Inserting Inserted node with key 8.

Inserting Inserted node with key 9.

Inserting Inserted node with key 7.

Inserting Inserted node with key 8.

Inserting Inserted node with key 0.

Extracting Minimum Extracting node with key

Trees with roots 8 and 7 have the same degree (0)...

Trees with roots 8 and 9 have the same degree (0)...

Extracting Minimum ... so we append 9 to the child list of 8;

Extracting Minimum Trees with roots 8 and 7 have the same degree (1)...

Extracting Minimum ... so we append 8 to the child list of 7;

Extracting Minimum And we are done.

Inserting Inserted node with key 6.

Inserting Inserted node with key 8.

Inserting Inserted node with key 7.

Inserting Inserted node with key 8.

Decreasing Key Decreasing key of node 9 to 0;

Decreasing Key

... so we mark it and finish the cascading cut.

We first meld the child list of 0 into the root list...

Extracting Minimum Now we consolidate the Fibonacci heap;

Extracting Minimum ... so we append 8 to the child list of 7;

Extracting Minimum ... so we append 7 to the child list of 6;

Extracting Minimum Trees with roots 6 and 7 have the same degree (2)...

Extracting Minimum ... so we append 7 to the child list of 6;

Extracting Minimum And we are done.

Decreasing Key Decreasing key of node 7 to 5;

Decreasing Key Since we have reached the root, we finish.

Decreasing Key And we are done.

Inserting Inserted node with key 7.

Inserting Inserted node with key 8.

Decreasing Key Decreasing key of node 8 to 0;

Decreasing Key The node is not marked...

Decreasing Key ... so we mark it and finish the cascading cut.

Decreasing Key And we are done.

Extracting Minimum Extracting node with key 0;

Extracting Minimum
We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Now we consolidate the Fibonacci heap;

Trees with roots 8 and 7 have the same degree (0)...

... so we append 8 to the child list of 7;

Extracting Minimum Trees with roots 7 and 5 have the same degree (1)...

... so we append 7 to the child list of 5;

Extracting Minimum Trees with roots 5 and 6 have the same degree (2)...

Extracting Minimum ... so we append 6 to the child list of 5;

Extracting Minimum And we are done.

Decreasing Key Decreasing key of node 7 to 4;

Decreasing Key Since we have reached the root, we finish.

Decreasing Key And we are done.

Inserting Inserted node with key 7.

Inserting Inserted node with key 8.

Decreasing Key Decreasing key of node 8 to 0;

Decreasing Key The node is not marked...

Decreasing Key ... so we mark it and finish the cascading cut.

Decreasing Key And we are done.

Extracting Minimum Extracting node with key 0;

Extracting Minimum We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Extracting Minimum Now we consolidate the Fibonacci heap;

Extracting Minimum Trees with roots 8 and 7 have the same degree (0)...

6

Extracting Minimum ... so we append 8 to the child list of 7;

Extracting Minimum
Trees with roots 7 and 4 have the same degree (1)...

Extracting Minimum ... so we append 7 to the child list of 4;

Extracting Minimum
Trees with roots 4 and 5 have the same degree (2)...

Extracting Minimum ... so we append 5 to the child list of 4;

Extracting Minimum And we are done.

Decreasing Key
Decreasing key of node 7 to 3;

Decreasing Key Since we have reached the root, we finish.

Inserting Inserted node with key 7.

Inserting
Inserted node with key 8.

Decreasing Key Decreasing key of node 8 to 0;

Decreasing Key The node is not marked...

Decreasing Key ... so we mark it and finish the cascading cut.

Extracting Minimum Extracting node with key 0;

Extracting Minimum
We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Extracting Minimum Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum ... so we append 8 to the child list of 7;

Extracting Minimum
Trees with roots 7 and 3 have the same degree (1)...

Extracting Minimum ... so we append 7 to the child list of 3;

Extracting Minimum
Trees with roots 3 and 4 have the same degree (2)...

Extracting Minimum ... so we append 4 to the child list of 3;

Extracting Minimum And we are done.

Decreasing Key
Decreasing key of node 7 to 2;

Decreasing Key Since we have reached the root, we finish.

Inserting Inserted node with key 7.

Inserting
Inserted node with key 8.

Decreasing Key Decreasing key of node 8 to 0;

Decreasing Key
The node is not marked...

Decreasing Key ... so we mark it and finish the cascading cut.

Extracting Minimum Extracting node with key 0;

Extracting Minimum
We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Extracting Minimum Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum ... so we append 8 to the child list of 7;

Extracting Minimum
Trees with roots 7 and 2 have the same degree (1)...

Extracting Minimum ... so we append 7 to the child list of 2;

Extracting Minimum
Trees with roots 2 and 3 have the same degree (2)...

Extracting Minimum ... so we append 3 to the child list of 2;

Extracting Minimum And we are done.

Decreasing Key
Decreasing key of node 7 to 1;

Decreasing Key Since we have reached the root, we finish.

Decreasing Key And we are done.

Decreasing Key Decreasing key of node 8 to 0;

Decreasing Key ... so we mark it and finish the cascading cut.

Decreasing Key And we are done.

Extracting Minimum Extracting node with key 0;

Extracting Minimum
We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Extracting Minimum
Now we consolidate the Fibonacci heap;

Extracting Minimum And we are done.

Decreasing Key
Decreasing key of node 8 to 2;

Decreasing Key ... so we cut it and continue with the cascading cut;

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key ... so we cut it and continue with the cascading cut;

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key Since we have reached the root, we finish.

