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Fibonacci Heap: INSERT
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= Create a singleton tree
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EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
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Every root becomes child of
another root at most once!
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))
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Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.
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Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))
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Lower Bounding Degrees of Children

[ We will prove a stronger statement:

J

Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n
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We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.
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= Consider any node x of degree k (not necessarily a root) at the final state
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Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k + 2)? ]7
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i-2 ] N(k) = F(k + 2)?
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i-2 ] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(k)=1+1+N@2-2)+NB—2)+ -+ N(k —2)

k—2
=1+1+) N
=0

:1+1+iN(z)+N(k—2)

£=0
— N(k — 1)+ N(k —2)
= F(k+1) + F(k) = F(k +2) O
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Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k+2)nd Fib. number satisfies F(k +2) > ¢,
where ¢ = (1 +/5)/2 = 1.61803.... ..
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Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)
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Putting the Pieces Together

~——— Amortized Analysis
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What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

S
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What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)
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Summary
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Summary

(If this was possible, then there would be a sorting algorithm with runtime o(nlog n) !J
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Summary
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DELETE \ o) O(log n) O(log n) O(log n)

[DELETE — DECREASE-KEY + EXTRACT-MIN ]
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) 0(1) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE \ o) O(log n) O(log n) O(log n)

[DELETE — DECREASE-KEY + EXTRACT-MIN j
VAN

(EXTRACT—MIN — MIN + DELETE j
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) ralilaYaWa)l Allan n) %(Inn n\

[

Crucial for many applications including

shortest paths and minimum spanning trees!

]
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Recent Studies

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984
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Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!
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= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a

random bit
= several lower bounds on the amortized cost in terms of the size of
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Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a
random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations
= less efficient than the original Fibonacci heap

= marked bit is not redundant!
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u! ]

5.2: Fibonacci Heaps (Analysis)

TS.




	Recap of Insert, Extract-Min and Decrease-Key
	Glimpse at the Analysis
	Amortized Analysis
	Bounding the Maximum Degree

