Inserting
 Inserted node with key 8 .

Inserting
 Inserted node with key 9 .

$$
\begin{gathered}
\text { Inserting } \\
\text { Inserted node with key } 8
\end{gathered}
$$

Inserting
 Inserted node with key 0 .

Extracting Minimum
Extracting node with key 0;

Extracting Minimum

We first meld the child list of 0 into the root list...

Extracting Minimum

... and remove the minimum node form the root list;

Extracting Minimum

Now we consolidate the Fibonacci heap;

Extracting Minimum
 Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum
... so we append 8 to the child list of 7 ;

Extracting Minimum
... so we append 9 to the child list of 8 ;

Extracting Minimum
 Trees with roots 8 and 7 have the same degree (1)...

Extracting Minimum ... so we append 8 to the child list of 7 ;

Extracting Minimum And we are done.

Inserting
 Inserted node with key 6.

Inserting
 Inserted node with key 8 .

Inserting
Inserted node with key 7.

Decreasing Key
The node is not marked...

Decreasing Key

... so we mark it and finish the cascading cut.

Decreasing Key

And we are done.

Extracting Minimum
Extracting node with key 0 ;

Extracting Minimum

 We first meld the child list of 0 into the root list...

Extracting Minimum

... and remove the minimum node form the root list;

Extracting Minimum
Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 6 have the same degree (0)...

Extracting Minimum

... so we append 8 to the child list of 6 ;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum

 ... so we append 8 to the child list of 7 ;

Extracting Minimum
Trees with roots 7 and 6 have the same degree (1)...

Extracting Minimum
... so we append 7 to the child list of 6 ;

Extracting Minimum
 Trees with roots 6 and 7 have the same degree (2)...

Extracting Minimum ... so we append 7 to the child list of 6 ;

Extracting Minimum And we are done.

Decreasing Key Decreasing key of node 7 to 5;

Decreasing Key
Since we have reached the root, we finish.

Decreasing Key

Decreasing key of node 8 to 0 ;

Decreasing Key
The node is not marked...

Decreasing Key

... so we mark it and finish the cascading cut.

Extracting Minimum
Extracting node with key 0 ;

Extracting Minimum

We first meld the child list of 0 into the root list...

Extracting Minimum

... and remove the minimum node form the root list;

Extracting Minimum

Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum ... so we append 8 to the child list of 7 ;

Extracting Minimum
Trees with roots 7 and 5 have the same degree (1)...

Extracting Minimum

... so we append 7 to the child list of 5;

Extracting Minimum
 Trees with roots 5 and 6 have the same degree (2)...

Extracting Minimum ... so we append 6 to the child list of 5;

Decreasing Key
Since we have reached the root, we finish.

Decreasing Key
Decreasing key of node 8 to 0 ;

Decreasing Key
The node is not marked...

Decreasing Key

... so we mark it and finish the cascading cut.

Extracting Minimum
Extracting node with key 0 ;

Extracting Minimum

We first meld the child list of 0 into the root list...

Extracting Minimum

... and remove the minimum node form the root list;

Extracting Minimum
Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum ... so we append 8 to the child list of 7 ;

Extracting Minimum
Trees with roots 7 and 4 have the same degree (1)...

Extracting Minimum ... so we append 7 to the child list of 4 ;

Extracting Minimum
Trees with roots 4 and 5 have the same degree (2)...

Extracting Minimum ... so we append 5 to the child list of 4 ;

Extracting Minimum
And we are done.

Decreasing Key

Since we have reached the root, we finish.

Decreasing Key And we are done.

Inserting
Inserted node with key 7.

Inserting

Inserted node with key 8.

Decreasing Key Decreasing key of node 8 to 0 ;

Decreasing Key
The node is not marked...

Decreasing Key
... so we mark it and finish the cascading cut.

Decreasing Key
And we are done.

Extracting Minimum Extracting node with key 0 ;

Extracting Minimum We first meld the child list of 0 into the root list...

Extracting Minimum ... and remove the minimum node form the root list;

Extracting Minimum Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum ... so we append 8 to the child list of 7 ;

Extracting Minimum
Trees with roots 7 and 3 have the same degree (1)...

Extracting Minimum ... so we append 7 to the child list of 3 ;

Extracting Minimum
Trees with roots 3 and 4 have the same degree (2)...

Extracting Minimum
... so we append 4 to the child list of 3 ;

Extracting Minimum
And we are done.

Decreasing Key

Decreasing key of node 7 to 2 ;

Decreasing Key

Since we have reached the root, we finish.

Decreasing Key

And we are done.

Inserting
 Inserted node with key 7.

Inserting

Inserted node with key 8.

Decreasing Key
Decreasing key of node 8 to 0 ;

Decreasing Key
The node is not marked...

Decreasing Key
... so we mark it and finish the cascading cut.

Decreasing Key
And we are done.

Extracting Minimum
Extracting node with key 0 ;

Extracting Minimum We first meld the child list of 0 into the root list...

Extracting Minimum
... and remove the minimum node form the root list;

Extracting Minimum
Now we consolidate the Fibonacci heap;

Extracting Minimum
Trees with roots 8 and 7 have the same degree (0)...

Extracting Minimum
... so we append 8 to the child list of 7 ;

Extracting Minimum
Trees with roots 7 and 2 have the same degree (1)...

Extracting Minimum
... so we append 7 to the child list of 2;

Extracting Minimum
Trees with roots 2 and 3 have the same degree (2)...

Extracting Minimum
 ... so we append 3 to the child list of 2 ;

Decreasing Key
Decreasing key of node 7 to 1 ;

Decreasing Key

Since we have reached the root, we finish.

Decreasing Key
 And we are done.

Decreasing Key

Decreasing key of node 8 to 0 ;

Decreasing Key
The node is not marked...

Decreasing Key

... so we mark it and finish the cascading cut.

Decreasing Key
And we are done.
(0)

$---2$

Extracting Minimum

Extracting node with key 0 ;

Extracting Minimum

We first meld the child list of 0 into the root list...

Extracting Minimum
... and remove the minimum node form the root list;

Extracting Minimum

Now we consolidate the Fibonacci heap;

Extracting Minimum
And we are done.

Decreasing Key

Decreasing key of node 8 to 2 ;

Decreasing Key
The node is marked...

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key
The node is marked...

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key

The node is marked...

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key
The node is marked...

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key

The node is marked...

Decreasing Key

... so we cut it and continue with the cascading cut;

Decreasing Key

Since we have reached the root, we finish.

Decreasing Key
 And we are done.

