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Solving Line Intersection (without Trigonometry and Division!)
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(0, 0)

p3

p4p2

p1

(p1 � p3)⇥ (p4 � p3) = (3, 1)⇥ (1, 3) = 8

(p2 � p3)⇥ (p4 � p3) = (�1, 3)⇥ (1, 3) = �6

Opposite signs ) p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ) p1p2 crosses
(infinite) line through p3 and p4

(p3 � p1)⇥ (p2 � p1) = (�3,�1)⇥ (�4, 2) = �10

(p4 � p1)⇥ (p2 � p1) = (�2, 2)⇥ (�4, 2) = 4

Opposite signs ) p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ) p3p4 crosses
(infinite) line through p1 and p2

p1p2 crosses p3p4

p3

p4

(p3 � p1)⇥ (p2 � p1) < 0

(p4 � p1)⇥ (p2 � p1) < 0

p1p2 does not cross p3p4
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Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications
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Do these lines intersect?
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Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5
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Cross Product in 3D

y

x

z
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p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × · ) > 0

(p1 × · ) < 0
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Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear
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Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3
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Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4
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Solving Line Intersection
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p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk )
1: return (pk − pi )× (pj − pi )

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3
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Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem
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Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!
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Graham’s Scan

00
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x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)
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Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!
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Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned
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Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms
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Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN 
PROBLEM* 

G. DANTZIG, R. FULKERSON, AND S. JOHNSON 
The Rand Corporation, Santa Monica, California 

(Received August 9, 1954) 

It is shown that a certain tour of 49 cities, one in each of the 48 states and 
Washington, D. C., has the shortest road distance. 

THE TRAVELING-SALESMAN PROBLEM might be described as 
follows: Find the shortest route (tour) for a salesman starting from a 

given city, visiting each of a specified group of cities, and then returning to 
the original point of departure. More generally, given an n by n sym- 
metric matrix D= (d1i), where doi represents the 'distance' from I to J, 
arrange the points in a cyclic order in such a way that the sum of the d1j 
between consecutive points is minimal. Since there are only a finite 
number of possibilities (at most (n - 1)!) to consider, the problem is 
to devise a method of picking out the optimal arrangement which is 
reasonably efficient for fairly large values of n. Although algorithms have 
been devised for problems of similar nature, e.g., the optimal assignment 
problem,3"78 little is known about the traveling-salesman problem. We 
do not claim that this note alters the situation very much; what we shall do 
is outline a way of approaching the problem that sometimes, at least, en- 
ables one to find an optimal path and prove it so. In particular, it will be 
shown that a certain arrangement of 49 cities, one in each of the 48 states 
and Washington, D. C., is best, the djj used representing road distances as 
taken from an atlas. 

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It 
appears to have been discussed informally among mathematicians at mathematics 
meetings for many years. Surprisingly little in the way of results has appeared in 
the mathematical literature.10 It may be that the minimal-distance tour problem 
was stimulated by the so-called Hamiltonian game' which is concerned with finding 
the number of different tours possible over a specified network. The latter problem 
is cited by some as the origin of group theory and has some connections with the 
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be 
credited with stimulating interest in the traveling-salesman problem in many quar- 
ters. As early as 1937, he tried to obtain near optimal solutions in reference to 
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re- 
call that they heard about the problem first in a seminar talk by Hassler Whitney 
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall 
the problem). The relations between the traveling-salesman problem and the 
transportation problem of linear programming appear to have been first explored by 
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and 
H. Kuhn.4 5'6 

393 
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Travelling Salesman Problem: The 42 (49) Cities

394 DANTZIG, FULKERSON, AND JOHNSON 

In order to try the method on a large problem, the following set of 49 
cities, one in each state and the District of Columbia was selected: 

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala. 
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga. 
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla. 
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C. 
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C. 
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va. 
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C. 
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass. 
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me. 

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md. 

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del. 
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn. 
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J. 
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y. 
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn. 
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I. 

The reason for picking this particular set was that most of the road 
distances between them were easy to get from an atlas. The triangular 
table of distances between these cities (Table I) is part of the original one 
prepared by Bernice Brown of The Rand Corporation. It gives dj= 
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles 
between I and J. The d1i have been rounded to the nearest integer. 
Certainly such a linear transformation does not alter the ordering of the 
tour lengths, although, of course, rounding could cause a tour that was 
not optimal in terms of the original mileage to become optimal in terms of 
the adjusted units used in this paper. 

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42 
in this order is minimal for this subset of 42 cities. Moreover, since in 
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts) 
by the shortest road distance one goes through A, B, * * *, G, successively, 
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41, 
42 in that order is also optimal. 

PRELIMINARY NOTIONS 

Whenever the road from I to J (in that order) is traveled, the value 
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is 
entered. A (directed) tour through n cities can now be thought of as a 
permutation matrix of order n which represents an n-cycle (we assume 

* This particular transformation was chosen to make the d1j of the original table 
less than 256 which would permit compact storage of the distance table in binary 
representation; however, no use was made of this. 
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Road Distances
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The (Unique) Optimal Tour (699 Units ≈ 12,345 miles)
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Iteration 1: Objective 641
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Iteration 1: Objective 641, Eliminate Subtour 1,2,41,42
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Iteration 2: Objective 676

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

0.50

0.50

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

0.50

1

1

7: Geometric Algorithms T.S. 25



Iteration 2: Objective 676, Eliminate Subtour 3 − 9
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Iteration 3: Objective 681
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Iteration 3: Objective 681, Eliminate Subtour 24,25,26,27
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Iteration 4: Objective 682.5
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Iteration 4: Objective 682.5, Eliminate Small Cut by 13 − 17
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Iteration 5: Objective 686
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Iteration 5: Objective 686, Eliminate Subtour 10,11,12
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Iteration 6: Objective 686
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Iteration 6: Objective 686, Eliminate Subtour 13 − 23
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Iteration 7: Objective 688
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Iteration 7: Objective 688, Eliminate Subtour 11 − 23
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Iteration 8: Objective 697
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Iteration 8: Objective 697, Branch on x(13,12)
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Iteration 9, Branch a x(13,12) = 1: Objective 699 (Valid Tour)
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Iteration 10, Branch b x(13,12) = 0: Objective 701
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

Don’t forget to visit the online feedback page!

Please send comments on the slides to:
tms41@cam.ac.uk
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