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Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Foreveryu,v e V, f(u,v) < c(u,v)
= Foreveryu,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,f(u,v)=0
The value of a flow is defined as |f| =3 .\, f(s, V)

How to find a Maximum Flow?
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A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p
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A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere

= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

f| =19
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

0 otherwise.
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Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
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Example of a Residual Graph (Handout)

0/14

Flow network G

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it
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: def fordFulkerson (G)
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

N
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If f' is a flow in Gf and f a flow
in G, then f + " is a flow in G
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0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Questions:
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

( Using BFS or DFS, we can find an
, L augmenting path in O(V + E) time.
Questions:

/4
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?

a1 6.6: Maximum flow TS. 8
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

Graph G= (V,E,¢c):
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)
ueS,veT (u,v)€EE(S,T)

= A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Graph G= (V,E,¢c):

c({s,3},{2,4,5,t}) =10+ 9 = 19
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From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G = (V,E,c): |fl =19
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From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

9s push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.

£\

\
[(proof omitted here, see CLRSS)]

S
a1 6.6: Maximum flow TS. 13




	Introduction
	Ford-Fulkerson
	A Glimpse at the Max-Flow Min-Cut Theorem
	Analysis of Ford-Fulkerson

