5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2016 _

5 UNIVERSITY OF
¥ CAMBRIDGE

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

s
E:l,,' 5.2: Fibonacci Heaps (Analysis) TS.

Fibonacci Heap: INSERT

INSERT

s
E:l,,' 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree

el - el
E:',,' 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

@ @@ @@
@ @ @« ® @ @
© » @

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

X

T o

QD ®

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

min

@)@ @@ @ (@
@ @ @« ® @ @

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1)] min

: ® @O & @
@@ © &

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

s
B 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

s
B 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them

® @@

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v’
= Meld childen into root list and unmark them v/

fen e

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

fen e

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen et

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen "o

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1

sigig

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

fen e

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
L Tl T 1

el el
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal T |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal,l |

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

FIREEEE

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

FIREEEE

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]

—>

A}

Lo e

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

6" !

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
lﬂ---
-" []

iz: :

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
lﬂ---
-" []

iz: :

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L [l |

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(2 () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(1) () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

(1) () () ()
@ o

(=)
ORO
=)

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

(7) () () ()
@ @ @ o
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
%? 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

(7)
@ @ @
& @&
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
=

(7) (9 @
@ @ o
=)

(=)
RO,
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
=

(7) (9 @
@ @ o
=)

(=)
RO,
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @
& @&
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

degree

-
S
J—}H

(7)
@ @ @
& @&
=)

el el
%? 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @ () @
OO RO (+)
=)

el el
E:',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

min

(7)
@ @ @ (s
OO RO (+)
=)

el el
%',,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

[Actual Costs:

min

]
Q ® @
Ofoxo @
5 O «
@

s
E:l,,' 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(1)
@ @ & (s
OB ORO (#)
=)

o
S5, 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

in [Actual Costs: O(trees(H) + d(n))

(1) (=)
(=) () @
ORO (#)
=)

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

() OGRS
@ W= @@ O

) (¢o) (=) =
®® @

el
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min

@) () ()

e T ® @@ @

@ Q @ @ 1. DECREASE-KEY 46 ~» 15
() (3) (s9)

gy
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
@) () ()
e T ® @@ @
1. DECREASE-KEY 46 ~» 15
@R @
() (3) (s9)

el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) () ()

e T ® @@ @

@ e @ @ 1. DECREASE-KEY 46 ~» 15
() (3) (s9)

el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

() OGRS
@) W= @O@ @

@ @ @ 1. DECREASE-KEY 46 ~ 15
®® @

el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

() OGRS
@) W= @O@ @

@ @ @ 1. DECREASE-KEY 46 ~ 15
®® @

el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

0 @
@ W@ @@ W ®
@ @ @ @ 1. DECREASE-KEY 46 ~ 15
@ ®

gy
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

0 @
@ W@ @@ W ®
@ @ @ @ 1. DECREASE-KEY 46 ~ 15
@ ®

el
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

0 @
@ W@ @@ W ®
@ @ @ @ 1. DECREASE-KEY 46 ~ 15
@ ®

o
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

Nl
® e @@ @ @
@@ @ 1. DECREASE-KEY 46 ~ 15
(39) (32)

gy
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)

S
D

min

@) (18)
@G@
@@ 1.
(s2)

DECREASE-KEY 46 ~ 15 V

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

0 @
) W @@ @ &
1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5
()

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

0 @

) W @@ @ &
1. DECREASE-KEY 46 ~ 15 v

@ @ @ 2. DECREASE-KEY 35~ 5

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

0 @
) W @@ @ &
1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5
O,

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

oo o
® O ® @ @
p © @ [muEes
®

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

oo o
® O ® @ @
P © @ [muEne
®

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ () ®
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5
)

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked,

min

. DECREASE-KEY 46 ~ 15 v

@
(2]
@ 2. DECREASE-KEY 35~ 5
@)

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &
) W @@ @ (&

1. DECREASE-KEY 46 ~ 15 v
% @ @ 2. DECREASE-KEY 35~ 5

[26 }
et

=&

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &

) W @@ @ (& ()
1. DECREASE-KEY 46 ~ 15 v

% @ @ 2. DECREASE-KEY 35~ 5

[26 }
et

=&

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

e fell 'l

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

[26 }
et

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@ é

@) () () ()

@ 1. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

é

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

é

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &
()) @) @ (o ()
1. DECREASE-KEY 46 ~ 15 v
@ @ 2. DECREASE-KEY 35~ 5

el el
%? 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &
()) @) @ (o ()
1. DECREASE-KEY 46 ~ 15 v
@ @ 2. DECREASE-KEY 35~ 5 v

el el
5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: mln

00@@® :’

. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5V

el el
E:',,' 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: O(# cuts) mm

00@9® :’

. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5V

el el
%? 5.2: Fibonacci Heaps TS. 15

Outline

Glimpse at the Analysis

s.~'-.
i Y 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

oo

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

s

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Outline

Amortized Analysis

s.~'-.
i Y 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.

“"ﬂ %5 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

“"ﬂ %5 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential
* trees(H') =

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H') <

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

(®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

Amortized Cost

E/ZC/+A<D

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+AP<O(x+1)+4—x

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

» DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[d(H) = trees(H)jL/Z -marks(H)

First Coin ~ pays cut
Second Coin ~ increase of trees(H)

Ch in Potential } a @
ange in Potentia

» trees(H') =trees(H) + x 8 @ @ @
» marks(H') < marks(H) — x + 2 8 @ @

= AO<X+2 (—x+2)=4—x. ®

5

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

v,.ﬂ %y 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

,.ﬂ % 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

Change in Potential

,.ﬁ % 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential
= marks(H’) ? marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential

= marks(H’) ? marks(H)

® @@
© @

,.n‘., 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential

= marks(H’) < marks(H)

® @@
© @

,.n‘., 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential

= marks(H’) < marks(H)
* trees(H') <

degrees

,.n‘., 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

degrees

Change in Potential

= marks(H’) < marks(H)
* trees(H') <

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

degrees

Change in Potential

= marks(H’) < marks(H)
= trees(H') < d(n) + 1

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

degrees

Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) + 1

= A® < d(n)+ 1 —trees(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) + 1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

degrees

Ci=c+Ad

u,‘ﬂ:, 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) + 1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

degrees

& = ¢+ A® < Otrees(H) +d(n) + d(n) + 1 — trees(H)

u,‘ﬂ:,, 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) — trees(H) + 2 - marks(H)

degrees

Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) + 1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢+ A® < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))

5.2: Fibonacci Heaps (Analysis) TS. 6

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

[(H) trees(H) + 2 - marks(H))

degrees

Change in Potential
= marks(H') < marks(H)
= trees(H') < d(n) + 1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢+ A® < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))
Py

L How to bound d(n)?]

5.2: Fibonacci Heaps (Analysis) TS. 6

Outline

Bounding the Maximum Degree

s.~'-.
i Y 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n)

<log, n.

e
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

C

S
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n)

<log, n.

d=3n=2%

S
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

C

S
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.]

Th

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

S
5.2: Fibonacci Heaps (Analysis) TS. 8

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.]

Th

Fibonacci Heap
Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

H

» Skip Analysis

S
5.2: Fibonacci Heaps (Analysis) TS. 8

Lower Bounding Degrees of Children

[d(n) <log,n

5.2: Fibonacci Heaps (Analysis)

TS.

Lower Bounding Degrees of Children

[We will prove a stronger statement:

J

Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n

el el
5.2: Fibonacci Heaps (Analysis) TS.

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n }

= Consider any node x of degree k (not necessarily a root) at the final state

el el
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

®
D,

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

7

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

©
OEOMO,

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

©
0@

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

©,
G@@

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥, ..., ¥« be the children in the order of attachment

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥, ..., ¥« be the children in the order of attachment
and di, d, . . ., dk be their degrees

o
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥, ..., ¥« be the children in the order of attachment
and di, d, . . ., dk be their degrees

:\wggk: d,-zi—2‘

o
5.2: Fibonacci Heaps (Analysis) TS. 9

From Degrees to Minimum Subtree Sizes

5.2: Fibonacci Heaps (Analysis)

TS.

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

u,.ﬂ,, 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)

u,.ﬂ,, 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)
o0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)
o0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

o0 o1

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

e0 I1
0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

e0 I1
0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

o0 I1 ®2
0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

e0 I1 IQ\
0 0 e0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

e0 I1 IQ\
0 0 e0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)
3

LR
0 o0 we(Q

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

L B, Ssee
0 @00 o0 01

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

2T By

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

N(3 N(4)
¢ I\ I\
0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

N(3 N(4
© 1 I\ I\
0

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3) N(4

'°I$I\I\I\w

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

'°I$I\I\I§T\

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(@0)=1 N(1)

'°I$I\I\I§T\

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N(2)

'°I$I\I\I§T\

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N(2)=3 N(3 N(4
e 0 1 2
Lo Do I\ M

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\oo I\ N

5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO)=1 N(1)=2 N(2)=

" I:) Ii\o I\ w

5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 =

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO)=1 N(1)=2 N(2)= N(3 - N(4 8=5+3

"L I%\SO I\

5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k + 2)?]7

N@O)=1 N(1)=2 N(@2)=

Y Ry R

5.2: Fibonacci Heaps (Analysis) TS. 10

(4)=8=5+3

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(k)=1+1+N@2-2)+NB—2)+ -+ N(k —2)

k—2
=1+1+) N
=0

:1+1+iN(z)+N(k—2)

£=0
— N(k — 1)+ N(k —2)
= F(k+1) + F(k) = F(k +2) O

5.2: Fibonacci Heaps (Analysis) TS. 11

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k+2)nd Fib. number satisfies F(k +2) > ¢,
where ¢ = (1 +/5)/2 = 1.61803.... ..

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 4-2) > ©*,]
where ¢ = (1 +/5)/2 = 1.61803....... 7

Fibonacci Numbers grow at
L least exponentially fast in k.

o
E:E 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
= Base k = 0: F(2) = 1and ©° =1

o
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1

o
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
= Base k = 1: F(8) =2and ¢' ~ 1.619 < 2

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):
F(k+2)=F(k+1)+ F(k)
> o R (by the inductive hypothesis)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):
F(k+2)=F(k+1)+ F(k)
> o R (by the inductive hypothesis)

= (o +1)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

> of 1 pf 2 (by the inductive hypothesis)

=" (p+1)

=2 (=9 +1)
TS. 12

5.2: Fibonacci Heaps (Analysis)

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

(Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

> of 1 pf 2 (by the inductive hypothesis)
=" (p+1)

=2 (P =p+1)
= (pk D

5.2: Fibonacci Heaps (Analysis) T.S. 12

Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

N(k) = F(k + 2)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

N(k) = F(k +2) > ¢

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > o

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
« DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥
= Iogvnzk

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

» EXTRACT-MIN: amortized cost Otdéa)) O(log n)
« DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥
= Iogvnzk

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

S
5.2: Fibonacci Heaps (Analysis)

TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

e b

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

=(7) (1) 9

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(1) amortized O(1)

®(H) = trees(H)

=(7) =(18) 9

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) # O(log n)
= DECREASE-KEY: actual O(1) amortized O(1)

®(H) = trees(H)

=(7) SO0

5.2: Fibonacci Heaps (Analysis) TS. 14

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)

T 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

(Can we perform EXTRACT-MIN in o(log n)?j

Operation Linked list | Binary heap Binomk\\eap Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o1) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)

T 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

(If this was possible, then there would be a sorting algorithm with runtime o(nlog n) !J

(Can we p\)’erform EXTRACT-MIN in o(log n)?j

Operation Linked list | Binary heap Binomk\\Qeap Fibon. heap

MAKE-HEAP o(1) 0(1) 0(1) o(1)
INSERT o1) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)

o 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)

T 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) 0(1) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE \ o) O(log n) O(log n) O(log n)

[DELETE — DECREASE-KEY + EXTRACT-MIN]

o 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) 0(1) 0(1) o(1)
INSERT o) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE \ o) O(log n) O(log n) O(log n)

[DELETE — DECREASE-KEY + EXTRACT-MIN j
VAN

(EXTRACT—MIN — MIN + DELETE j

o 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) 0(1) o(1)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o) ralilaYaWa)l Allan n) %(Inn n\

[

Crucial for many applications including

shortest paths and minimum spanning trees!

]

T 5.2: Fibonacci Heaps (Analysis)

TS.

Recent Studies

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

o
5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

el el
%? 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a
random bit

5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

el el
E:',,' 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a

random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap

el el
E:',,' 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15) ——

= Queries to marked bits are intercepted and responded with a
random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations
= less efficient than the original Fibonacci heap

= marked bit is not redundant!

el el
E:',,' 5.2: Fibonacci Heaps (Analysis) TS. 16

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)

5.2: Fibonacci Heaps (Analysis)

TS.

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]

5.2: Fibonacci Heaps (Analysis)

TS.

	Recap of Insert, Extract-Min and Decrease-Key
	Glimpse at the Analysis
	Amortized Analysis
	Bounding the Maximum Degree

