
5.2 Fibonacci Heaps
Frank Stajano Thomas Sauerwald

Lent 2016

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Priority Queues Overview

Operation Linked list Binary heap Binomial heap

Fibon. heap

MAKE-HEAP O(1) O(1) O(1)

O(1)

INSERT O(1) O(log n) O(log n)

O(1)

MINIMUM O(n) O(1) O(log n)

O(1)

EXTRACT-MIN O(n) O(log n) O(log n)

O(log n)

MERGE O(n) O(n) O(log n)

O(1)

DECREASE-KEY O(1) O(log n) O(log n)

O(1)

DELETE O(1) O(log n) O(log n)

O(log n)

5.2: Fibonacci Heaps T.S. 2

Priority Queues Overview

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

MERGE O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

5.2: Fibonacci Heaps T.S. 2

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps T.S. 5

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51

5.2: Fibonacci Heaps T.S. 8

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51

5.2: Fibonacci Heaps T.S. 8

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

A single Node

payload

0

marked

3

degreeb f

p

c

Previous Sibling Next Sibling

Parent

One of the Children

5.2: Fibonacci Heaps T.S. 10

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps T.S. 12

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

Delete min

X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min

X
Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree

(# children) X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X

Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min

Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs: O(trees(H) + d(n))

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

2020

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

2020

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

4120

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X

2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X

2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost: O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts)  O(marks(H)) amortized O(1) ?

�(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 2

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1)

X

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1)

?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 4

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x

= O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

	Structure
	Operations
	Glimpse at the Analysis
	Amortized Analysis

