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Introduction

~——— Computational Geometry ——————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line
segments etc.

\ J

~——— Applications N\
= computer graphics

= computer vision

= textile layout

VLSI design
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Cross Product (Area)

y
Ap=(1.3)
pr = (271)
> X
(0,0)
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Cross Product (Area)
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[ How large is this area? j
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Cross Product (Area)

y p1 + p2 = (3,4)
Moo=1,3)
p —
[ How large is this area? j
pi=(2,1)
> X

_ X1 Xo
p1 X p2 = det <y1 y2>
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Cross Product (Area)

Pt + P2 = (354)
N e — (1,3) T
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Cross Product (Area)

Pt + P2 = (354)
N e — (1,3) T

N,

[ How large is this area? j

P :(271)

> X

X1 Xo
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P2 X P1 = y1Xo — YaXi = —(P1 X Pz)
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Cross Product (Area)

Pt + P2 = (354)
N e — (1,3) T

N,

[ How large is this area? j

P :(271)

> X

X1 Xo
oy
P2 X Pt = y1Xe — YoX1 = —(p1 X p2) = =5

p1><p2:det( >:X1y2—X2y1:2~3—1-1:5
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Cross Product (Area)

P +p2:(3v4)
N e — (1,3) T

N,

[ How large is this area? j

P :(271)

> X

(0,0)

Alternatively, one could take the dot-product (but not used here):
p1 - p2 = ||p]| - [|p2[| - cos(¢).

X1 Xo
oy
P2 X Pt = y1Xe — YoX1 = —(p1 X p2) = =5

p1><p2:det( >:X1y2—X2y1:2~3—1-1:5
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Cross Product in 3D

> N

D2 p1 + p2
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Cross Product in 3D

z
A
p1 X P2 = (0,0, x1y> — Xz}/1)A
y
e p1+ P2
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Cross Product in 3D
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Cross Product in 3D
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Cross Product in 3D

z
A
pi x p2 = (0,0, x1y2 — X2}’1))
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Using Cross product to determine Turns

P2 :(173)

p1 = (2v1)

(0,0)
p3:(17_1)

o 5 7: Geometric Algorithms TS.
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Using Cross product to determine Turns

A
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<[ pi x po > 0: left (counterclockwise) turn J
P = (27 1)
> X
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Using Cross product to determine Turns

A
P2 = (173)
<[ pi x po > 0: left (counterclockwise) turn J
P = (27 1)
) it o .
0.0) / \ p1 X ps < 0O: right (clockwise) turn
Ps = (1 ) _1)
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Using Cross product to determine Turns

A
P2 = (173)

<[ pi x po > 0: left (counterclockwise) turn J

’?°p1 = (271)

(,\\”’ e
s \/‘. \ p1 x ps < 0: right (clockwise) turn ]
Pz = (1 ) _1)
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Using Cross product to determine Turns

A
p2 = (1 P 3)
<[ p1 x p2 > 0: left (counterclockwise) turn J
= (2,1)
= / I p1 X ps < 0O: right (clockwise) turn J
_.-(0,0) \
- p3 = (1 ; -1 )
Sign of cross product determines turn! l
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Using Cross product to determine Turns

A
p2 = (173)
{ p1 x p2 > 0: left (counterclockwise) turn J
= (2,1)
/ 0: right (clockwise) t
—60',05 / \ p1 X ps < 0O: right (clockwise) turn
pa=(1,-1)

Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinearj
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Using Cross product to determine Turns (origin shifted)

p1 = (47 2)

pO:(271)

(0,0) Ps :'(3, 0)
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Using Cross product to determine Turns (origin shifted)

A
<[ (P1 — po) X (P2 — po) > 0: left turn J
pr = (47 2)
Po = (271)
. >» X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

y
A P = (3.4) [ @1)x (1,3) = 5 J
/4
<[ (P1 — po) X (P2 — po) > 0: left turn ]
p1 = (47 2)
Po = (27 1)
. >» X

(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

y
A P = (3.4) [ @1)x (1,3) = 5 J
/4
<[ (P1 — po) X (P2 — po) > 0: left turn ]
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Using Cross product to determine Turns (origin shifted)

y
0 P = (3.4) [ enxay-s |
<[ (p1—p0)><(;{3/2—po)>0: left turn J
p1:(472)
po=(2,1) ) <[ (P — Po) x (ps — Po) < O: right turn ]
> X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

y
A P2 = (3,4) [ (2,1)x(1,3) =5 J
<[ (p1—p0)><(;{3/2—po)>0: left turn J
p—a2) ((@Dx0.-1=-3 ]
po=(2,1) ) <[ (p1—p0)><(p:—po)<0: right turn ]
> X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

P2 = (3,4) [ (2,1)x (1,3) = 5 J
<[ (Pt — po) X (;{;/2 — po) > 0: left turn J
) ( @151 =-3 )

<[ (b1 — po) X (p:—po) < 0: right turn ]

>» X
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Solving Line Intersection

J
A
P4

4--

3--

2--

1 4

Ps
N
t t t t > X
of ' % °
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Solving Line Intersection

)
A
P2 P4
4--
3--
2T P
1 4
Ps
L N
t t t t t —>»X
(0,0) 1 2 3 4 5
el Bl
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Solving Line Intersection

)
A
4__
3.-
2.-
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (Pt — ps) x (ps — Ps)
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Solving Line Intersection

A
4__
3.-
2.-
1__
N N N N . N
0o 1 £ & 4 57
1 (P1 — Ps) x (ps — ps) = (3,1) x (1,3)
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Solving Line Intersection

A
4__
3--
2--
1__
' ' ' ' N
'(00) 1 2 3 4 5 7
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Solving Line Intersection
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Solving Line Intersection

A
4__
3--
2--
1__
N N N N . N
'(00) T2 § 4 5 2
1 (1 —p3) x (s —p3) =(3,1) x (1,3)=8

(P2 — p3) x (ps — pa) = (=1,3) x (1,3) = —6
=

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection

)

A

. P2 P4

3--

2+ Pi

1__

%]

t t t t t —>»X
(0.0) 1/2 3 4 5 7

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection
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3-_

2-_

1-_

'(0 0) 1 /2 3 4 5 7

T (Ps = p1) x (P2 — p1)

=

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection

A
4__
3.-
2.-
1__
N N N N N A'Y
'(00) T A 5 4 5 2F
1 (Ps — pr) % (P2 — p1) = (=3, 1) x (—4,2)

=

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>»X
0o 12 3 45 ~
1 (pa_p1)><(pz_p1):(—37—1)><(—4,2):710

=

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>»X
0o 12 3 45 ~
1 (pa_p1)><(pz_p1):(—37—1)><(—4,2):710

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
=

Opposite signs = pyp> crosses
(infinite) line through ps and ps4
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Solving Line Intersection

X
4__
3--
2--
1__
oo 112 5 4 5>
1 [P x (P2 pi) = (-8,-1) x (~4,2) = ~10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
g =

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»
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Solving Line Intersection

X
4__
3--
2--
1__
oo 112 5 4 5>
1 [P x (P2 pi) = (-8,-1) x (~4,2) = ~10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
g ~-

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

5
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Solving Line Intersection

Yy
A
P2 P4
4--
3--
21 P
1 4
Ps
= ~N-

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

£
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Solving Line Intersection

y
A
P2 P4
4.-
3.-
21 P
1__
Ps
P12 N paps # 0
P12 N Paps # 0
= ~N-

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

£
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Solving Line Intersection

><

P

* P12 N Pspa 2 P1P2 N Papa # 0
* P1P2 N PaPs 2 P12 N PapPa 7 0

== ~-

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

£
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Solving Line Intersection

><

P3

* PiP2 N PsPs 2 PiPz N psps # 0

* P1P2 N PaPs 2 P12 N PapPa 7 0

= Since p1p2 N P3ps consists of (at most) one point
= Pi1P2 N Paps # 0

== ~-

Opposite signs = pyp> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

£
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Solving Line Intersection

y
A
P2 P4
4__
3--
2+ P
1__
P3
N N A'Y
'(00) T A 5 4 5 2F
[ P12 CrOSSES P34 ]

== ~-
[Opposite signs = pi1 P2 crosses} [Opposite Signs = P3Pa crosses}

(infinite) line through ps and ps (infinite) line through py and p»

£
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P1
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Solving Line Intersection

)
A
P2

4__

3.-

21 P4 [ e p

A o

Ps3

t t t t t —>»X
0o 1 2 3 4 5 7
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Solving Line Intersection

)

A

P2

4__

3.-

21 P4 [ e p

Nl

Ps
} } } —>»X
(0.0) i 2 3 4 5 7
T (Ps —p1) x (P2 —p1) <0
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Solving Line Intersection

)

A

Jo

4__

3“ \

2+ Psp- -4 -2 pi

|

Ps
} } } —>»X
(0.0) i 2 3 4 5 7
T (Ps = p1) x (p2 = p1) <0
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Solving Line Intersection

)

A

Jo

4__

3“ \

2+ Psp- -4 -2 pi

|

Ps
} } } —>»X
(0.0) i 2 3 4 5 7
T (Ps = p1) x (p2 = p1) <0

(Pa—p1) x (b2 —p1) <0
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Solving Line Intersection

)
A
P2
4-_
3“ \
2 Ps g -+ |-~ 7> P
A /-
P3
t t t > X
0o 1 2 3 4 5 7
1 (s —p1) x (P2 —p1) <0

(Pa—p1) x (b2 —p1) <0

[ p1p2 does not cross P3Py ]
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Solving Line Intersection

y

(0,0)

0: DIRECTION(p;, pj, Pk)
1: return (px — p;) x (B — P;)
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Solving Line Intersection

y pa
P2

Ps
(0,0)

0: DIRECTION(p;, pj, Pk)
1: return (px — p;) x (B — P;)
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, Pk)
1: return (px — p;) x (B — P;)
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p,-,p,-,pk)
1 return (px — p;) X (P — Pi)

0: SEGMENTS-INTERSECT(p1, p2, P3, P4)

1 d; = DIRECTION(ps, ps, p1)

2 d> = DIRECTION(ps3, p4, p2)

3: d3 = DlRECTlON(p1 , P2, p3)

4: dy = DIRECTION(py, p2, Pa)

5 If di -db < 0and dz-dy < 0return TRUE
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, Pk)
1: return (px — p;) x (B — P;)

0: SEGMENTS-INTERSECT(p1, p2, P3, Ps)

1 d; = DIRECTION(p3, p4,p1)

2 d> = DIRECTION(p3, p4, p2)

3: a3 = DIRECTION(p1,p2, )

4: dy = DIRECTION(py1, p2, Ps)

5 If di -do < 0and dz-dy < 0 return TRUE
6 ..
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p,-,p,-,pk)
1 return (px — p;) X (P — Pi)

0: SEGMENTS-INTERSECT(p1, 2, s, Pu)
1. dy = DIRECTION(p3, pa, p1)

2. dy — DIRECTION(pz, pa, o)

3: d3 = DlRECTlON(p1 , P2, p3)
4 )
5
6

ds = DIRECTION(p1, Pz, Pa — -
If dy - db < 0and ds - dy < O return TRUE{ In total 4 satisfying condmons!]
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p,-,p,-,pk)
1 return (px — p;) X (P — Pi)

0: SEGMENTS-INTERSECT(p1, p2, P3, P4)

1 d; = DIRECTION(ps, ps, p1)

2 d> = DIRECTION(ps3, p4, p2)

3: d3 = DlRECTlON(p1 , P2, p3)

4: dy = DIRECTION(py, p2, Pa)

5 If di -db < 0and dz-dy < 0return TRUE

_—

(Lines could touch or be coIinear)
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p,-,p,-,pk)
1 return (px — p;) X (P — Pi) P
P4

0: SEGMENTS-INTERSECT(p1, p2, P3, P4)

1 d; = DIRECTION(ps, ps, p1)

2 d> = DIRECTION(ps3, p4, p2)

3: d3 = DlRECTlON(p1 , P2, p3) P
4: dy = DIRECTION(py, p2, Pa)

5 If di -db < 0and dz-dy < 0return TRUE

_—

(Lines could touch or be coIinear)
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, Px)

1 return (px — p;) % (pj — Pi) P
P4 p.
0: SEGMENTS-INTERSECT(p1, P2, Ps, P4)
1: dy = DIRECTION(ps, ps, p1) P
2 d> = DIRECTION(p3, pa, p2)
3: d3 = DlRECTlON(p1 , P2, p3) P
4:  dy = DIRECTION(p1, P2, Ps) s
5 If di -db < 0and dz-dy < 0return TRUE

_—

(Lines could touch or be coIinear)

35 7: Geometric Algorithms TS. 9



Outline

Convex Hull
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Convex Hull

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull
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Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

[ Smallest perimeter fence enclosing the points j
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

—— Convex Hull Problem N\
= Input: set of points Q in the Euclidean space
= Qutput: return points of the convex hull in counterclockwise order
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Application of Convex Hull

Robot Motion Planning

Find shortest path from s to ¢ which avoids a polygonal obstacle.

A\N
( can be solved by computing the Convex hull! ]
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, [ Efficient Sorting by comparing (not computing!) polar angles ]
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Graham’s Scan

( Use Cross Product! j

, [ Efficient Sorting by comparing (not computingT) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= [f it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added
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Graham’s Scan

0: GRAHAM-SCAN(Q)

1: Let pg be the point with minimum y-coordinate

2 Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. pg
3: If n < 2 return false

4: S=0
5:
6
7
8

PUSH(po,S)
PUSH(p1,S)
PUSH(p2,S)
: Fori=3ton
9: While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
10: POP(S)
11: End While
12: PUSH(p;,S)
13: End For

14: Return S
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Let py be the point with minimum y-coordinate
Let (p1, p2, - . ., , Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0
PUSH(po,S)
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Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
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End While
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Graham’s Scan

®
O 0
0: GRAHAM-SCAN(Q)
1: Let py be the point with minimum y-coordinate
2 Let (p1, p2, - . ., , Pn) be the other points sorted by polar angle w.r.t. py
3: If n < 2 return false L
4: S=0
5: PUSH(py,S) [ Takes O(nlog n) time ]
6 PUSH(p1,S)
7 PUSH(p2,S)
8: Fori=3ton
9: While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
10: POP(S) N
11: End Whil . . s
12: PUSH(pl,-,eS) Takes O(n) time, since every point is
13: End For part of a PUSH or POP at most once.
14: Return S
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@

Overall Runtime: O(nlog n)
©

GRAHAM-SCAN(Q)
: Let py be the point with minimum y-coordinate
Let (p1, p2, - - ., pn) be the other points sorted by polar angle w.r.t. pg
If n < 2 return false
S=10 ™
PUSH(po,S) [ Takes O(nlog n) time ]
PUSH(p1,S)
PUSH(p>,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S) N
Eﬂds\év(gil%) Takes O(n) time, since every point is
End For part of a PUSH or POP at most once.
Return S

]
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(Here, we rotate the coordinate system by 180!]
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Al

Continue until py is reached

\ N J
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L Runtime: O(n - h), where h%{ Output sensitive algorithm! ]
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Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\
= proceeds like wrapping a gift

= Runtime O(nh) ~ output-sensitive
AN

[ Improves Graham’s scan only if h = O(log n) ’

\

[ There exists an algorithm with O(nlog h) runtime! ]

Lessons Learned

= cross product very powerful tool
(avoids trigonometry and divison!)

= take care of degenerate cases
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Glimpse at (More) Advanced Algorithms
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Linear Programming and Simplex

maximize
subject to

i
.',‘E.‘,_

3X1 + X2 + 2X3
X1 + X2 + 3X3 < 30
2X1 + 2X2 + 5X3 S 24
4X1 + Xo -+ 2X3 < 36
X1, X2, X3 > 0
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anxp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.
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Travelling Salesman Problem: The 42 (49) Cities

WO 00 I DU W

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
19.
. Phoenix, Ariz.
21.
. Denver, Colo.
23.
24.
. Des Moines, Towa

. Kansas City, Mo.

. Topeka, Kans.

. Oklahoma City, Okla.
. Dallas, Tex.

. Little Rock, Ark.

. Memphis, Tenn.

. Jackson, Miss.

33.

Carson City, Nev.
Los Angeles, Calif.

Santa Fe, N. M.

Cheyenne, Wyo.
Omaha, Neb.

New Orleans, La.

'S
S

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.
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Road Distances

2
13| 145 149 104 108 114 106
14 | 187 185 140 144 150 142
15| 187 191 146 150 136 142
16| 161 170 120 124 130 115
17| 142 146 101 104 111 97
18] 174 178 153 138 143 129
1

20| 163 165 120 123 124 106
21

130125105 90 81 41 10
104105 90 72 64 34 31 27

85 86 75 31 59 29 53 48 21
117118 107 83 84 54 46 35 26 3T

65186 142 133 140 130 130 134 138 116 g5 1o 73 b9 EH g8 43 26

105110104 86 97 71 93
77 84 77 56 64 65 90 87 8 36 68 s0 30

B 61 50 34 42 49 82 77 6o 30 62 70 39 21

43 77 73 4

28 29 22 23 35 69105102 74 56 88 99
19 21 14 29 40 77114111 84 b4 96107 87 60 40 37
29 32 27 36 47 78116112 84 66 98 95 75 47 36 39
33 36 30 34 45 77115110 83 63 07 9I 72 44 32 36

9
B iogich o2 b3 bs 47 46 4y 5+ 38 36 59 Ssuigig 8 66 of 79 g 51 36 w2
9

56 b1 57 59 71 96130126 98 75 98 85 62 38 47 53

30| o1 92 0 51 46 30 34 38 43 49 b0 71103141 136109 go 115 99 81 53 61 62

29 33 30 21 18 3%
3 11 41 37 47 57
5 12 55 41 53 b4

L2 52888 888
4
kN
+
3

32 36 51 63 75106142140 112 93126108 88 6o 64 66

39 63 76 87120155150123 100123109 86 62 71 78
56 60 75 86 97126160155 128 104 128 113 go 67 76 82
39 44 62 ZB 89 121 lgg 155 127 108 136 124 101 75 79 81
31 46 64 83 90130164 160133 114136134 111 85 84 86
60 66 83102110147 185 179 155 133 159 146 122 98 105 107
47 52 71 93 98136172 172 148 126 158 147 124 121 97 99
48 33 73 96 99137176 178 151 131 163 159 135 108 102 103
4 5170 93 g7I34170 176 151 13 161 165 139 118 102 101
40 45 65 87 91117166171 144125157156 139113 95 97
8 63 83 105 109 147 186 188 164 144 176 182 161 134 119 116
61 66 84111 113150 186 192 166 147 180 188 167 140 124 119

TABLE I

Roap Disrances BETwWEEN CrTies 1N Apjustep UNITS
The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.

12

28
39
36
39
62
54
59
79
73
7
86
90

88 101 108
94 107 114

12

9
715 6
54 41 32 25
4838 32 6

1 2 3 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

24

27 28 29

37 38 39 40 41
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The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

Fic. 16. The optimal tour of 49 cities.
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Iteration 1: Objective 641
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Iteration 1: Objective 641, Eliminate Subtour 1,2 41,42

7 0
37 26
5 ‘
i
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Iteration 2: Objective 676
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Iteration 2: Objective 676, Eliminate Subtour 3 — 9
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lteration 3: Objective 681
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Iteration 3: Objective 681, Eliminate Subtour 24,25, 26,27
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Iteration 4: Objective 682.5
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Iteration 4: Objective 682.5, Eliminate Small Cut by 13 — 17
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Iteration 5: Objective 686

18 r 23
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Iteration 5: Objective 686, Eliminate Subtour 10,11,12
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Iteration 6: Objective 686
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Iteration 6: Objective 686, Eliminate Subtour 13 — 23
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Iteration 7: Objective 688
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Iteration 7: Objective 688, Eliminate Subtour 11 — 23
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Iteration 8: Objective 697
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Iteration 8: Objective 697, Branch on x(13,12)
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Iteration 9, Branch a x(13,12) = 1: Objective 699 (Valid Tour)
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Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.@

with Simplex, Mixed Integer & Barrier Optimizers
5725-AB6 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21
Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> read tsp.lp

Problem 'tsp.lp’' read.

Read time = ©.80@ sec. (@.86 ticks)

CPLEX> primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = .80 sec. (@.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 151@.ee0008
Iteration: 9@ Objective = 923.000000

Iteration: 155 Objective 711.000000

Primal simplex - Optimal: Objective = 6.9900000000ec+02
Solution time = 2.8@ sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

crLex= I
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CPLEX> display solution variables —

Variable Name Solutien Value
x_2_1 1.000000
%_42_1 1.000000
% 3.2 1.000000
%_4_3 1.000000
%_5_4 1.000000
%_6_5 1.000000
%_7_6 1.000000
%_8_7 1.000000
% 9_8 1.000000
%_10_9 1.000000
%_11_10 1.000000
x_12_11 1.000000
x_13_12 1.000000
%_14_13 1.000000
%_15_14 1.000000
%_16_15 1.000000
%_17_16 1.000000
%_18_17 1.000000
%_19_18 1.000000
%_20_19 1.000000
%_21_20 1.000000
x_22_21 1.000000
%_23_22 1.000000
%_24_23 1.000000
%_25_24 1.000000
%_26_25 1.000000
%_27_26 1.000000
%_28_27 1.000000
%_29_28 1.000000
%_30_29 1.000000
%_31_30 1.000000
%_32_31 1.000000
%_33_32 1.000000
%_34_33 1.000000
%_35_34 1.000000
%_36_35 1.000000
%_37_36 1.000000
%_38_37 1.000000
%_39_38 1.000000
%_40_39 1.000000
%_41_40 1.000000
%_42_41 1.000000

AL other variables in the range 1-861 are 8.
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Iteration 10, Branch b x(13,12) = 0: Objective 701
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

= Don't forget to visit the online feedback page!

= Please send comments on the slides to:
tms4lQ@cam.ac.uk

7: Geometric Algorithms TS.

36



	Introduction and Line Intersection
	Convex Hull
	Glimpse at (More) Advanced Algorithms

