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Use of Amortized Analysis
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Amortized Analysis

next week

Fibonacci Heaps

~ two weeks

(Finding Shortest Paths)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S) ~__“
= pops the top of (a non-empty) stack S PUSH(S.X)
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k} N
(

B
BB

BE
B

0: MULTIPOP (S, k)

1: while not S.empty() and k > 0 \/
2: POP (S) POP(S)
3: k=k-1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

BEE

Simple Worst-Case Bound (stack is initially empty): —
= largest cost of an operation: n "
= cost is at most n- n = n? (correct, but not tight!) MULTIPOP(S,4)

kel
=

-;F

5.1: Amortized Analysis TS. 3



Sequence of Stack Operations

[x]
8]
N— \._/ |_| m m \m/

x|
[=]5]

\_/‘\_/\_/\/\/\/

PUSH(T) PUSH(B) PUSH(X POP PUSH(D) MULTIPOP(3)

o 5.1: Amortized Analysis TS. 4



A new Analysis Tool: Amortized Analysis

[ Data structure operations (Heap, Stack, Queue etc.) J

~——— Amortized Analysis V//

» analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques ~~—_

* Aggregate Analysis [This is not average case analysis!]

= Potential Method

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @

/i
4
[ Even though operations may be of different types/costs ]

i
s 5.1: Amortized Analysis TS. 5




Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

0] X Every item that is POPPED ]
had to be PUSHED earlier!
-
\_/ \_/

PUSH(B) MULTIPOP(3)

MULTIPOP(k) contributes min{k, |S|} to Tpop(n) ]

/4
T(n) < Tpop(n) + TpusH(n) < 2 Tpysn(n) < 2 n.
1
Aggregate Analysis: The amortized cost per operation is @ <2

s
R, 5.1: Amortized Analysis TS. 6



Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

.;,i',, 5.1: Amortized Analysis TS.



Stack as a coin-operated machine (p. 83)
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Stack and Coins

XS DS
BS BS Bo Bo
AN / \Te' \Te, \Te, \Te, \Tel AN
NCEPE R EGCEE R GG R G AGED
PUSH(T) PUSH(B) PUSH(X) ( POP PUSH(D) MULTIPOP(3)
[ Every operation costs at most two coins! j

credit
i / \/.

[
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Potential Method in Detail

P
; A f ¢ < C,C = Cor
= ¢ is the actual cost of operation i i < G Gi i
¢ > ¢; are all possible!

= C; is the amortized cost of operation i

= @, is the potential stored after operation i (®o = 0)
~

[Function that maps states of the data structure to some value

E,' =Ci+ (d),' — ¢/_1)
7 S~

« PUSH(): ¢ =1 « PUSH(): & — &y =1
= POP: ¢; =1 = POP: &; — d;_; = —1
n

n n
ZE/ = Z(Ci+¢i—¢i—1) = Zci+¢n
i=1 i=1 i=1 /]

[ If &, > 0 for all n, sum of amortized costs is ]

an upper bound for the sum of actual costs!

- 5 5.1: Amortized Analysis T.S. 10



Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
e PUSH ;i
= actual cost: ¢; = 1 0 B e
= potential change: ®; — ®;_y =1 H ﬂ
= amortized cost: ¢; = ¢+ (¢ —®;_1)=1+1=2 ~ R
\ . PUSH
Amortized Cost <2 = T(n) <2n
~——— POP PN ®;
"a=1 (n/z PUSH, n/2 POP = T(n) < n] O ~
"G=0t (9 -9 )=1-1=0 J < i
l Stack is non-empty!) Fop
b;

——— MULTIPOP (k)

O
= ¢ = min{k, |S|} E
= & —&; 1 =—min{k, |S[} NEPENE R
= G =+ (P — di_y) = min{k, |S|} —min{k,|S|} =0 N =11

MULTIPOP(3)

5.1: Amortized Analysis TS. 11



Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: 3K A[3]A[2] A[1] A[0]
number of flips (smallest index of a zero) @ 11

d:
0: INC(A)
1: i=0 INC
2: while i <k and A[i]==1
SE A[i] =0
4: i=i+1
5: A[i] =1 A[3] A[2] A[1] A[0]

(][] [o] [o] 2

(What is the total cost of a sequence of n INC operations? )

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

il
- 5 5.1: Amortized Analysis TS. 12




- 8)

Incrementing a Binary Counter (k

Total
Cost

10

11

15
16
18
19
22
23

25
26
31

Al6] A[S] A4] ARl A2l ANl A0]

Al7]

Counter
Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis



Incrementing a Binary Counter: Aggregate Analysis

'A[3] .' A[2] .' A[1] x A[O]

Total
Cost

Counter |
Value ||
o |'o
1 : 0
2 : 0
3 0
4 |io
5 o
6 |10
7 0

0

- 0O 4 0O = O =

0

4 2N AW

- O

= Bit A[j] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | /| times

[Aggregate Analysis: The amortized cost per operation is ”) <2.

T(n) < kz_‘: EJ <

.“(1

2

11 1
tot+t-+ o to0— ] <2:n

4 k1

il
s 5.1: Amortized Analysis



Binary Counter: Analysis via Potential Function

Do =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of j ]

Increment without Carry-Over o,
= actual cost: ¢; = 1 1100 l
= potential change: ¢, — ¢, =1 lmc -
= amortized cost: G = G+ (®; —®;_1) =1+1=2

1101 i—1 i
( Amortized Cost =2 = T(n) < 2n ) o
®;
Increment with Carry-Over o0 i
= ¢; = x+ 1, (x lowest index of a zero) lmo @ \
TP Qi = X 1000
~ i—1i
'C/IC/+(¢/—¢,',1):1+X—X+1 =2 o
ﬁli 5.1: Amortized Analysis TS. 15
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ;/

= Determine an absolute upper bound T(n)
r 7o [TTT1T]

= every operation has amortized cost %

[ Full power of this method will become clear later! ] T(n) Dj:l]:l]

Potential Method \

= use savings from cheap operations to
compensate for expensive ones /,/'\/'\
= operations may have different amortized cost i

credit

5.1: Amortized Analysis TS.



Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o(1)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
/)

Crucial for many applications including
shortest paths and minimum spanning trees!

o 5.1: Amortized Analysis TS. 17
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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o(1) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE 0(1) O(log n) O(log n) O(log n)

o 5.2: Fibonacci Heaps

TS.




Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2

+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"C=C=--=c¢c=0O(logn) " C=C=-=0C=0(1)

= YL, 6 = O(klogn) = YL 6 <X 6= O(k)

E

- 5 5.2: Fibonacci Heaps TS. 3




Actual vs. Amortized Cost

(

14-0(1)

k = K
D1 G —— D Ci

Potential > 0, but should be
also as small as possible

14

5.2: Fibonacci Heaps

TS. 4




Outline

Structure

5.2: Fibonacci Heaps

TS.



Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2 B(3) B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap

\;.El.. 5.2: Fibonacci Heaps TS. 6



Merging two Binomial Heaps (1/7)

o &7, Sya ¢

o o

0 7
1 1

111
01 1
11
10010 =18

1

—_
ey
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Merging two Binomial Heaps (2/7)

i

G @

o o

0 7
1 1

111
011
1 1
10010 =18

1

—_
ey
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Merging two Binomial Heaps (3/7)

Byic

0 @

o o

0 7
1 1

111
011
11
10010 =18

1

—_
ey
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Merging two Binomial Heaps (4/7)

@

o &7, ¢

&

00 7
0 1 1

111 @
011 1 @
11

10010 =18

—_
ey
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Merging two Binomial Heaps (5/7)

@

N

&

00 7
0 1 1

111 @
011 1 @
11

10010 =18

—_
—
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Merging two Binomial Heaps (6/7)

SRR

o o

0 7
1 1

111
011
11
10010 =18

1

—_
—
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Merging two Binomial Heaps (7/7)

SRR

[eNe)

0 7
1 1

111
011
11
10010 =18

1

=
ey
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() Q
) G (o) (&) ()
(&) ORORCO
()
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

@@

*ih 5.2: Fibonacci Heaps TS.



Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

[How do we implement a Fibonacci Heap?]

.-.,a'., 5.2: Fibonacci Heaps TS.



A single Node

Previous Sibl

TParent

payload marked degree

r-=---

Yo

0

3

f

O~

lOne of the Children

Next Sibling
>

gy 5.2: Fibonacci Heaps
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Magnifying a Four-Node Portion
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Outline

Operations

5.2: Fibonacci Heaps

TS.



Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

Actual Costs: O(1) ] min

I S ey

;ﬂ;

»;.E'.. 5.2: Fibonacci Heaps TS. 13



Fibonacci Heap: EXTRACT-MIN (1/11)

EXTRACT-MIN

= Delete min

min

© &
D @

TS.




Fibonacci Heap: EXTRACT-MIN (2/11)

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@ @ @

,E 5.2: Fibonacci Heaps TS.




Fibonacci Heap: EXTRACT-MIN (3/11)

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

@@ e e

1

s..a;. 5.2: Fibonacci Heaps TS.




Fibonacci Heap: EXTRACT-MIN (4/11)

EXTRACT-MIN

= Delete min v
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS. 14




Fibonacci Heap: EXTRACT-MIN (5/11)

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
[ Talal |

\;.El.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (6/11)

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L [l |

»-..a'.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (7/11)

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
LT T T4l

»;.E'.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (8/11)

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

0 @@
G @) ) ® @
B @

@

\;.El.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (9/11)

EXTRACT-MIN

= Delete min v
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children) v/

(7)
() @ &) (s
@ @ @
®

\;.El.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (10/11)

EXTRACT-MIN

= Delete min v/

Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

min

(7)
() @ &) (s
@ @ @
®

\;.El.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN (11/11)

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

Every root becomes child of
another root at most once!

min [ Actual Costs: O(trees(H) + d(n))

(9 @
@ @
)

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(7)
(7 @ &
O © RO
@

5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: DECREASE-KEY (First Try) (1/3)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é@

A

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

5.2: Fibonacci Heaps TS.



Fibonacci Heap: DECREASE-KEY (First Try) (2/3)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

-
Nodes = 4 min
: (9 é) (o) (1)

Wide and
shallow tree

5.2: Fibonacci Heaps TS. 15



Fibonacci Heap: DECREASE-KEY (First Try) (3/3)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

:@@Q@

6@
©

\;.El.. 5.2: Fibonacci Heaps TS. 15



Fibonacci Heap: DECREASE-KEY (1/7)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

() (8 (@)
@ W® @@ @

15 1. DECREASE-KEY 46 ~~ 15

‘;‘E'., 5.2: Fibonacci Heaps TS. 16



Fibonacci Heap: DECREASE-KEY (2/7)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

et

. DECREASE-KEY 46 ~ 15 V

[

*ih 5.2: Fibonacci Heaps TS. 16



Fibonacci Heap: DECREASE-KEY (3/7)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
= If marked,

:@

. DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

5.0-0-0-0

*ih 5.2: Fibonacci Heaps TS. 16



Fibonacci Heap: DECREASE-KEY (4/7)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

ool

. DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS.



Fibonacci Heap: DECREASE-KEY (5/7)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

:@éo

. DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

[

*ih 5.2: Fibonacci Heaps TS. 16




Fibonacci Heap: DECREASE-KEY (6/7)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

:@é.o

. DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

*Eh 5.2: Fibonacci Heaps TS. 16



Fibonacci Heap: DECREASE-KEY (7/7)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

[ Actual Cost: O(# cuts)

]@é

1. DECREASE-KEY 46 ~~ 15 v
2. DECREASE-KEY 35~ 5 Vv

\;..El.. 5.2: Fibonacci Heaps TS. 16
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Outline

Glimpse at the Analysis

»‘-.a'-. 5.2: Fibonacci Heaps (Analysis)
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v/
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3



Outline

Amortized Analysis

»‘-.a'-. 5.2: Fibonacci Heaps (Analysis)
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) +2- marks(H) ]

Second Coin ~ increase of trees(H)

— Change in Potential
= trees(H') =trees(H) + x Q @ e @
= marks(H') < marks(H) — x +2 8 @

= AP<x+2-(—x+2)=4—x.

[First Coin ~ pays cut

5 ( Scale up potential units ]

CG=Cc+AP<OXx+1)+4—x=0(1)

Amortized Cost

el B

»;..E oy 5.2: Fibonacci Heaps (Analysis) TS. 5




Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[ ®(H) = trees(H) + 2 - marks(H)

——— Change in Potential
= marks(H') < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

degrees

Ci = ¢ + A® < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))
!

Ve

L How to bound d(n)?

)

»'-.a’-. 5.2: Fibonacci Heaps (Analysis)

TS.
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Outline

Bounding the Maximum Degree
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Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n. ]

T

d=3,n=2%

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62. ]

il
5.2: Fibonacci Heaps (Analysis) TS. 8



Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ©* nodes.

[ d(n) gvlogq, n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, o, ..., ¥k be the children in the order of attachment
and d;, ds, . . ., dk be their degrees

:>‘V1§i§k: d,-zi—Z‘

il
5.2: Fibonacci Heaps (Analysis) TS. 9



From Degrees to Minimum Subtree Sizes

Definition

at a node of degree k.

Let N(k) be the minimum possible number of nodes of a subtree rooted

|

N(k) = F(k +2)? ]7

NO)=1 N(1)=2 N(2)=3
2
0

"L

N(3 N(4 8=5+3

»'-.a'-. 5.2: Fibonacci Heaps (Analysis)

TS. 10



From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i—2 ] N(k) = F(k + 2)?

]
N(k) =

1 N@-2) NB-2) N(k - 2)

N(K)=1+1+N2-2)+NB—2)+---+ Nk —2)

k—2
=1+14> N
£=0

k—3
=1+14> N+ N(k-2)

=0
= N(k—1)+ N(k —2)
= F(k+1)+ F(k) = F(k +2) O

.;,E'., 5.2: Fibonacci Heaps (Analysis) TS. 11



Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > ¢, ]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

( Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
"Basek=0:F2)=1and® =1V
*Basek=1: F(8)=2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2) = F(k+ 1) + F(k)

> oF1 4 o2 (by the inductive hypothesis)
=P (p+1)

— g (P =p+1)
= (pk [l

5.2: Fibonacci Heaps (Analysis) TS. 12



Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost Otdf)] O(log n)
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k+2) > ¥
= log,, n > k

5.2: Fibonacci Heaps (Analysis) TS.



What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) # O(log n)
= DECREASE-KEY: actual O(1) amortized O(1)

d(H) = trees(H)

() @) =

*ih 5.2: Fibonacci Heaps (Analysis) TS. 14




Summary

(If this was possible, then there would be a sorting algorithm with runtime o(nlog n) !j

(Can we p\)’erform EXTRACT-MIN in o(log n)?j

Operation Linked list | Binary heap Binom‘ﬁ‘\\h\eap Fibon. heap
MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM o(n) o(1) O(log n) \ o(1)
EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION O(n) o(n) O(log n) o)
DECREASE-KEY o) O(log n) O(log n) o)
DELETE \ o) O(log n) O(log n) O(log n)

(DELETE — DECREASE-KEY + EXTRACT-MIN ]

7\

[EXTRACT—MIN - MIN + DELETE ]

5 5.2: Fibonacci Heaps (Analysis)
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Recent Studies

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap
= marked bit is not redundant!

;l;

\;..E‘-. 5.2: Fibonacci Heaps (Analysis) TS. 16



Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(loglog u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(loglog u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]

5.2: Fibonacci Heaps (Analysis)

TS.
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Disjoint Sets (aka Union Find) (1/5)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

.v,,a % 5.3: Disjoint Sets TS.



Disjoint Sets (aka Union Find) (2/5)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=FindSet (y)

»;.Ea. 5.3: Disjoint Sets TS.



Disjoint Sets (aka Union Find) (3/5)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
= Handle Union (Handle h, Handle q)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

\;.El.. 5.3: Disjoint Sets TS. 2



Disjoint Sets (aka Union Find) (4/5)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
= Handle Union (Handle h, Handle q)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

\;.El.. 5.3: Disjoint Sets TS. 2



Disjoint Sets (aka Union Find) (5/5)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
= Handle Union (Handle h, Handle q)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

\;.El.. 5.3: Disjoint Sets TS. 2



First Attempt: List Implementation (1/2)

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

Union(hy, hy) | Need to find

last element!

*ih 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (2/2)

UNION-Operation

= Add exira pointer to the last
element in each list

= YUNtoN-takes-constanttime

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

=

v
’/
h2 /’
» )z It

.(7
N
.\

—

Need to update all
backward pointers!

FindSet(z)

‘;,E',, 5.3: Disjoint Sets

hy

v
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First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d,Union(h1 s ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hs, ho)

[ better to append shorter list to longer ~~ Weighted-Union Heuristic ]

\

[ Cost for n UNION operations: Y7 ;i = ©(n?) ]

5.3: Disjoint Sets TS. 4



Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[ can be done easily without significant overhead ]

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).

i
s 5.3: Disjoint Sets TS. 5



e

Analysis of Weighted-Union Heuristic

=Salacs
ufnininintcEnte

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
I\

Proof: ( Can we improve on this further? j

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation 0

o 5.3: Disjoint Sets TS. 6



How to Improve?

Basic ldea: Update Backward
Pointers only during FIND-SET

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

5.3: Disjoint Sets TS. 7



Disjoint Sets via Forests

{b,c,e h} {d.f, 9} {b.c,d,e f g h}
(Rank may be just an upper bound on the height!]

0 7 0
° rank =2 és rank =27, 3 0 rank=3
& B © oo
OO,

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[ Append tree of smaller height ~~ Union by Rank )

il
s 5.3: Disjoint Sets TS. 8




Path Compression during FINDSET

FindSet (b):

E

7

Maintaining the exact height
would be costly, hence rank
is only an upper bound!

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B O

i
s 5.3: Disjoint Sets

TS.




Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS))

——— Theorem 21.14 \\.

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\

[ In practice, «(n) is a small constant j

0 for0<n<2,
1 forn=3,
a(n)=¢ 2 forda<n<7,
3 for8 < n<2047,
4  for2048 < n< 10%
y N,

AY
log*(n), the iterated logarithm, satifies More than the
a(n) < log*(n), but still log*(10%%) = 5. number of atoms

in the universe!

B

o6 5.3: Disjoint Sets TS. 10




Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300

2. Forevery 1 < <300, pick arandom 1 < r <300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

3. Perform j € {0,100, 200, 300,600,900} many additional
FINDSET(r), where 1 < r < 300 is random

»;.Ea. 5.3: Disjoint Sets TS.




Union by Rank without Path Compression
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Union by Rank with Path Compression (100 additional FINDSET)
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Union by Rank with Path Compression (200 additional FINDSET)
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Union by Rank with Path Compression (300 additional FINDSET)
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Union by Rank with Path Compression (600 additional FINDSET)

[RRRRERRR!
RRRTEREE [AEERPIS

1 T2

it Ty
o Ty,
2 1
i T,

=

1
1
T2,

2y
" |
I it
BRI EEIPRTRPIRPRIEARC

5.3: Disjoint Sets TS. 17




Union by Rank with Path Compression (900 additional FINDSET)
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Outline

Introduction to Graphs and Graph Searching

Sl
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

' each bridge ?(actly once?

e Q Is there a tour which visits every
island exactly once?

. ~» 1B course: Complexity Theory

',,l;. 6.1 & 6.2: Graph Searching TS. 3




What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:

= V: the set of vertices
= E: the set of edges (arcs) (—
Gis

\.

Path p = (1,2, 3), which is a cycle

3
not connected

—— Undirected Graph ——————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

V= {1,2,3,4}
E= {(152)7(173)7 (273)5(37 1)7(374)}

~——— Paths and Connectivity —[ G

is connected

0'0

= A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

V={1,234}
E = {{1.2).{1,8}.{2,3}.{3,4}}

J

Later: edge-weighted graphs G = (V, E, w)

6.1 & 6.2: Graph Searching

TS.



Representations of Directed and Undirected Graphs

123 45
1fo1 00 1

©); (2) 20101 11
3001010

n’e alo 11 01
G) @ 5011010

(a) ()

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

fG.
° (Most times we will use the adjacency-list representation!)

1 23456
1fo 10100
2000001 0
(2) 3(0 000 11
4010000
50000100
O 6[0 000 01
(2) (b) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

6.1 & 6.2: Graph Searching TS.



Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of |V|, and E instead of |E|)

bl - et
*-';;:E 6.1 & 6.2: Graph Searching TS. 6



Outline

Breadth-First Search

el ke
L.L. 6.1 & 6.2: Graph Searching

TS.



Breadth-First Search: Basic Ideas

— Basic Idea
= Given an undirected/directed graph G = (V, E) and source vertex s

= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

\.

i
6.1 & 6.2: Graph Searching TS. 8



Breadth-First-Search: Pseudocode

. def bfs(G,s)
assert(s in G.vertices())
5 in G.verti : .. .
for V\,,';redgf:;(): - = From any vertex, visit all adjacent
v.d = Infinity i i
R vertices before going any deeper
: Q= Queue() = Vertex Colours:
L edso White | = Unvisited
: Sécig'soeurft(z)”gfey" Grey = Visited, but not all neighbors
=lEled = Visited and all neighbors
. while not Q.isEmpty(): - i
U = Q extract() Runtime O(V + E)
assert (u.colour == "grey") i
for v in u.adjacent() . q
if v.colour = "white” Assuming that all executions of the FOR-loop
e = I for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u A
Q.insert(v) 0o
u.colour = "black" [ Zuev |U.ad[| - 2|E| J
6.1 & 6.2: Graph Searching TS. 9



Execution of BFS (Figure 22.3) (1/2)

Queue:

6.1 & 6.2: Graph Searching

TS.



Execution of BFS (Figure 22.3) (2/2)

Queue: X X ™ X f X ¥ X
r S t u
v w X y
[
- 5y 6.1 & 6.2: Graph Searching TS. 10
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Depth-First Search
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Depth-First Search: Basic Ideas

2 —]

]

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time

6.1 & 6.2: Graph Searching T.S. 12



Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:

2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7' for v in G.vertices(): other neighbors
&£ Ypredeezesnr— MAlE = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?g desf SLTSECE%%C;,:S): Grey = Visited, but not all neighbors
2:  s.d=time() ElElq = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white" * Runtime O(V + E)
5 v.predecessor = s
6 dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()

Sl
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Execution of DFS (1/3)

S

S w
X V4
r
6.1 & 6.2: Graph Searching TS. 14




Execution of DFS (2/3)

) 6.1 & 6.2: Graph Searching T.S.



Execution of DFS (3/3)

w

Sy 6.1 & 6.2: Graph Searching



Paranthesis Theorem (Theorem 22.7)

910111213141516

8

7
(s (v(y (xx) (r(uu)ry)v)s)w(zz)w)

15

TS.
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Topological Sort

Sl
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Topological Sort

)

\’
pants @
T e

belt

Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices

é:% 6.1 & 6.2: Graph Searching TS. 17




Solving Topological Sort

watch
pants \(shoes
;

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Output vertices in decreasing order of their finishing time
AN

2

[ Runtime O(V + E) ] tices — use DFS directly!

7
[Don’t need to sort the ver-]

Sl
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Execution of Knuth’s Algorithm

Sy 6.1 & 6.2: Graph Searching TS. 19



Correctness of Topological Sort using DFS (1/3)

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
s
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

S R 6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS (2/3)

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
s
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. @ @

S R 6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS (3/3)

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. 4
3. If v is white, we call DFS(v) and v.f < u.f. @
= Inall cases v.f < u.f, so v appears after u. O

s
o 5 6.1 & 6.2: Graph Searching TS. 20




Summary of Graph Searching

~——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

» Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

» Runtime O(V + E)

S
6.1 & 6.2: Graph Searching TS.
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of

minimum totalfweight that links
all vertices

I L
[Must be necessarily a tree!]

Applications

= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.

S
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Generic Algorithm

0: def minimum spanningTree (G)
1: A = empty set of edges
2: while A does not span all vertices yet:
SE add a safe edge to A
——— Definition N

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?

Sl
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Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Sl
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Proof of Theorem (1/3)

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |If e, € T, then we are done

Sl
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Proof of Theorem (2/3)

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex

o
?:E 6.3: Minimum Spanning Tree TS. 5



Proof of Theorem (3/3)

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |If e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle
= This cycle crosses the cut through e, and
another edge ex

= Consider now the tree T U e; \ ex:

= This tree must be a spanning tree

= If w(es) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)

= If w(ey) = w(ex),then TU e, \ exisa
MST.

a

S
E:I,,I 6.3: Minimum Spanning Tree TS. 5




Glimpse at Kruskal’s Algorithm (1/2)

Basic Strategy
= Let A C E be a forest, intially empty

= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

',.! b, 6.3: Minimum Spanning Tree TS.



Glimpse at Kruskal’s Algorithm (2/2)

Basic Strategy

= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

l

',.! b, 6.3: Minimum Spanning Tree

TS. 6




Execution of Kruskal’s Algorithm (1/2)

6.3: Minimum Spannin g Tree TS.



Execution of Kruskal’s Algorithm (2/2)

6.3: Minimum Spanning Tree TS.



Details of Kruskal’s Algorithm (1/2)

0: def kruskal (G)

1:

2:

3:

4: A = Set ()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= |nitialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = O(Elog V)

If edges are already sorted, runtime becomes O(E - «(n))!

5y 6.3: Minimum Spanning Tree TS.



Details of Kruskal’s Algorithm (2/2)

0: def kruskal (G)

1:

2:

3:

4: A = Set ()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)

= L. 14 ensures that we extend A by an edge that goes across the cut

= This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

S 6.3: Minimum Spanning Tree TS. 8



Prim’s Algorithm (1/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge &)nnecting to A

1

[ Use a Priority Queue! ]

S
6.3: Minimum Spanning Tree TS. 9




Prim’s Algorithm (2/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

~——— Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

',,l;. 6.3: Minimum Spanning Tree TS. 9



Prim’s Algorithm (3/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

',,l;. 6.3: Minimum Spanning Tree TS. 9



Prim’s Algorithm (4/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

Final MST is given
(implicitly) by the pointers!

We computed same MST as Kruskal,
but in a completely different order!

6.3: Minimum Spanning Tree TS. 9



Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

vk v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

33

14: while not Q.isEmpty () :

15: u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V - log V), DecreaseKey (16-20): O(E - 1)

v )
= Binary/Binomial Heaps: Amortized Cost Amortized Cost

Init (1. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - log V)
= Overall: O(Vlog V + Elog V)

\. J

5 [
6.3: Minimum Spanning Tree TS. 10




Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(Elog V)

\.

~——— Prim’s Algorithm

= Gradually extends a tree into a MST by adding incident edges
= invokes Fibonacci heaps (priority queue)
= Runtime O(Vlog V + E)

*‘n:‘n
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Outlook: Reverse-Delete Algorithm (1/2)

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

AN

[ Can be implemented in time ]

O(E log V(log log V)?). [Thorup, 2000]

6.3: Minimum Spanning Tree TS. 12



Outlook: Reverse-Delete Algorithm (2/2)

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

AN

[ Can be implemented in time ]

O(E log V(log log V)?). [Thorup, 2000]

6.3: Minimum Spanning Tree TS. 12



Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

——— Chazelle, JACM'2000

= deterministic MST algorithm with runtime O(E - a(n))

Pettie, Ramachandran, JACM’'2002

= deterministic MST algorithm with asymptotically optimal runtime
= however, the runtime itself is not known...

',.! b, 6.3: Minimum Spanning Tree TS.
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Shortest Path Problem

Shortest Path Problem
= Given: directed graph
G = (V, E) with edge weights,
pair of vertices s,t € V
= Goal: Find a path of minimum
weight from sto tin G
\N

[p = (Vo = S Vi,..., W = t) such that}

w(p) = S, w(vk_1, v) is minimized.

What if G is unweighted?

/7 1

. 1\
Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Applications \
| = Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange

6.4: Single-Source Shortest Paths TS.




Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)
= Shortest Paths via Matrix Multiplication
= Johnson’s Algorithm

O

6.4: Single-Source Shortest Paths

TS.



Distances and Negative-Weight Cycles (Figure 24.1)

Negative-Weight Cycle
(not reachable from s)

(reachable from s)

[Negative-Weight Cycle J

$ 6.4: Single-Source Shortest Paths TS. 5



Outline

Bellman-Ford Algorithm

f-. 5
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Relaxing Edges (1/2)

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d=5.0=0,v.d=ccforv#s J

Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) ——————
Given estimates u.d and v.d, can we find a

better path from v using the edge (u, v)? ! N
d > u.d+wu,v) N
v.d >ud+w(u,v '@“’

6.4: Single-Source Shortest Paths TS.



Relaxing Edges (2/2)

Definition

Fix the source vertex s € V
= v.4 is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d=5.=0,v.d=occforv#s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a PRy

better path from v using the edge (u, v)? ! Y
d%ud+ wuv) 5
v.d > u.d+ w(u,v ‘
. ©

After relaxing (u, v), regardless of whether we found a shortcut:
v.d <u.d+ w(u,v)

s
E:E 6.4: Single-Source Shortest Paths TS. 7




Properties of Shortest Paths and Relaxations

r

Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u,v) € E, we have v.d < u.d + w(u,v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

= If s ~ u — v is a shortest path from s to v, and if u.d = u.J prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d < u.d+w(u,v)

S 4 Y =u.d+w(u,v)

V.0 Since v.d > v.§, we have v.d = v.6.

6.4: Single-Source Shortest Paths TS.
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Path-Relaxation Property

[“Propagation": By relaxing proper edges, set of vertices with v.6 = v.d gets Iarger]

Path-Relaxation Propeﬁ(Lemma 24.15)
If p=(vo,v1,..., W) is a shortest path from s = v to v, and we relax
the edges of pin the order (v, v1), (v1, V2), ..., (Vk—1, V), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.é.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, v).
Convergence Property = v;.d = v;.6 (now and at all later steps) O
Vo

Vi Vo :
- ’ @ @ ______

i
E:E 6.4: Single-Source Shortest Paths TS. 9




The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V — 1)+ 1 = Vpasses = O(V - E) time

SR 6.4: Single-Source Shortest Paths TS.



Execution of Bellman-Ford (Figure 24.4) (1/5)

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(,2),(z,X),(z,S

),(8:1),(s:y)

s
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Execution of Bellman-Ford (Figure 24.4) (2/5)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(,2),(z,X),(z,S

),(8:1),(s:y)

s
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Execution of Bellman-Ford (Figure 24.4) (3/5)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(,2),(z,X),(z,S

),(8:1),(s:y)

) 6.4: Single-Source Shortest Paths TS.



Execution of Bellman-Ford (Figure 24.4) (4/5)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(y,2),(z,X),(z,S

),(8:1),(s:y)

) 6.4: Single-Source Shortest Paths TS.



Execution of Bellman-Ford (Figure 24.4) (5/5)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(,2),(z,X),(z,S

),(8:1),(s:y)

) 6.4: Single-Source Shortest Paths TS.



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.J for all vertices
v € V that are reachable and Bellman-Ford returns TRUE.

Proof that v.d = v.d
= Let v be a vertex reachable from s
= Letp= (v =5,v1,...,V = v) be a shortest path from s to v
= pis simple, hence k < |V|— 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
= Let (u, v) € E be any edge. After |V| — 1 passes:

vd=v.d<ud+w(u,v)=ud+wu,v) O
N

[ Triangle inequality (holds even if w(u, v) < 0!) ]

6.4: Single-Source Shortest Paths TS. 12



Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
» Letc = (o, W1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Vi_i.d + W(Vi—17 Vi)

= ZV/d<ZV/1d+Z Vl17VI
= 0<Z (Vi-1, vi)

/1
[This cancellation is only valid if all .d-values are finite!J

= This contradicts the assumption that c is a negative-weight cycle! O

S
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The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, s)

: assert (s in G.vertices())

: for v in G.vertices()
v.predecessor = None

8 v.d = Infinity

:s.d=0

flag = 0
for e in G.edges()

if e.start.d + e.weight.d < e.end.d:

0

1

2

3

4

5E

6: repeat |V| times
7 .

8

9

10

11 e.end.d = e.start.d + e.weight

12: e.end.predecessor = e.start
13: flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]

el bl
E:E 6.4: Single-Source Shortest Paths TS. 14



Outline

Dijkstra’s Algorithm

f-. 5
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Historical Remarks

= Dutch computer scientist

= developed Dijkstra’s shortest path
algorithm in 1956 (and published in 1959)

= many more fundamental contributions to
computer science and engineering

= Turing Award (1972)

Source: Wikipedia

Edsger Wybe Dijkstra (1930-2002)

',,ﬂ', 6.4: Single-Source Shortest Paths T.S. 16



Some Quotes

“It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential programmers
they are mentally mutilated beyond hope of regeneration.”

“If you want more effective programmers, you will discover that they
should not waste their time debugging, they should not introduce the
bugs to start with.”

“FORTRAN's tragic fate has been its wide acceptance, mentally
chaining thousands and thousands of programmers to our past
mistakes.”

“Programming is one of the most difficult branches of applied
mathematics; the poorer mathematicians had better remain pure
mathematicians.”

0 6.4: Single-Source Shortest Paths TS. 17



Recap: Prim’s Algorithm (1/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages equal
to the smallest weight of an incident edge “connecting to A

[ Use a Priority Queue! ]

S
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Recap: Prim’s Algorithm (2/4)

—— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

~——— Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

',,l;. 6.4: Single-Source Shortest Paths TS. 18



Recap: Prim’s Algorithm (3/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex

= At each step, add lightest edge linked to A that does not yield cycle

',,l;. 6.4: Single-Source Shortest Paths TS.




Recap: Prim’s Algorithm (4/4)

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

Final MST is given
(implicitly) by the pointers!

We computed same MST as Kruskal,
but in a completely different order!

6.4: Single-Source Shortest Paths TS. 18



Prim’s Algorithms vs. Dijsktra’s Algorithm

~——— Prim’s Algorithm

= Grows a tree that will eventually become a (minimum) spanning tree

= Ais the set of vertices which have been connected so far
= Value of a vertex:

= If u € A, then it has no value.
= If u ¢ A, theniitis equal to the smallest weight of an edge connecting to
A (if such edge exists, otherwise oo.)

~——— Dijsktra’s Algorithm

= Grows a tree that will eventually become a shortest-path tree

= Sis the set of vertices in the (current) shortest-path tree
= Value of a vertex:

= If u € S, then it is the actual distance from the source s to u.
= If u ¢ S, then it may be any value (including co) that is at least the
distance from the source s.

6.4: Single-Source Shortest Paths TS. 19




Dijkstra’s Algorithm (1/2)

Overview of Dijkstra

= Requires that all edges have non-negative weights

= Use a special order for relaxing edges
= The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with v.6 = v.d
2. Ateach step, add a vertex v € V' \ S with minimal v.§

i
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Dijkstra’s Algorithm (2/2)

Overview of Dijkstra

= Requires that all edges have non-negative weights

= Use a special order for relaxing edges
= The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with v.6 = v.d
2. Ateach step, add a vertex v € V' \ S with minimal v.§
3. Relax all edges leaving v

i
x;-;:l"l 6.4: Single-Source Shortest Paths T.S. 20



Details of Dijkstra’s Algorithm

As in Prim, use priority queue Q to keep track of the vertices’ values.

DIJKSTRA(G,w,s) ~——— Runtime w. Fibonacci Heaps —

(1) g\“TlgUZE(G,S) = |nitialization (I. 0-2): O(V)

2 Q=V = ExtractMin (l. 4):

3: while Q # 0 do O(V -log V)

4: = Extract-Min(Q

5. ‘LS';: SXL';a{CU} ) = DecreaseKey (I. 7): O(E - 1)

6: foreach v € G.Adj[u] do = Overall: O(Vlog V + E)

7 RELAX(u, v, w) L )y )

8: end for 5

9: end while With a binary heap instead, the overall
runtime would be O(E - log V)!

(Prim’s algorithm has the same runtime!]
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Execution of Dijkstra (Figure 24.6) (1/6)

Priority Queue Q:
(37 0)7 (tv OO): (X7 OO), (y7 00)7 (27 OO)

el bl
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Execution of Dijkstra (Figure 24.6) (2/6)

Priority Queue Q:
T5:, (£, 10), (x, %), (¥.5), (2, )

el bl
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Execution of Dijkstra (Figure 24.6) (3/6)

Priority Queue Q:

(,8), (x,14), 58], (2,7)
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Execution of Dijkstra (Figure 24.6) (4/6)

Priority Queue Q:

(1,8),(x,13), (2]

6.4: Single-Source Shortest Paths TS. 22



Execution of Dijkstra (Figure 24.6) (5/6)

Priority Queue Q:

IHE], (x,9)

6.4: Single-Source Shortest Paths

TS.
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Execution of Dijkstra (Figure 24.6) (6/6)

Priority Queue Q:

6.4: Single-Source Shortest Paths

TS.
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Dijkstra’s Algorithm: Correctness (1/5)

Correctness (Theorem 24.6)

For any directed graph G = (V, E) with non-negative edge weights w :
E — R* and source s, Dijkstra terminates with v.d = u.¢ for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.(S‘

= Suppose there is u € V, when extracted,
ud>u.é

= Let u be the first vertex with this property

S
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Dijkstra’s Algorithm: Correctness (2/5)

Correctness (Theorem 24.6)

For any directed graph G = (V, E) with non-negative edge weights w :
E — R* and source s, Dijkstra terminates with v.d = u.¢ for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.(S‘

= Suppose there is u € V, when extracted,

ud>u.é
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x,y) be the first edge from Sto V\ S

6.4: Single-Source Shortest Paths TS. 23



Dijkstra’s Algorithm: Correctness (3/5)

Correctness (Theorem 24.6)

For any directed graph G = (V, E) with non-negative edge weights w :
E — R* and source s, Dijkstra terminates with v.d = u.¢ for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.(S‘

= Suppose there is u € V, when extracted,

ud>u.é
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x, y) be the first edge from Sto V\ S

=

ud<y.d

N\

[u is extracted before y]
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Dijkstra’s Algorithm: Correctness (4/5)

Correctness (Theorem 24.6)

For any directed graph G = (V, E) with non-negative edge weights w :
E — R* and source s, Dijkstra terminates with v.d = u.¢ for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.(S‘

= Suppose there is u € V, when extracted,

ud>u.é
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x, y) be the first edge from Sto V\ S

=
ud<yd=yo

since x.d = x.6 when x is extracted, and then
(x,y) is relaxed = Convergence Property

el bl
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Dijkstra’s Algorithm: Correctness (5/5)

Correctness (Theorem 24.6)

For any directed graph G = (V, E) with non-negative edge weights w :
E — R* and source s, Dijkstra terminates with v.d = u.¢ for all u € V.

There are edge cases
like s = x and/or y = u!

Proof: | Invariant: If v is extracted, v.d = v.(S‘ {

= Suppose there is u € V, when extracted, N

ud>u.é
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x,y) be the first edge from Sto V\ S

=
us<ud<yd=yo

This contradicts that y is on a shortest path
from s to u. O

6.4: Single-Source Shortest Paths TS. 23



Why negative-weight edges don’t work (1/6)

Priority Queue Q:
(37 0)7 (t’ OO)? (X7 00)7 (y7 OO)

1
)
y t

6.4: Single-Source Shortest Paths TS.
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Why negative-weight edges don’t work (2/6)

Priority Queue Q:
T4, (t,0), (x,5), (¥,3)

1
—)
y t

6.4: Single-Source Shortest Paths TS.

24



Why negative-weight edges don’t work (3/6)

Priority Queue Q:

(1,4), (x,5), 3x4]

D—®
y

6.4: Single-Source Shortest Paths TS.

24



Why negative-weight edges don’t work (4/6)

Priority Queue Q:

D4, (x.5)

D—®
y

6.4: Single-Source Shortest Paths TS.

24



Why negative-weight edges don’t work (5/6)

Priority Queue Q:

D]

6.4: Single-Source Shortest Paths TS.

24



Why negative-weight edges don’t work (6/6)

Priority Queue Q:

4 [The distance from s to t is not correct!]

/
(D=2
y t

el bl
E:E 6.4: Single-Source Shortest Paths TS. 24



Summary of Single-Source Shortest Paths

——— Overview

= studied two algorithms for SSSP (single-source shortest path)
= basic operation: relaxing edges

\.

~—— Bellman-Ford Algorithm

= detects negative-weight cycles
= V passes of relaxing all edges (arbitrary order)
* Runtime O(V - E)

\.

~——— Dijkstra’s Algorithm

= requires non-negative weights
= Greeedy strategy to choose which edge to relax (similar to Prim)
= Using Fibonacci Heaps = Runtime O(Vlog V + E)

6.4: Single-Source Shortest Paths TS. 25
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Outline

All-Pairs Shortest Path
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Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

= Goal: Obtain a matrix of shortest path weights L, that is

00 otherwise.

( N\

y {weight of a shortest path from i to j, if j is reachable from i
ij =

AN\

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

i
5;,-,-.. 6.5: All-Pairs Shortest Paths TS. 3




Outline

APSP via Matrix Multiplication
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A Recursive Approach

i ko
o - @—@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let £{" be min. weight of any path from / to j with at most m edges
= Then (') = wi;, so L = W

= How can we obtain L® from L(1?

() _ i (1) i (1) )
£ = min (eu TN, b+ Wk*’) (Recall that w,, = 0! )

. —1 : —1 f —1
A7 = min(e7™" gin 477"+ was) = gin (457 + )

6.5: All-Pairs Shortest Paths TS. 5



Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo|—4 o 3 8 [2 -4
© 0 oo 1|7 3 0 -4 1 7
W—W=] .o 4 0 oo| @@= « 4 0 5 11
2 o~ -5 0 00 2 -1 -5 0 =2
o© oo oo 6|0 8 oo 1 6 0
0 3 -3 2 _—4 0o 1 -3 2 -4
3 0 -4 1 —1 3 0 -4 1 -
®O=|"7 4 0 5 11 W=7 4 o 5 |38
2 -1 -5 0 -2 2 -1 -5 _2
8 5 1 6 0 8 5 1 0

[zgj; =min{7 — 4,4+ 7,0 + 00,5 + oo, 11 +0}]

o 5 6.5: All-Pairs Shortest Paths TS. 6



Computing L(™

E,(.T) = min (E,(-?,:_D 4 Wk,j)

1<k<n

2 [0 = W = () — = [ since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)

= Computing L(™:
(m)
m (m—1) _ L'™ can be
Gy = @&(Zﬂk * Wk”) <[computed in O(ns)]
L wy = S (451—1) y wk,,)

= The correspondence is as follows:

min@Z
+ & X
© < 0
0 & 1

6.5: All-Pairs Shortest Paths TS.



Computing L("~1) efficiently

(m) _ (m—1) ;
47 = gin, (437" + wes)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /

L(1)7 L(2)7 L(3)7 L(4), . L7370 — |

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2), L(4), o L(512) 1(1024) _ L

rd

[We need LW = L®.[®) = [®).[ 1 (see Ex. 25.1-4 J [ Takes O(log n - n®). ]

6.5: All-Pairs Shortest Paths TS. 8
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Johnson’s Algorithm
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Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[ Adding a constant to every edge doesn’t work! ]

Sl
E:E 6.5: All-Pairs Shortest Paths TS. 10



How Johnson’s Algorithm works

~——— Johnson’s Algorithm N\
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |If there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)
[F{untime: O(V-E+V-(Vlog V—i—E))]

[ Direct: 7,nDetour: —1 ] [ Direct: 10, Detour: 2 ]

6.5: All-Pairs Shortest Paths TS. 11



Correctness of Johnson’s Algorithm (1/2)

w(u,v) = w(u,v) + u.d — v.§

——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 1.
Let u.0 and v.é be the distances from the fake source s
ud+w(u,v)>vo (triangle inequality)
= w(u,v) + u.d + w(u,v) > w(u,v)+ u.d — v.g + v.8
= w(u,v) >0

6.5: All-Pairs Shortest Paths TS. 12



Correctness of Johnson’s Algorithm (2/2)

w(u,v) = w(u,v) + u.d — v.§

——— Theorem
For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

\

Proof of 2.

Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is 3%, w(vi_s, v;) = w(p).
= In the reweighted graph, the weight is

w(Vvi_1, V) = Z (W(Vi_1,V}) + Vi_1.6 — vi.8) = w(p) + V0.0 — V.6 O
1 i=1

k k
i=

6.5: All-Pairs Shortest Paths TS. 12



Comparison of all Shortest-Path Algorithms

, SSSP APSP negative
Algorithm
sparse | dense | sparse dense weights
Bellman-Ford V2 Ve Ve v4 v
Dijkstra Viog V V2 V2log V Ve X
Matrix Mult. - - VilogV | V3log V (V)
Johnson - - V2log V V3 / v

VA

but not negative weight cycles

[ can handle negative weight edges, }

. oy 6.5: All-Pairs Shortest Paths

TS.




Graph G= (V. E,c):

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016
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History of the Maximum Flow Problem [Harris, Ross (1955)]

Fig. 5— Soviet and
satellite rail
network

.

egend —— Infernational boundary Regional boundaries of the USSR (they are included as o motter of ganeral information)

Operating divisions. Those located in Russia are believed fo be accurately located. Some Russion divisions (2,3,4 and 13) are
located in two regions and are 5o indicated. Divisions shown in the sofellites are indicated according fo the authors' best judgment
since intelligence reports are unavailable. Train capacities in Russic ore for 1000-net—fon troins or their equivalent. Troin copacities
in Polanu are for 666 net tons (or the equivalent). Train capacities in oll other satellites are for 400 net fons (or the equivalent)
except in East Germany. In East Germany, train capacities are those of entering lines. The numbers showr. in boxes are total
interdivisionel cosacities.

6.6: Maximum flow TS.




Flow Network (1/4)

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges
= distinguished nodes: source s and sink ¢

= every edge e has a capacity c(e)
7 N

[ Capacity functionc : V x V — R* J [ c(u,v) =0<% (u,v) € E ]

6.6: Maximum flow TS. 4



Flow Network (2/4)

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u,v) ;
= Forevery u,v e V, f(u,v) = —f(v,u) w)
= Foreveryue V\ {s,t},>,c,f(u,v)=0

The value of a flow is defined as |f| =Y, f(s, V) -~

( Zuev (V) = Zoev flvi1) )

@ ®

veV

0/4 0/15
® © O, ®
ARG 0/15
-

@ 7 [|f|:5+10+10:25]

6.6: Maximum flow TS. 4




Flow Network (3/4)

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\{s,t},>,c,f(u,v)=0

The value of a flow is defined as |f| = 3 ., f(s, V)

O ®

0/4 0115
® € O, ®
oa % 0/15 ~
@ 7 [|f|:5+10+10:25]

6.6: Maximum flow TS. 4



Flow Network (4/4)

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,flu,v)=0
The value of a flow is defined as |f| = 3 ., f(s, V)

How to find a Maximum Flow?

O, ® ©® ®
0/4 0115 \

() @[|f|:8+10+10:28]
TS.

~-..E;. 6.6: Maximum flow 4



A First Attempt (1/5)

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

0/4

Q
Q\\

Q;\Q

0/2

@ 0/10 3 0/9
N

6.6: Maximum flow TS. 5
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A First Attempt (2/5)

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

e - b
SR, 6.6: Maximum flow TS. 5



A First Attempt (3/5)

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

e - b
SR, 6.6: Maximum flow TS. 5



A First Attempt (4/5)

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

f| =16

AN
( Is this optimal? )

6/10 \3/ 2/9 \5/

e - b
SR, 6.6: Maximum flow TS. 5




A First Attempt (5/5)

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

f| =19

N

(Greedy did not succeed! j

3 5
9/10 N O/

SR, 6.6: Maximum flow TS. 5



Outline

Ford-Fulkerson
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Residual Graph

——— Original Edge

Edge e=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(u,v)eE,
cr(u, v) = ¢ f(v,u) if (v,u) e E,
0 otherwise.

Residual Graph

= Gr = (V,Ef, cr), Ef :={(u,v): ¢(u,v) > 0}

Graph G:
@ 6/17 O

v

Residual Gy:
11

@ . ©®

o 6.6: Maximum flow TS.



Residual Graph with anti-parallel edges

——— Original Edge Granh G
raj :
Edge e = (u,v) € E (& possibly & = (v, u) € E) P
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, ‘
C/(U, V) = C(U, V) - f(U, V)' H
v
Residual G¢:
Residual Graph 13
» Gr=(V,Er, ), Er = {(u,v): ci(u,v) > 0} 000

o 6.6: Maximum flow T.S. 7



Example of a Residual Graph (Handout)

Flow network G

Residual Graph G¢

1/14

e - e
SR, 6.6: Maximum flow TS.



The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push a77much extra flow as possible through it

wWwNhRrO

from source to sink in Gf in G, then f+ f' is a flow in G
J

( Using BFS or DFS, we can find an
; L augmenting path in O(V + E) time.
Questions:

/4
» How to find an augmenting path?
« Does this method terminate?
« |If it terminates, how good is the solution?

N
[ Augmenting path: Path J [ If " is a flow in G and f a flow

o 6 6.6: Maximum flow TS. 8



lllustration of the Ford-Fulkerson Method (1/7)

Graph G= (V,E,c):

Residual Graph G; = (V, E;, ¢):

Q
N 2

@10@9

i
o Y 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (2/7)

Graph G= (V,E,c):

i
o Y 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (3/7)

Graph G= (V,E,c):

i
o Y 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (4/7)

Graph G= (V,E,c):

i
o Y 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (5/7)

Graph G= (V,E,c):

i
o Y 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (6/7)

Graph G= (V,E,c):

i
ey 6.6: Maximum flow TS.



lllustration of the Ford-Fulkerson Method (7/7)

Graph G= (V,E,c):

i
o B 6.6: Maximum flow TS.



Outline

A Glimpse at the Max-Flow Min-Cut Theorem
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From Flows to Cuts (1/3)

Cut

= Acut (S, T)is apartition of Vinto Sand T = V \ Ssuchthats € S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

(S, M= > cuv)= > cuv)
ueS,veT (u,v)EE(S,T)

= A mininum cut of a network is a cut whose capacity is minimum over
all cuts of the network.

Graph G= (V,E,c):

c({s,3},{2,4,5,t}) =10+ 9 = 19

6.6: Maximum flow TS. 11



From Flows to Cuts (2/3)

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c(S, T).
f S,TCV

Graph G= (V,E,¢): [fl=19

10-0+9=19

6.6: Maximum flow TS. 11



From Flows to Cuts (3/3)

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c(S, T).
f S,TCV

Graph G= (V,E,¢): [fl=19

94+7-64+9=19

6.6: Maximum flow TS. 11
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma
If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.
e Y
Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integeral

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v c(u, v) iterations and returns the maximum flow.

£

[(proof omitted here, see CLRS3)]

o6 6.6: Maximum flow TS. 13



Slow Convergence of Ford-Fulkerson (Figure 26.7) (1/3)

R 1900

7000 ‘\QQQ

G Gt

Snfffn
< B 6.6: Maximum flow TS.



Slow Convergence of Ford-Fulkerson (Figure 26.7) (2/3)

Snfffn
< B 6.6: Maximum flow TS.



Slow Convergence of Ford-Fulkerson (Figure 26.7) (3/3)

( Number of iterations is C := maxy, c(u, v)! )

7

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow TS. 14



Non-Termination of Ford-Fulkerson for Irrational Capacities (1/8)

i
- 5 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (2/8)

Iteration: 1, |f| = 1

i
- 5 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (3/8)

o 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (4/8)

o 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (5/8)

o 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (6/8)

o 6.6: Maximum flow TS. 15



Non-Termination of Ford-Fulkerson for Irrational Capacities (7/8)

o

f N
In summary:
= After iteration 1: i>, L), <L, [fl=1
2 s
= After iteration 5: =%, 1y 2 [fl =1+ 2¢ + 2¢°
4 5
« After iteration 9: =%, —5, =L |f| =1+ 26 + 2¢2 + 2¢° + 2¢°
\
é N

More generally,
= For every i =0,1,... after iteration 1 +4 - i: 1_—>¢2i, %, “5<_—¢2i+1
= Ford-Fulkerson does not terminate!
fl=1+222 @' ~4.23607 < 5
= It does not even converge to a maximum flow!

6.6: Maximum flow TS. 15




Non-Termination of Ford-Fulkerson for Irrational Capacities (8/8)

O

f flow value N

7 +

iterations

k 15913172125293337414549)

6.6: Maximum flow TS. 15




Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |f*]) = O(E - V- C)

~—— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢¢(u, v) > A
= scaling parameter A, which is initially 2% ©1 and 1 after termination
= Runtime: O(E? - log C)

\.

~—— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in Gy
= Runtime: O(E? - V)

\;,!', 6.6: Maximum flow TS. 16
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Matchings in Bipartite Graphs
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

6.6: Maximum flow TS.

L R
Jobs ( Machines )
18



Matchings in Bipartite Graphs via Maximum Flows




Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G equals ]

the value of a maximum flow f in the corresponding flow network G.

Graph G

. oy 6.6: Maximum flow TS. 20



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

[max cardinality matching < value of maxflow)

ON©

Graph G Graph G

Eig 6.6: Maximum flow TS.

21



From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation = every node in L sends at most one unit
b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = netflowis k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k
[N
[value of maxflow < max cardinality matching]

N\

\\‘\

L R L R

6 6.6: Maximum flow TS. 22



A
4
3
2
1
> X
(0,0) 1 2 3 4 5
(s = p1) x (P2 — pr) = (=3,-1) x (-4,2) = —10
(Ps = p1) x (P2 — p1) = (-2,2) x (—4,2) =4

7: Geometric Algorithms

Frank Stajano Thomas Sauerwald

UNIVERSITY OF
CAMBRIDGE
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Introduction and Line Intersection

f-. 5
gD 7: Geometric Algorithms
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Introduction

~——— Computational Geometry ————————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line
segments etc.

\ J

~——— Applications N\
= computer graphics
= computer vision

= textile layout

= VLSI design

P4

P1

A

[ Do these lines intersect?]

Sl
05 7: Geometric Algorithms

TS.



Cross Product (Area)

y P+ p2 = (3,4)
Aoo=(1.9)
. -
[ How large is this area? ]
pi=(2,1)
> X

(0,0)

Alternatively, one could take the dot-product (but not used here):
p1 - p2 = [|p1]] - [lp2| - cos(¢).

o X1 Xo
p1 X p2 = det (y1 ¥

P2 X p1 = YiXe — YoX1 = —(p1 X p2) = =5

) :X1IV27X2}/1:2-371-1:5

SR 7: Geometric Algorithms TS. 4



Cross Product in 3D

z
A
1 x p2 = (0,0, x1y2 — Xz%),

',,! 3y 7: Geometric Algorithms TS. 5



Using Cross product to determine Turns

A
P2 = (173)
{ p1 x p2 > 0: left (counterclockwise) turn ]
Bi=(2,1)
[ iy .
6005 / gk p1 X ps < 0: right (clockwise) turn
ps = (1,-1)

| Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinear]

7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (origin shifted)

A = (34 (en-0o-5 )
< ) x (7o) > 0 ot )
P 42) [ (2.1) x (1,-1) = -3 ]
po =(2,1) i { (p1—po)><(pl;/—po)<0: right turn ]
| (0,0) ps = (3,0) >

SR 7: Geometric Algorithms TS. 7



Solving Line Intersection (1/4)

X
4--
3--
2--
1--
O T R T g
T (pr — ps) x (s —ps) =(3,1) x (1,3)=8
(P2 = p3) x (Ps = p3) = (=1,3) x (1,3) = -6

Opposite signs = p1p2 crosses
(infinite) line through ps and ps

Sl 7: Geometric Algorithms TS. 8



Solving Line Intersection (2/4)

X
4__
3.-
2.-
1.-
P B B S R R T
T (ps = p1) X (P2 — p1) = (=3, 1) x (-4,2) = -10

(Ps = p1) x (P2 = p1) =(-2,2) x (—4,2) =4

Opposite signs = p1p2 crosses Opposite signs = psps crosses
(infinite) line through ps and ps (infinite) line through p1 and p.

ked
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Solving Line Intersection (3/4)

y
A
P2 P4

4--

3--

21 P1

1.-

P
t t t t t —>»X
(0,0) 1 2 3 4 5
[ [P1P2 CrOSSES P34 ]

== ~-
[Opposite signs = p1 P2 crosses} [Opposite signs = PaPs crosses}

(infinite) line through ps and ps (infinite) line through p1 and p.

ked
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Solving Line Intersection (4/4)

A
P2

4--

) \

2 Pa -~~~ - > P

| /-

%]

t } t t } —>» X
0o 1 2 3 4 5 ~

T (Ps —p1) x (P2 —p1) <0

(s —p1) x (P2 —p1) <0

[ P12 does not cross pspq ]
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) X (pa — ps)

0: DlRECT|ON(p,, pjs pk)
1: return (px — pi) X (pj — Pi)

2 p
0: SEGMENTS-INTERSECT(p;, pj, Px)
1. dy = DIRECTION(ps, ps, p1) P
2:  d» = DIRECTION(ps, ps, po)
3:  d; = DIRECTION(py, P2, p3) pi
4:  dy = DIRECTION(p1, P2, Pa) o » D3
5 lfdy-db < 0and ds-dy < O return TRUE{ In total 4 satisfying condltlons!]
6: 00

[ —

(Lines could touch or be colinear)
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Outline

Convex Hull
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

[ Smallest perimeter fence enclosing the points ]

——— Convex Hull Problem N
= Input: set of points Q in the Euclidean space
= Output: return points of the convex hull in counterclockwise order

7: Geometric Algorithms TS. 11



Application of Convex Hull

Robot Motion Planning

Find shortest path from s to t which avoids a polygonal obstacle.

A\N
( can be solved by computing the Convex hull! J
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Graham’s Scan (1/4)

@ \

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine v/

7: Geometric Algorithms

TS.




Graham’s Scan (2/4)

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

S
7: Geometric Algorithms TS.



Graham’s Scan (3/4)

@
y
O @ 0
—&H— x
( Use Cross Product! j

, [ Efficient Sorting by comparing (not computingT) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\\
= Sort all points increasingly according to their polar angle

= Try to add next point to the convex hull
= If it does not introduce non-left turn, then fine v/

i
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Graham’s Scan (4/4)

0:
1:
2
3:
4:
5:
6
7
8

9:
10:
11:
12:
13:
14:

[ Overall Runtime: O(nlog n) ]

©

GRAHAM-SCAN(Q)
: Let py be the point with minimum y-coordinate
Let (p1, p2, - - ., Pn) be the other points sorted by polar angle w.r.t. pg
fn<2 return false ™
S=0
PUSH(po,S) [ Takes O(nlog n) time ]
PUSH(p1,S)
PUSH(p>,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S) N
Eﬂdsmgil%) Takes O(n) time, since every point is
End For part of a PUSH or POP at most once.
Return S

1

7: Geometric Algorithms

TS.



Execution of Graham’s Scan (1/2)

O
O
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Execution of Graham’s Scan (2/2)

i=15v  [o]1]s]s]2]s]1s]
)
O
G (2)
O )
O
()
Q.
® o
()
(9
O,
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Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm
1. Let py be the lowest point

Next point the one with smallest angle w.r.t. pg

Continue until highest point py

Next point the one with smallest angle w.r.t. pg
=

(Here, we rotate the coordinate system by 180!]

Al A

Continue until py is reached
\ “
AN

[ Runtime: O(n - h), where h %{ Output sensitive algorithm! J

is no. points on convex hull.

i
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Execution of Jarvis’ March (1/4)

A
([ ]
[
([ ] (]
® ®
([
[ ]
[ J
Py [ J
[
[ ]
o A
O—> X
el bl
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Execution of Jarvis’ March (2/4)

([ ] (]
®
([
[ ]
[ J
Py [ J
[ ]
[ ]

Sl
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Execution of Jarvis’ March (3/4)

X < —
o
)
)
()
° )
()
()
\4
y
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Execution of Jarvis’ March (4/4)

y
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Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~» O(nlog n)

— Jarvis’ March \
= proceeds like wrapping a gift

= Runtime O(nh) ~~ output-sensitive
AN

[ Improves Graham’s scan only if h = O(log n)

\

[ There exists an algorithm with O(nlog h) runtime! ]

Lessons Learned

= cross product very powerful tool
(avoids trigonometry and divison!)

= take care of degenerate cases
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

= Don'’t forget to visit the online feedback page!

= Please send comments on the slides to:
tms4l@cam.ac.uk
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