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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o) o) 0(1)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o(1) O(log n) O(log n)
DELETE o(1) O(log n) O(log n)
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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE O(n) o(n) O(log n) o)
DECREASE-KEY o(1) O(log n) O(log n) o(1)

DELETE o(1) O(log n) O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)

DELETE O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
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[n is the number of items in the heap when the operation is performed.j
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
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Binomial Heap: k/2 DECREASE-KEY
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
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[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY

+ k/2 INSERT
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
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Actual vs. Amortized Cost
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Actual vs. Amortized Cost

8 G
14.0(1)+
2.0(1) +
o)
I } Il Il Il Il Il Il Il Il Il Il Il } k
0 1 2 14
5.2: Fibonacci Heaps TS. 4




Actual vs. Amortized Cost
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Actual vs. Amortized Cost
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Actual vs. Amortized Cost
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Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
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Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:
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Reminder: Binomial Heaps

Binomial Trees

B(0) B(1

Binomial Heaps

B(k)

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap

el el
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
@ & @ &
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

g
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
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Structure of Fibonacci Heaps
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ = @
®® @ &)
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

min
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& & @ &)
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ T® @B
DB ® @

[How do we implement a Fibonacci Heap?]
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A single Node
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Magnifying a Four-Node Portion
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Magnifying a Four-Node Portion
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Magnifying a Four-Node Portion
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Operations
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Fibonacci Heap: INSERT

INSERT

s
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Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

@ @@ @@
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© » @
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

X
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

min

@)@ @@ @ (@
@ @ @« ® @ @
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1) ] min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v’
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

fen e
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

fen e

el el
E:',,' 5.2: Fibonacci Heaps TS. 14




Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

degree

-
S
J—}H

(7)
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& @&
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @ () @
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=)

el el
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

min

(7)
@ @ @ (s
OO RO (+)
=)

el el
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

[ Actual Costs:

min

]
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5 O «
@

s
E:l,,' 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [ Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(1)
@ @ & (s
OB ORO (#)
=)

o
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

in [ Actual Costs: O(trees(H) + d(n))

(1) (=)
(=) () @
ORO (#)
=)

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

;GQ:@

@) (o =

el el
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
H W= @@ O
@) (o =

@

1. DECREASE-KEY 24 ~~ 20
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
@ = @@

1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min

@ (18)
@ e 0@ @

(26) @ @ @ 1. DECREASE-KEY 24 ~» 20
@
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min
@ (19)
) 1) @) )
1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not

min
@ (19)
) 1) @) )
1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

() (@)
@ W= @@ O
@) (o =

@

1. DECREASE-KEY 24 ~~ 20
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
el el
X oo 5.2: Fibonacci Heaps TS. 15
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

B e @@ ®
@@ & [ Deorerse ey 26 - 20
ol

el el
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~ 15

O O 2020
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

O O 2020
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

" @@
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

O 02020

&
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e fo d &

2. DECREASE-KEY 46 ~ 15

@ 1. DECREASE-KEY 24 ~~ 20
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e fo d &

2. DECREASE-KEY 46 ~ 15

@ 1. DECREASE-KEY 24 ~~ 20
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

1. DECREASE-KEY 24 ~~ 20
@ 2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5




Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
5.2: Fibonacci Heaps T.S. 15
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

©
PF*’!\’—‘
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
(30) DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~ 19

el el
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e B0 2 8¢

DECREASE KEY 24 ~ 20
8 DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
%? 5.2: Fibonacci Heaps TS. 15

P.‘*’!\’—‘




Sl 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
(@) @)  Decneast-Kev 46 15

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
© @)  Decneast-Kev 46 15

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

QP@NA
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
50) @)  Decneast-Kev 46 15
12

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

meNA
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

agrobd
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:é'@

1. DECREASE-KEY 24 ~~ 20
2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

el el
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:é'@

1. DECREASE-KEY 24 ~~ 20
2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

el el
%? 5.2: Fibonacci Heaps TS. 15



Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

Wide and
shallow tree

. DECREASE KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15
. DECREASE-KEY 35~ 5

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree =3, .
Nodes =4 min

::M

. DECREASE-KEY 24 ~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12

o
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

I@'@

DECREASE-KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

@ O
@ W @@ O
o IOIO) =)

®&®

T
5.2: Fibonacci Heaps TS.




Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min
@ () ()
ey ) @@ @
@ Q @ @ 1. DECREASE-KEY 46 ~» 15
(35) ()

T
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
@ () ()
ey ) @@ @

1. DECREASE-KEY 46 ~» 15
POWE® @
(35) ()

T
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
@ () ()
ey ) @@ @
@ e @ @ 1. DECREASE-KEY 46 ~» 15
(35) ()

T
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@ () ()
) ) @@ @
@ e @ @ 1. DECREASE-KEY 46 ~» 15
@

T
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@ () ()
) ) @@ @
@ 0 @ @ 1. DECREASE-KEY 46 ~» 15
@

T
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
%? 5.2: Fibonacci Heaps TS. 16



Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

60 o o i
B e @@

@ @ @ @ . DECREASE-KEY 46 ~ 15
©,

el el
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
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Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.
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