

7: Geometric Algorithms

Frank Stajano

Thomas Sauerwald

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms

Computational Geometry

- Branch that studies algorithms for geometric problems

Computational Geometry

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Computational Geometry

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Do these lines intersect?

Computational Geometry

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Applications

- computer graphics
- computer vision
- textile layout
- VLSI design

Do these lines intersect?

Cross Product (Area)

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)
$$

Cross Product (Area)

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}
$$

Cross Product (Area)

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1
$$

Cross Product (Area)

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5
$$

Cross Product (Area)

$$
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}
\end{aligned}
$$

Cross Product (Area)

$$
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}
\end{aligned}
$$

Cross Product (Area)

$$
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)
\end{aligned}
$$

Cross Product (Area)

$$
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)=-5
\end{aligned}
$$

Cross Product (Area)

Alternatively, one could take the dot-product (but not used here):

$$
p_{1} \cdot p_{2}=\left\|p_{1}\right\| \cdot\left\|p_{2}\right\| \cdot \cos (\phi)
$$

$$
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)=-5
\end{aligned}
$$

Cross Product in 3D

Using Cross product to determine Turns

Sign of cross product determines turn!

Using Cross product to determine Turns

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Using Cross product to determine Turns (origin shifted)

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Solving Line Intersection

Solving Line Intersection

Solving Line Intersection

Opposite signs $\Rightarrow p_{1} p_{2}$ crosses
(infinite) line through p_{3} and p_{4}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Opposite signs $\Rightarrow \overline{p_{3} p_{4}}$ crosses (infinite) line through p_{1} and p_{2}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Opposite signs $\Rightarrow \overline{p_{3} p_{4}}$ crosses (infinite) line through p_{1} and p_{2}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses
Opposite signs $\Rightarrow \overline{p_{3} p_{4}}$ crosses (infinite) line through p_{3} and p_{4} (infinite) line through p_{1} and p_{2}

Solving Line Intersection

Solving Line Intersection

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Opposite signs $\Rightarrow \overline{p_{3} p_{4}}$ crosses (infinite) line through p_{1} and p_{2}

Solving Line Intersection

Opposite signs $\Rightarrow \overline{p_{1} p_{2}}$ crosses (infinite) line through p_{3} and p_{4}

Opposite signs $\Rightarrow \overline{p_{3} p_{4}}$ crosses (infinite) line through p_{1} and p_{2}

Solving Line Intersection

Solving Line Intersection

$\overline{p_{1} p_{2}}$ does not cross $\overline{p_{3} p_{4}}$

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$
4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE
6: $\quad \ldots$ (handle all degenerate cases)

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$
4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE
6: $\quad \ldots$ (handle all degenerate cases)

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$
4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE In total 4 satisfying conditions!
6: \quad... (handle all degenerate cases)

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$
4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE
6: $\quad \ldots$ (handle all degenerate cases)
Lines could touch or be colinear

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$

4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE
6: \quad... (handle all degenerate cases)
Lines could touch or be colinear

Solving Line Intersection

0: $\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)$
1: \quad return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

0: SEGMENTS-INTERSECT $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$
1: $\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
2: $d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
3: $\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$

4: $\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
5: If $d_{1} \cdot d_{2}<0$ and $d_{3} \cdot d_{4}<0$ return TRUE
6: \quad... (handle all degenerate cases)
Lines could touch or be colinear

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at（More）Advanced Algorithms

Convex Hull

> Definition
> The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Smallest perimeter fence enclosing the points

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull Problem

- Input: set of points Q in the Euclidean space

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for which each point in Q is either on the boundary of P or in its interior.

Convex Hull Problem

- Input: set of points Q in the Euclidean space
- Output: return points of the convex hull in counterclockwise order

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

- t

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

- t

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

$\circ t$

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.

Application of Convex Hull

Robot Motion Planning
Find shortest path from s to t which avoids a polygonal obstacle.
can be solved by computing the Convex hull!

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate

Graham's Scan

(4)

(2)

(3)
©
(0)

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle

Graham's Scan

(4)

(2)

(3)
(1)
(0)

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull

Graham's Scan

(2)

(4)

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

Graham's Scan

(4)

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

Graham's Scan

(4)
\square

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

Graham's Scan

(4)

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise,

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Efficient Sorting by comparing (not computing!) polar angles

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Efficient Sorting by comparing (not computing!) polar angles

Basic Idea

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Efficient Sorting by comparing (not computing!) polar angles

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan

Use Cross Product!

Efficient Sorting by comparing (not computing!) polar angles

- Start with the point with smallest y-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \checkmark
- Otherwise, keep on removing recent points until point can be added

Graham's Scan


```
0: GRAHAM-SCAN(Q)
1: Let po be the point with minimum y-coordinate
2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
3: If n<2 return false
4:
5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},S
8: For i=3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pimakes a non-left turn
10: POP(S)
11: End While
12:
PUSH(p;,S)
    End For
    Return S
```


Graham's Scan


```
0: GRAHAM-SCAN(Q)
1: Let po be the point with minimum y-coordinate
2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
3: If n<2 return false
4:
5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},S
8: For }i=3\mathrm{ to }
9: While angle of NEXT-TO-TOP(S),TOP(S),pimakes a non-left turn
10: POP(S)
11: End While
12:
PUSH(p;,S)
    End For
    Return S
```


Graham's Scan


```
    0: GRAHAM-SCAN(Q)
    1: Let po be the point with minimum y-coordinate
    2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. po
    3: If n<2 return false
    4:
    5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},\textrm{S}
8:
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn
10: POP(S)
11: End While
12:
        PUSH(p;,S)
    End For
    Return S
```


Graham's Scan


```
0: GRAHAM-SCAN(Q)
1: Let po be the point with minimum y-coordinate
2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
3: If n<2 return false
4:
5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: PUSH( }\mp@subsup{p}{2}{},\textrm{S}
8: For }i=3\mathrm{ to }
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn
10: POP(S)
11: End While
12: PUSH( }\mp@subsup{p}{i}{},\textrm{S}
13: End For
14: Return S
```


Graham's Scan

Graham's Scan

Overall Runtime: $O(n \log n)$

0: GRAHAM-SCAN(Q)

1: Let p_{0} be the point with minimum y-coordinate
2: Let $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be the other points sorted by polar angle w.r.t. p_{0}
3: If $n<2$ return false
4: $\quad S=\emptyset$
5: $\quad \operatorname{PUSH}\left(p_{0}, \mathrm{~S}\right)$
6: $\quad \operatorname{PUSH}\left(p_{1}, S\right)$
7: $\operatorname{PUSH}\left(p_{2}, \mathrm{~S}\right)$
8: \quad For $i=3$ to n
9: \quad While angle of NEXT-TO-TOP(S),TOP(S), p_{i} makes a non-left turn 10: POP(S)
11: End While
12: $\operatorname{PUSH}\left(p_{i}, \mathrm{~S}\right)$
13: End For
14: Return S

Takes $O(n)$ time, since every point is part of a PUSH or POP at most once.

Execution of Graham's Scan

Execution of Graham's Scan

Execution of Graham's Scan

$$
i=0 \quad 0
$$

Execution of Graham's Scan

$$
\begin{array}{ll|l|}
i=1 & 0 & 1 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|}
\hline & 0 & 1 & 2 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|l|}
\hline i=3 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|l|}
\hline i=4 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|}
i=4 & 0 & 1 & 2
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|}
\hline i=4 & 0 & 1 & 2 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
i=4 \quad 0012
$$

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|}
\hline & 0 & 1 & 4 \\
\hline
\end{array}
$$

Execution of Graham's Scan

Execution of Graham's Scan

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|}
\hline & 0 & 1 & 5 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|}
i=6 & 0 & 1 & 5 \\
\hline
\end{array}
$$

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|l|l|}
\hline i=7 & 0 & 1 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Execution of Graham's Scan

0	0	1	5	6	7

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|l|}
\hline i=8 & 0 & 1 & 5 & 6 \\
\hline
\end{array}
$$

Execution of Graham's Scan

Execution of Graham's Scan

$$
\begin{array}{ll|l|l}
i=8 & 0 & 1 & 5 \\
\hline
\end{array}
$$

Execution of Graham's Scan

Execution of Graham's Scan

$$
\begin{array}{ll|l|l|l|l|l|}
\hline i=15 & 0 & 1 & 5 & 8 & 12 & 13 \\
\hline
\end{array}
$$

7: Geometric Algorithms

Execution of Graham's Scan

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline i=15 & 0 & 1 & 5 & 8 & 12 & 13 & 15 \\
\hline
\end{array}
$$

Execution of Graham's Scan

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

4. Next point the one with smallest angle w.r.t. p_{k}

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

4. Next point the one with smallest angle w.r.t. p_{k}

$$
\text { Here, we rotate the coordinate system by } 180!
$$

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

4. Next point the one with smallest angle w.r.t. p_{k}
5. Continue until p_{0} is reached

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

4. Next point the one with smallest angle w.r.t. p_{k}
5. Continue until p_{0} is reached

Runtime: $O(n \cdot h)$, where h is no. points on convex hull.

Jarvis' March (Gift wrapping)

Intuition

- Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm

1. Let p_{0} be the lowest point
2. Next point the one with smallest angle w.r.t. p_{0}
3. Continue until highest point p_{k}

4. Next point the one with smallest angle w.r.t. p_{k}
5. Continue until p_{0} is reached

Runtime: $O(n \cdot h)$, where h is no. points on convex hull.

Output sensitive algorithm!

Execution of Jarvis' March

7: Geometric Algorithms
T.S.

Execution of Jarvis' March

7: Geometric Algorithms
T.S.

Execution of Jarvis' March

Execution of Jarvis' March

Execution of Jarvis' March

7: Geometric Algorithms
T.S.

Execution of Jarvis' March

7: Geometric Algorithms
T.S.

Execution of Jarvis' March

Execution of Jarvis' March

Execution of Jarvis' March

7: Geometric Algorithms
T.S.

Execution of Jarvis' March

Computing Convex Hull: Summary

Computing Convex Hull: Summary

Graham's Scan

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

```
Jarvis' March
```


Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

$$
\text { Improves Graham's scan only if } h=O(\log n)
$$

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

Improves Graham's scan only if $h=O(\log n)$
There exists an algorithm with $O(n \log h)$ runtime!

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

```
Jarvis' March
```

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

Improves Graham's scan only if $h=O(\log n)$
There exists an algorithm with $O(n \log h)$ runtime!
Lessons Learned

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

Improves Graham's scan only if $h=O(\log n)$
There exists an algorithm with $O(n \log h)$ runtime!

Lessons Learned

- cross product very powerful tool (avoids trigonometry and divison!)

Computing Convex Hull: Summary

Graham's Scan

- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting $\rightsquigarrow O(n \log n)$

Jarvis' March

- proceeds like wrapping a gift
- Runtime $O(n h) \rightsquigarrow$ output-sensitive

Improves Graham's scan only if $h=O(\log n)$
There exists an algorithm with $O(n \log h)$ runtime!
Lessons Learned

- cross product very powerful tool (avoids trigonometry and divison!)
- take care of degenerate cases

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms

Linear Programming and Simplex

maximize subject to	$3 x_{1}$	+	x_{2}	+	$2 x_{3}$		
	x_{1}	+	x_{2}	+	$3 x_{3}$	\leq	30
	$2 x_{1}$	+	$2 x_{2}$	+	$5 x_{3}$	\leq	24
	Goto End	$4 x_{1}$	+	x_{2}	+	$2 x_{3}$	\leq
		x_{1}, x_{2}, x_{3}		\geq	0		

Linear Programming and Simplex

$\operatorname{maximize}$ $3 x_{1}$ + x_{2} + $2 x_{3}$ subject to							
	x_{1}	+	x_{2}	+	$3 x_{3}$	\leq	30
	$2 x_{1}$	+	$2 x_{2}$	+	$5 x_{3}$	\leq	24
	Goto End	$4 x_{1}$	+	x_{2}	+	$2 x_{3}$	\leq
			x_{1}, x_{2}, x_{3}		\geq	0	

Linear Programming and Simplex

Linear Programming and Simplex

Linear Programming and Simplex

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*

G. DANTZIG, R. FULKERSON, and S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

Abstract

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an n by n symmetric matrix $D=\left(d_{I J}\right)$, where $d_{I J}$ represents the 'distance' from I to J, arrange the points in a cyclic order in such a way that the sum of the $d_{I J}$ between consecutive points is minimal. Since there are only a finite number of possibilities (at most $1 / 2(n-1)!$) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of n. Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, ${ }^{3,7,8}$ little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be shown that a certain arrangement of 49 cities, one in each of the 48 states and Washington, D. C., is best, the $d_{I J}$ used representing road distances as taken from an atlas.

Travelling Salesman Problem: The 42 (49) Cities

1. Manchester, N. H.
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5. Charleston, W. Va.
6. Louisville, Ky.
7. Indianapolis, Ind.
8. Chicago, Ill.
9. Milwaukee, Wis.
10. Minneapolis, Minn.
11. Pierre, S. D.
12. Bismarck, N. D.
13. Helena, Mont.
14. Seattle, Wash.
15. Portland, Ore.
16. Boise, Idaho
17. Salt Lake City, Utah
18. Carson City, Nev.
19. Los Angeles, Calif.
20. Phoenix, Ariz.
21. Santa Fe, N. M.
22. Denver, Colo.
23. Cheyenne, Wyo.
24. Omaha, Neb.
25. Des Moines, Iowa
26. Kansas City, Mo.
27. Topeka, Kans.
28. Oklahoma City, Okla.
29. Dallas, Tex.
30. Little Rock, Ark.
31. Memphis, Tenn.
32. Jackson, Miss.
33. New Orleans, La.
34. Birmingham, Ala.
35. Atlanta, Ga.
36. Jacksonville, Fla.
37. Columbia, S. C.
38. Raleigh, N. C.
39. Richmond, Va.
40. Washington, D. C.
41. Boston, Mass.
42. Portland, Me.
A. Baltimore, Md.
B. Wilmington, Del.
C. Philadelphia, Penn.
D. Newark, N. J.
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

Road Distances

TABLE I
Road Distances between Cities in Adjusted Units
The figures in the table are mileages between the two specified numbered cities, less 11, divided by 17 , and rounded to the nearest integer.
$\begin{array}{llll}50 & 49 & 21 & 15\end{array}$
$\begin{array}{lllll}61 & 62 & 21 & 20 & 17\end{array}$
$\begin{array}{llllll}58 & 60 & 16 & 17 & 18 & 6\end{array}$
$\begin{array}{lllllll}59 & 60 & 15 & 20 & 26 & 17 & 10\end{array}$
$\begin{array}{lllllllll}62 & 66 & 20 & 25 & 3^{1} & 22 & 15 & 5\end{array}$
$\begin{array}{llllllllll}81 & 81 & 40 & 44 & 50 & 41 & 35 & 24 & 20\end{array}$
$\begin{array}{llllllllll}103 & 107 & 62 & 67 & 72 & 63 & 57 & 46 & 41 & 23\end{array}$
$\begin{array}{lllllllllll}108 & 117 & 66 & 71 & 77 & 68 & 61 & 51 & 46 & 26 & 11\end{array}$
$\begin{array}{lllllllllllll}145 & 149 & 104 & 108 & 114 & 106 & 99 & 88 & 84 & 63 & 49 & 40 \\ 181 & 185 & 140 & 1444 & \text { I50 } & 142 & 135 & 124 & 120 & 99 & 85 & 76\end{array}$

$\begin{array}{lllllllllllll}142 & \text { I46 IOI IO4 III } & 97 & 91 & 85 & 86 & 75 & 51 & 59 & 29 & 53 & 48 & 21\end{array}$

$\begin{array}{llllllllllllllllllll}37 & 139 & 94 & 96 & 94 & 80 & 78 & 77 & 84 & 77 & 56 & 64 & 65 & 90 & 87 & 58 & 36 & 68 & 50 & 30\end{array}$
$\begin{array}{llllllllllllllllllllll}17 & 122 & 77 & 80 & 83 & 68 & 62 & 60 & 61 & 50 & 34 & 42 & 49 & 82 & 77 & 60 & 30 & 62 & 70 & 49 & 21\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}14 & 118 & 73 & 78 & 84 & 69 & 63 & 57 & 59 & 48 & 28 & 36 & 43 & 77 & 72 & 45 & 27 & 59 & 69 & 55 & 27 & 5\end{array}$
$\begin{array}{lllllllllllllllllllllllll}85 & 89 & 44 & 48 & 53 & 41 & 34 & 28 & 29 & 22 & 23 & 35 & 69 & 105 & 102 & 74 & 56 & 88 & 99 & 81 & 54 & 32 & 29 & \\ 77 & 80 & 36 & 40 & 46 & 34 & 27 & 19 & 21 & 14 & 29 & 40 & 77 & 114 & 111 & 84 & 64 & 96 & 107 & 87 & 60 & 40 & 37 & 8\end{array}$

The (Unique) Optimal Tour (699 Units $\approx 12,345$ miles)

Fig. 16. The optimal tour of 49 cities.

Iteration 1: Objective 641

Iteration 1: Objective 641, Eliminate Subtour 1, 2, 41, 42

Iteration 2: Objective 676

Iteration 2: Objective 676, Eliminate Subtour 3 - 9

Iteration 3: Objective 681

Iteration 3: Objective 681, Eliminate Subtour 24, 25, 26, 27

Iteration 4: Objective 682.5

Iteration 4: Objective 682.5, Eliminate Small Cut by 13 - 17

Iteration 5: Objective 686

Iteration 5: Objective 686, Eliminate Subtour 10, 11, 12

Iteration 6: Objective 686

Iteration 6: Objective 686, Eliminate Subtour 13 - 23

Iteration 7: Objective 688

Iteration 7: Objective 688, Eliminate Subtour 11 - 23

Iteration 8: Objective 697

Iteration 8: Objective 697, Branch on $x(13,12)$

Iteration 9, Branch a $x(13,12)=1$: Objective 699 (Valid Tour)


```
Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0
    with Simplex, Mixed Integer & Barrier Optimizers
5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21
Copyright IBM Corp. 1988, 2014. All Rights Reserved.
Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.
CPLEX> read tsp.lp
Problem 'tsp.lp' read.
Read time = 0.00 sec. (0.06 ticks)
CPLEX> primopt
Tried aggregator 1 time.
LP Presolve eliminated 1 rows and 1 columns.
Reduced LP has 49 rows, }860\mathrm{ columns, and }2483\mathrm{ nonzeros.
Presolve time = 0.00 sec. (0.36 ticks)
Iteration log . . .
Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 1510.000000
Iteration: 90 Objective = 923.000000
Iteration: 155 Objective = 711.000000
Primal simplex - Optimal: Objective = 6.9900000000e+02
Solution time = 0.00 sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)
CPLEX>
```

CPLEX> display solution variables -
Variable Name Solution Value
x_2_1 1.000000
x_42_1 1.000000
x_3_2 1.000000
x_4_3 1.000000
x_5_4 1.000000
$\times _6$ _5 1.000000
x_7_6
1.000000
$\times _8 _71.000000$
x_9_8
x_10_9
x_11_10
x-12_11
x_13_12
x_14_13
x_15_14
x_16_15
x_17_16
x_18_17
x_19_18
x_20_19
x_21_20
x_22_21
x_23_22
x_24_23
x_25_24
x_26_25
x $27 \quad 26$
x_28_27
$\times 29 \quad 28$
x_30_29
x_31_30
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
\times 32_31 1.000000
x_33_32 1.000000
\times 34_33 1.000000
x_35_34 1.000000
\times x 36 _35 1.000000
x_37_36 1.000000
x_38_37 1.000000
x_39_38
1.000000
x_40_39
1.000000
x_41_40
1.000000
x_42_41 1.000000
All other variables in the range 1-861 are 0 .

Iteration 10, Branch b $x(13,12)=0$: Objective 701

Thank you for attending this course \& Best wishes for the rest of your Tripos!

- Don't forget to visit the online feedback page!
- Please send comments on the slides to: tms41@cam.ac.uk

