):

c({s,3},{2,4,5,t}) =10+ 9 = 19

6.6: Maximum flow TS. 1

From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= > cuv)
ueS,veT (u,v)€EE(S,T)

= A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Graph G= (V,E,¢c):

c({s,3},{2,4,5,t}) =10+ 9 = 19

6.6: Maximum flow TS. 1

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

el el
S, 6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

el el
S, 6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

el el
S, 6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

.
A
/
A}
@ 9/10 @-‘ 9/9
10-0+9=19

el el
S, 6.6: Maximum flow TS. 11

10/10

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

el el
S, 6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

l“

BN Sl
02 @ 68 0
4

L4
’
’
9/10 9/9, : 10/10 @
el el
E:E 6.6: Maximum flow TS. 1

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19

l“

BN Sl
02 @ 68 0
4

'l
9/10 9/9, : 10/10 @

9+7-6+9=19

el el
S, 6.6: Maximum flow TS. 11

Outline

Analysis of Ford-Fulkerson

ol el
S 6.6: Maximum flow

TS.

Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNEFrO

55, 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNEFrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

a1 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNEFrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Ve

J

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integeral

55, 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.

S
SR %, 6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

9s push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.

£\

\
[(proof omitted here, see CLRSS)]

S
a1 6.6: Maximum flow TS. 13

	Introduction
	Ford-Fulkerson
	A Glimpse at the Max-Flow Min-Cut Theorem
	Analysis of Ford-Fulkerson

