@ ®» @&
@ e @

5.2 Fibonacci Heaps

Frank Stajano Thomas Sauerwald

Lent 2016

5 UNIVERSITY OF
4% CAMBRIDGE

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o) o) 0(1)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o(1) O(log n) O(log n)
DELETE o(1) O(log n) O(log n)

5, 5.2: Fibonacci Heaps

TS.

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE O(n) o(n) O(log n) o)
DECREASE-KEY o(1) O(log n) O(log n) o(1)

DELETE o(1) O(log n) O(log n) O(log n)

55, 5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)

DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

55, 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

S
S5, 5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

. 01202:...:ck:(9(|ogn)

S5, 5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY

+ k/2 INSERT
"C=0C=---=cx = O(logn)

= Y% . ¢ = O(klogn)

S
S5, 5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"ci=C=-=¢=0O(ogn)

= Y% . ¢ = O(klogn)

S
S5, 5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
-01:02:---:ck=(9(logn) '61262=~~~:6k=(9(1)

= Y% . ¢ = O(klogn)

S
S5, 5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.j

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2

+ k/2 INSERT DECREASE-KEY + k/2 INSERT
-01:02:---:ck=(9(logn) '61262=~~~:6k=(9(1)

= Z;(:1 ci = O(klog n) = Zﬁ(ﬂ G < Zfﬂ ci = O(k)

S
S5, 5.2: Fibonacci Heaps T.S. 3

Actual vs. Amortized Cost

(

14-0(1)

14

5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

8 G
14.0(1)+
2.0(1) +
o)
I } Il Il Il Il Il Il Il Il Il Il Il } k
0 1 2 14
5.2: Fibonacci Heaps TS. 4

Actual vs. Amortized Cost

(

14.0(1)-

G

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

(K

Y G — E;{a Ci
14.0(1)

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

(K

Y G — E;{a Ci
14-0(1)

Potential > 0, but should be
also as small as possible

k

1 2 14

5.2: Fibonacci Heaps T.S. 4

Outline

Structure

5.2: Fibonacci Heaps

TS.

Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1

Binomial Heaps

B(k)

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap

el el
E:',,' 5.2: Fibonacci Heaps TS. 6

Merging two Binomial Heaps

o 6 " . oYy 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

o 6 " . oYy 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

op 6" . oYy 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

op 6" . oYy 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

o 6 " . oYy 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SR N

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

i

& @

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

i

0 @

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

i

0 @

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

@

Sy b7 L&

&

0 11 7
1011 =1

1
0
11

10010 =18

0
0 1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

@

Sy b7

&

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

@

Sy b7 L6

&

0 11 7
1011 =1

1
0
1 1

10010 =18

0
0 1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

N B N

0 11 7
1011 =1

1
0
1 1

10010 =18

0
0 1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

=
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

=
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

=
—_

5.2: Fibonacci Heaps T.S. 7

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

el - el
s 5.2: Fibonacci Heaps TS.

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
@ & @ &
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

g

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

@@

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

@@

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

@@

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

@ @ ()
D@ = @
®® @ &)

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

@ @ ()
D@ = @
®® @ &)

5
Sl 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

=
Sy 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ = @
®® @ &)

s
Sl 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

min

@€ & @®
& & @ &)

s
Sl 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ T® @B
DB ® @

[How do we implement a Fibonacci Heap?]

el el
Sy 5.2: Fibonacci Heaps TS.

A single Node

TParent

Previous Sibling ‘
—()

0

p Payload marked degree

} 0

3

f

O

lOne of the Children

Next Sibling
—

T 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

S
o B 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

&

S
o B 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

58

-
O

O 411[1][2] OO 1331[0][1] O
O O
i 54

Outline

Operations

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: INSERT

INSERT

s
E:l,,' 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree

el - el
E:',,' 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

@ @@ @@
@ @ @« ® @ @
© » @

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

X

T o

QD ®

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

min

@)@ @@ @ (@
@ @ @« ® @ @

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1)] min

: ® @O & @
@@ © &

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

s
B 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

s
B 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

® @@

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v’
= Meld childen into root list and unmark them v/

fen e

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

fen e

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen et

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen "o

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1

sigig

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

fen e

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
L Tl T 1

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal T |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal,l |

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

FIREEEE

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

FIREEEE

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]

—>

A}

Lo e

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

6" !

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
lﬂ---
-" []

iz: :

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
lﬂ---
-" []

iz: :

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L [l |

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(2 () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(1) () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

(1) () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

(7) () () ()
@ @ @ o
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%? 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

(7)
@ @ @
& @&
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
=

(7) (9 @
@ @ o
=)

(=)
RO,
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
=

(7) (9 @
@ @ o
=)

(=)
RO,
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

degree

-
S
J—}H

(7)
@ @ @
& @&
=)

el el
%? 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @ () @
OO RO (+)
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

min

(7)
@ @ @ (s
OO RO (+)
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

[Actual Costs:

min

]
Q ® @
Ofoxo @
5 O «
@

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(1)
@ @ & (s
OB ORO (#)
=)

o
S5, 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

in [Actual Costs: O(trees(H) + d(n))

(1) (=)
(=) () @
ORO (#)
=)

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

;GQ:@

@) (o =

el el

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
H W= @@ O
@) (o =

@

1. DECREASE-KEY 24 ~~ 20

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
@ = @@

1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min

@ (18)
@ e 0@ @

(26) @ @ @ 1. DECREASE-KEY 24 ~» 20
@

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min
@ (19)
) 1) @))
1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not

min
@ (19)
) 1) @))
1. DECREASE-KEY 24 ~~ 20
o) (49) (30) (2)
(35) (o)

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

() (@)
@ W= @@ O
@) (o =

@

1. DECREASE-KEY 24 ~~ 20

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
el el
X oo 5.2: Fibonacci Heaps TS. 15

1. DECREASE-KEY 24 ~~ 20

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

) (15) (39

() 1)) @ @)

OR® | Deomens ey 24 - 0
(35) (o)

%‘:‘ 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

) (15) (39

() 1)) @ @)

OR® | Deomens ey 24 - 0
1b

(35) (o)

%‘:‘ 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

) (15) (39

() 1)) @ @)

OR® | Deomens ey 24 - 0
(35) (o)

%‘:‘ 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

B e @@ ®
@@ & [Deorerse ey 26 - 20
ol

el el
%',,' 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

B e @@ ®
@@ & [Deorerse ey 26 - 20
ol

el el
%? 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~ 15

O O 2020

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

O O 2020

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

" @@

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~~ 20

in

3

2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

O 02020

&

5.2: Fibonacci Heaps TS.

YERY
5

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e fo d &

2. DECREASE-KEY 46 ~ 15

@ 1. DECREASE-KEY 24 ~~ 20
3. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e fo d &

2. DECREASE-KEY 46 ~ 15

@ 1. DECREASE-KEY 24 ~~ 20
3. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps T.S. 15

Sl 5.2: Fibonacci Heaps T.S.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

1. DECREASE-KEY 24 ~~ 20
@ 2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
5.2: Fibonacci Heaps T.S. 15

B~

PF*’!\’—‘

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

©
PF*’!\’—‘

s 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
5.2: Fibonacci Heaps T.S. 15

-~

PF*’!\’—‘

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
(30) DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~ 19

el el
5.2: Fibonacci Heaps T.S. 15

PF*’!\’—‘

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e B0 2 8¢

DECREASE KEY 24 ~ 20
8 DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

el el
%? 5.2: Fibonacci Heaps TS. 15

P.‘*’!\’—‘

Sl 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
(@) @) Decneast-Kev 46 15

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19

P.‘*"\’—‘

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
© @) Decneast-Kev 46 15

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

QP@NA

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

o R 99 5 ®
& W® @ ©
50) @) Decneast-Kev 46 15
12

DECREASE-KEY 35 ~~ 5
DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

meNA

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

agrobd

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

agrobd

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

é

—_

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~~ 15
DECREASE-KEY 35 ~~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~~ 12

agrobd

Sl 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:é'@

1. DECREASE-KEY 24 ~~ 20
2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:é'@

1. DECREASE-KEY 24 ~~ 20
2. DECREASE-KEY 46 ~~ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

el el
%? 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

Wide and
shallow tree

. DECREASE KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15
. DECREASE-KEY 35~ 5

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree =3, .
Nodes =4 min

::M

. DECREASE-KEY 24 ~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12

o
XA) 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

I@'@

DECREASE-KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~» 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

@ O
@ W @@ O
o IOIO) =)

®&®

T
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min
@ () ()
ey) @@ @
@ Q @ @ 1. DECREASE-KEY 46 ~» 15
(35) ()

T
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
@ () ()
ey) @@ @

1. DECREASE-KEY 46 ~» 15
POWE® @
(35) ()

T
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
@ () ()
ey) @@ @
@ e @ @ 1. DECREASE-KEY 46 ~» 15
(35) ()

T
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@ () ()
)) @@ @
@ e @ @ 1. DECREASE-KEY 46 ~» 15
@

T
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@ () ()
)) @@ @
@ 0 @ @ 1. DECREASE-KEY 46 ~» 15
@

T
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
%',,' 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
%? 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

£~5e o & 4
ONRORONO!©

@ @ @ @ . DECREASE-KEY 46 ~ 15
(3)

el el
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

60 o o i
B e @@

@ @ @ @ . DECREASE-KEY 46 ~ 15
©,

el el
A) 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V

@
(2
(23
®

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

@
(2
(23
<)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

@
(2
(23
<)
-

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

@
(2
(23
(®

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

G@:@

. DECREASE-KEY 46 ~ 15 V

Q

(2]

@ @ @ 2. DECREASE-KEY 35~ 5
®

el el
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

@
Q
©
&

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

G@:@

@ . DECREASE-KEY 46 ~ 15 V
2. DECREASE-KEY 35~ 5

@
Q
©
&

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked,

min
® : ? &
) @) @)@
@ . DECREASE-KEY 46 ~» 15 v

2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS.

(7
Q
©
&

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min
& : ? &
(1) @) ()
@ . DECREASE-KEY 46 ~» 15 v

2. DECREASE-KEY 35~ 5

“ D@00

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & &
) W @@ @ (&
’:‘ @ @ 1. DECREASE-KEY 46 ~» 15 v

2. DECREASE-KEY 35~ 5

o
o @

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

& o : : & ®
® ®)} peomnerevat s
®

el el
5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & &
@ W @@ @ (&

1. DECREASE-KEY 46 ~» 15 v
8 @ @ 2. DECREASE-KEY 35~ 5

®

el el

B 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & é ® ®
@ U ® @E
. DECREASE-KEY 46 ~» 15 v
8 @ @ 2. DECREASE-KEY 35~ 5
&

o
Sl 5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

& o : : & ® @
® ®)} peomnerevat s
@

el el
%? 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & : ? ONCRC
(1) @) ()
. DECREASE-KEY 46 ~» 15 v
@ @ 2. DECREASE-KEY 35~ 5

el el
%? 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & : ? ONCRC
(1) @) ()
. DECREASE-KEY 46 ~» 15 v
@ @ 2. DECREASE-KEY 35~ 5V

el el
%? 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: min

o B : : ONCRC
(1) @) ()
. DECREASE-KEY 46 ~» 15 v
@ @ 2. DECREASE-KEY 35~ 5V

el el
%',,' 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: O(# cuts) min

: : ONCRC
G © @ &)
. DECREASE-KEY 46 ~» 15 v
2. DECREASE-KEY 35~ 5V

el el
%',,' 5.2: Fibonacci Heaps TS. 16

5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2016 _

5 UNIVERSITY OF
¥ CAMBRIDGE

Outline

Glimpse at the Analysis

s.~'-.
i Y 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

oo

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

s

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Outline

Amortized Analysis

s.~'-.
i Y 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.

“"ﬂ %5 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

“"ﬂ %5 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential
* trees(H') =

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H') <

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

Amortized Cost

/CE/ZC/+A<D

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+AP<O(x+1)+4—x

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[d(H) = trees(H)jL/Z -marks(H)

First Coin ~~ pays cut
Second Coin ~~ increase of trees(H)

Ch in Potential } a @
ange in Potentia

» trees(H') =trees(H) + x 8 @ @ @
» marks(H') < marks(H) — x + 2 8 @ @

= AO<X+2 (—x+2)=4—x. b

5

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

5.2: Fibonacci Heaps (Analysis) TS. 5

	Structure
	Operations
	Glimpse at the Analysis
	Amortized Analysis

