

Residual Graph $G_f = (V, E_f, c_f)$:

6.6: Maximum flow

Frank Stajano

Thomas Sauerwald

Lent 2016

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Cut

■ A cut (S, T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

Graph G = (V, E, c):

— Cut ·

■ A cut (S, T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.

Graph G = (V, E, c):

— Cut

- A cut (S, T) is a partition of V into S and $T = V \setminus S$ such that $s \in S$ and $t \in T$.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

Graph G = (V, E, c):

 $c({s,3},{2,4,5,t}) =$

— Cut

- A cut (S, T) is a partition of V into S and T = V \ S such that s ∈ S and t ∈ T.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

Graph G = (V, E, c):

— Cut

- A cut (S, T) is a partition of V into S and T = V \ S such that s ∈ S and t ∈ T.
- The capacity of a cut (S, T) is the sum of capacities of the edges from S to T:

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v) = \sum_{(u,v) \in E(S,T)} c(u,v)$$

 A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

Graph G = (V, E, c):

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem) -

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Theorem (Max-Flow Min-Cut Theorem)

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subseteq V} c(S,T).$$

Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

- 1. For every $u, v \in V$, $f(u, v) \leq c(u, v)$,
- 2. For every $u, v \in V$, f(u, v) = -f(v, u),
- 3. For every $u \in V \setminus \{s, t\}, \sum_{v \in V} f(u, v) = 0$.
 - Let f be any flow and (S, T) be any cut:

$$|f| = \sum_{v \in V} f(s, v)$$

$$\stackrel{\text{(3)}}{=} \sum_{u \in S} \sum_{v \in V} f(u, v)$$

$$= \sum_{u \in S} \sum_{v \in S} f(u, v) + \sum_{u \in S} \sum_{v \in T} f(u, v)$$

$$\stackrel{\text{(2)}}{=} \sum_{u \in S} \sum_{v \in T} f(u, v)$$

$$\stackrel{\text{(1)}}{\leq} \sum_{u \in S} \sum_{v \in T} c(u, v)$$

$$= c(S, T).$$

Since this holds for any pair of flow and cut, it follows that

$$\max_{f} |f| \leq \min_{(S,T)} c(S,T)$$

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in G_f can be found:

3: push as much extra flow as possible through it

0: def FordFulkerson(G)

1: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

0: def FordFulkerson(G)

I: initialize flow to 0 on all edges

2: while an augmenting path in G_f can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u,v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Flow before iteration integral & capacities in G_f are integral \Rightarrow Flow after iteration integral

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $C := \max_{u,v} c(u, v)$ iterations and returns the maximum flow.

0: def FordFulkerson(G)

: initialize flow to 0 on all edges

2: while an augmenting path in G_t can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $C := \max_{u,v} c(u, v)$ iterations and returns the maximum flow.

(proof omitted here, see CLRS3)

15

Number of iterations is $C := \max_{u,v} c(u,v)!$

Number of iterations is $C := \max_{u,v} c(u,v)!$

For irrational capacities, Ford-Fulkerson may even fail to terminate!

6.6: Maximum flow T.S.

16

Iteration: 1, |f| = 0

Iteration: 1, |f| = 1

Iteration: 1, |f| = 1

Iteration: 2, |f| = 1

Iteration: 2, |f| = 1

Iteration: 2, $|f| = 1 + \phi$

Iteration: 2, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + 2 \cdot \phi$

Iteration: 3, $|f| = 1 + 2 \cdot \phi$

6.6: Maximum flow

Iteration: 4, $|f| = 1 + 2 \cdot \phi$

Iteration: 4, $|f| = 1 + 2 \cdot \phi$

Iteration: 4, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 4, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 5,
$$|f| = 1 + 2 \cdot \phi + \phi^2$$

Iteration: 5,
$$|f| = 1 + 2 \cdot \phi + 2 \cdot \phi^2$$

5日5 四 5日5

6.6: Maximum flow T.S.

16

Iteration: 5, $|f| = 1 + 2 \cdot \phi + 2 \cdot \phi^2$

6.6: Maximum flow

6.6: Maximum flow

In summary:

- After iteration 1: $\stackrel{0}{\leftarrow}$, $\stackrel{1}{\rightarrow}$, $\stackrel{0}{\leftarrow}$, |f| = 1
- After iteration 5: $\stackrel{1-\phi^2}{\longleftrightarrow}$, $\stackrel{\phi}{\longleftrightarrow}$, $|f| = 1 + 2\phi + 2\phi^2$

6.6: Maximum flow

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f| = 1
- After iteration 5: $(-\phi^2)^4$, $(-\phi^3)^4$, $(-\phi^3)^4$, $(-\phi^3)^4$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

6.6: Maximum flow

5

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\leftarrow}$, $\stackrel{1}{\rightarrow}$, $\stackrel{\phi-\phi^3}{\leftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

6.6: Maximum flow T.S.

16

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\leftarrow}$, $\stackrel{1}{\rightarrow}$, $\stackrel{\phi-\phi^3}{\leftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

• For every $i = 0, 1, \ldots$ after iteration $1 + 4 \cdot i$: $\xrightarrow{1-\phi^{2i}}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^{2i+1}}$

16

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f| = 1
- After iteration 5: $\stackrel{1-\phi^2}{\leftarrow}$, $\stackrel{1}{\rightarrow}$, $\stackrel{\phi-\phi^3}{\leftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

- For every i = 0, 1, ... after iteration $1 + 4 \cdot i$: $\xrightarrow{1-\phi^{2i}}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^{2i+1}}$
- Ford-Fulkerson does not terminate!

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\leftarrow}$, $\stackrel{1}{\rightarrow}$, $\stackrel{\phi-\phi^3}{\leftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

- For every $i = 0, 1, \dots$ after iteration $1 + 4 \cdot i$: $\xrightarrow{1-\phi^{2i}}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^{2i+1}}$
- Ford-Fulkerson does not terminate!
- $|f| = 1 + 2 \sum_{i=1}^{\infty} \varphi^{i} \approx 4.23607 < 5$

In summary:

- After iteration 1: $\stackrel{0}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{0}{\longleftrightarrow}$, |f| = 1
- After iteration 5: $(-\phi^2)^4$, $(-\phi^3)^4$, $(-\phi^3)^4$, $(-\phi^3)^4$
- After iteration 9: $\stackrel{1-\phi^4}{\longleftrightarrow}$, $\stackrel{1}{\longleftrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

- For every i = 0, 1, ... after iteration $1 + 4 \cdot i$: $\xrightarrow{1-\phi^{2i}}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^{2i+1}}$
- Ford-Fulkerson does not terminate!
- $|f| = 1 + 2 \sum_{i=1}^{\infty} \varphi^{i} \approx 4.23607 < 5$
- It does not even converge to a maximum flow!

6.6: Maximum flow

Ford-Fulkerson Method —

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^*|) = O(E \cdot V \cdot C)$

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^*|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm —

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^*|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: $O(E^2 \cdot \log C)$

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^*|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: O(E² · log C)

Edmonds-Karp Algorithm

- Idea: Find the shortest augmenting path in G_f
- Runtime: O(E² · V)

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Matching -

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Bipartite Graph —

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

- Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

- Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

- Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)

The cardinality of a maximum matching M in a bipartite graph G equals the value of a maximum flow f in the corresponding flow network \widetilde{G} .

Given a maximum matching of cardinality k

Graph G

Given a maximum matching of cardinality k

Graph G

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths
- \Rightarrow f is a flow and has value k

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths
- \Rightarrow f is a flow and has value k

From Flow to Matching

• Let f be a maximum flow in \widetilde{G} of value k

From Flow to Matching

• Let f be a maximum flow in \widetilde{G} of value k

6.6: Maximum flow

From Flow to Matching

• Let f be a maximum flow in \widetilde{G} of value k

6.6: Maximum flow

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral

6.6: Maximum flow

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation \Rightarrow every node in R receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\})$

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation \Rightarrow every node in R receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is k

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation \Rightarrow every node in R receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation \Rightarrow every node in R receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges
- \Rightarrow By a) & b), M' is a matching and by c), M' has cardinality k

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges
- \Rightarrow By a) & b), M' is a matching and by c), M' has cardinality k

