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Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap
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How do we implement a Fibonacci Heap?
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Priority Queues Overview

Operation Linked list Binary heap Binomial heap

Fibon. heap

MAKE-HEAP O(1) O(1) O(1)

O(1)

INSERT O(1) O(log n) O(log n)

O(1)

MINIMUM O(n) O(1) O(log n)

O(1)

EXTRACT-MIN O(n) O(log n) O(log n)

O(log n)

MERGE O(n) O(n) O(log n)

O(1)

DECREASE-KEY O(1) O(log n) O(log n)

O(1)

DELETE O(1) O(log n) O(log n)

O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.
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Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT
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i=1 ci = O(k log n)
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Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4



Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi
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Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis
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Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps
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Merging two Binomial Heaps
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0 0 1 1 1 = 7
0 1 0 1 1 = 11
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1 0 0 1 0 = 18
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51
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Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?
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A single Node
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Magnifying a Four-Node Portion
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Every root becomes child of
another root at most once!
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root in any Fibonacci heap of size n
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Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).
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Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12
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Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)
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5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016
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Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential
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≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin  pays cut
Second Coin  increase of trees(H)
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