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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)
ueS,veT (u,v)€EE(S,T)

= A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.
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Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

1. Foreveryu,v e V, f(u,v) < c(u,v),
2. Forevery u,v eV, f(u,v) = —f(v, u),
3. Foreveryue V\ {s,t}, > ,cy f(u,v) =0.

= Let f be any flow and (S, T) be any cut:

fl=>_f(s.v)

veV
@ Z Z f(u,v)
ueSveV
Flow-Value-Lemma: =D > fuv)+> > f(uv)
ueSveSs ueSveT

For any cut (S, T),

@ f(u, v)
|f|:ZZf(u,v). u;s\;

ueSveT (1)

<> > euv)

ueSveT
=c(S, 7).
= Since this holds for any pair of flow and cut, it follows that
max |f| < min ¢(S, T) O
f (8,T)

o
S, 6.6: Maximum flow TS. 12
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNEFrO
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wWwNEFrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Ve

J

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integral
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.

S, 6.6: Maximum flow TS. 14



Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

9s push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v ¢(u, v) iterations and returns the maximum flow.

£\

\
[(proof omitted here, see CLRSS)]
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Slow Convergence of Ford-Fulkerson (Figure 26.7)

W 3y
3|\ %09

® o O

3 % Q©
7, Q
%00 s\

( Number of iterations is C := maxy, c(u, v)! )
i

[ For irrational capacities, Ford-Fulkerson 1

may even fail to terminate!
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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In summary:
= After iteration 1: <L, %, <L, [fl =1
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« After iteration 5: 2, Ly 2 |f| = 1 4 26 + 2¢°
_ 44 _ 45
« After iteration 9: <2, 5, 48 fl =1+ 2¢ + 247 + 2¢° + 2¢*
\
-

More generally,
« For every i = 0,1, ... after iteration 1 + 4 - i: lsol il ozett
* Ford-Fulkerson does not terminate!
Ul =14+27 ¢ =~ 4.23607 < 5
= |t does not even converge to a maximum flow!
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Non-Termination of Ford-Fulkerson for Irrational Capacities

{ flow value N

7__
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= |dea: Find an augmenting path with high capacity
= Consider subgraph of Gy consisting of edges (u, v) with ¢s(u, v) > A
= scaling parameter A, which is initially 2/'°% ©1 and 1 after termination
= Runtime: O(E? - log C)

\

~——— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in Gy
= Runtime: O(E? - V)
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Application: Maximum-Bipartite-Matching Problem
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and R so that all edges go between L and R.
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph
A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R. :W:
.>'( ?K.
[ J
Given a bipartite graph G = (LU R, E), find a

matching of maximum cardinality.
L R
( Jobs ) ( Machines
19
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Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G gquals ]

the value of a maximum flow f in the corresponding flow network G.

Graph G Graph G

i 6.6: Maximum flow TS. 21



From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

O

ONONON®

Graph G Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

ONONONG

Graph G Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

0.0 OO

Graph G Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

0.0 OO

Graph G Graph G

5 6.6: Maximum flow TS.

22



From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

(max cardinality matching < value of maxflow)

0.0 OO

Graph G Graph G

5 6.6: Maximum flow TS.
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From Flow to Matching

= Let f be a maximum flow in G of value k
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From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
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From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
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From Flow to Matching

» Let f be a maximum flow in G of value k
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a) Flow Conservation
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From Flow to Matching

= Let f be a maximum flow in G of value k
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit

c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k

[N
[value of maxflow < max cardinality matchingj
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