

5.2 Fibonacci Heaps (Analysis)

Frank Stajano

Thomas Sauerwald

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Fibonacci Heap: Insert

Fibonacci Heap: Insert

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Insert

Insert

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree $=0$

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Every root becomes child of another root at most once!
$d(n)$ is the maximum degree of a root in any Fibonacci heap of size n

Actual Costs: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

52

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x
- Decrease the key of x (given by a pointer)

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node x
- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

- DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:

Fibonacci Heap: Decrease-Key

Decrease-Key of node x
 - Decrease the key of x (given by a pointer)

- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked,

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Amortized Analysis via Potential Method

- InSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- DECREASE-KEY: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Amortized Analysis via Potential Method

- INSERT:
actual $\mathcal{O}(1)$
- EXtract-Min: actual \mathcal{O} (trees $(H)+d(n))$

ExTract Min: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}$ (marks

- DeCrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H)) \quad$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Lifecycle of a node

Amortized Analysis via Potential Method

- InSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n)) \quad$ amortized $\mathcal{O}(d(n))$?
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$ amortized $\mathcal{O}(1)$?

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Lifecycle of a node

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

Amortized Analysis of Decrease-Key

Actual Cost

- DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Analysis of Decrease-Key

Actual Cost

- DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi
$$

Amortized Analysis of Decrease-Key

Actual Cost

- DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x
$$

Amortized Analysis of Decrease-Key

Actual Cost

- DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

First Coin \sim pays cut Second Coin \sim increase of trees (H)

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right)$? marks (H)

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right)$? marks (H)

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})=\mathcal{O}(d(n))
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})=\mathcal{O}(d(n))
$$

$$
\text { How to bound } d(n) ?
$$

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Fibonacci Heap
Not all trees are binomial trees, but still $d(n) \leq \log _{\varphi} n$, where $\varphi \approx 1.62$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Fibonacci Heap
Not all trees are binomial trees, but still $d(n) \leq \log _{\varphi} n$, where $\varphi \approx 1.62$.

Lower Bounding Degrees of Children

$$
d(n) \leq \log _{\varphi} n
$$

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment and $d_{1}, d_{2}, \ldots, d_{k}$ be their degrees

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment and $d_{1}, d_{2}, \ldots, d_{k}$ be their degrees
$\Rightarrow \quad \forall 1 \leq i \leq k: \quad d_{i} \geq i-2$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0) \quad N(1)$

- 0

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{rrr}
N(0) & N(1) \\
\bullet 0 & \bullet 1
\end{array}
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cc}
N(0) & N(1) \\
\bullet 0 & \bullet \begin{array}{l}
1 \\
0
\end{array}
\end{array}
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{ccc}
N(0) & N(1) & N(2) \\
\bullet 0 & \bullet & \\
& \bullet 0 &
\end{array}
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$N(0)$	$N(1)$	$N(2)$	$N(3)$	
0	$\bullet 1$	0	0	0

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0)$

- 0

$N(3)$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0)=1 \quad N(1)$

- 0

$N(3)$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2) & N(3) \\
0 & 0 & 0 & 0
\end{array}
$$

$$
N(4)
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3) \\
0 & \bullet 1 & 0 & 0
\end{array}
$$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
0 & \bullet 1 & 0 & 0
\end{array}
$$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
0 & \bullet 1 & 0 & 0<0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \bullet_{0}^{1} & \bullet 0 & 0 \\
& \bullet 0 & 0 & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \bullet_{0}^{1} & 0_{0}^{2} & 0 \\
& 0 & 0 & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \bullet 1 & 0 & 0 \\
& \bullet 0 & \bullet 0 & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & 0 & 0 & 0 \\
& 0 & \bullet 0 & 0
\end{array}
$$

$N(4)=8=5+3$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Definition
Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
N(k)=F(k+2) ?
$$

$$
N(0)=1 \quad N(1)=2 \quad N(2)=3
$$

$$
N(3)=5
$$

$$
N(4)=8=5+3
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

$$
N(k)=F(k+2) ?
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2 \quad N(k)=F(k+2) ?
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

$$
N(k)=F(k+2) ?
$$

$$
\begin{aligned}
& N(k)= \\
& \\
& \quad \begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{\ell=0}^{k-2} N(\ell) \\
& =N\left(k-1+\sum_{\ell=0}^{k-3} N(\ell)+N(k-2)\right. \\
& =F(k+1)+F(k)=F(k+2)
\end{aligned}
\end{aligned}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$ $\varphi^{2}=\varphi+1$

Fibonacci Numbers grow at least exponentially fast in k.

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
F(k+2)=
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
F(k+2)=F(k+1)+F(k)
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
\begin{aligned}
F(k+2) & =F(k+1)+F(k) \\
& \geq \varphi^{k-1}+\varphi^{k-2} \quad \text { (by the inductive hypothesis) }
\end{aligned}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) \\
& \geq \varphi^{k-1}+\varphi^{k-2} \quad \text { (by the inductive hypothesis) } \\
& =\varphi^{k-2} \cdot(\varphi+1)
\end{array}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) & \\
& \geq \varphi^{k-1}+\varphi^{k-2} & \text { (by the inductive hypothesis) } \\
& =\varphi^{k-2} \cdot(\varphi+1) & \\
& =\varphi^{k-2} \cdot \varphi^{2} & \left(\varphi^{2}=\varphi+1\right)
\end{array}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) & \\
& \geq \varphi^{k-1}+\varphi^{k-2} & \\
& =\varphi^{k-2} \cdot(\varphi+1) & \text { (by the inductive hypothesis) } \\
& =\varphi^{k-2} \cdot \varphi^{2} & \\
& =\varphi^{k} & \left(\varphi^{2}=\varphi+1\right)
\end{array}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$N(k)$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
N(k)=F(k+2)
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
N(k)=F(k+2) \geq \varphi^{k}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
n \geq N(k)=F(k+2) \geq \varphi^{k}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
\begin{aligned}
n \geq N(k)=F(k+2) & \geq \varphi^{k} \\
\log _{\varphi} n & \geq k
\end{aligned}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost Of(d) n) $\mathcal{O}(\log n)$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
\begin{aligned}
n \geq N(k)=F(k+2) & \geq \varphi^{k} \\
\log _{\varphi} n & \geq k
\end{aligned}
$$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$$
\Phi(H)=\operatorname{trees}(H)
$$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$
- EXtRACT-Min: actual $\mathcal{O}($ trees $(H)+d(n))$ amortized $\mathcal{O}(d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1) \quad$ amortized $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$ amortized $\mathcal{O}(d(n)) \neq \mathcal{O}(\log n)$
- Decrease-Key: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Can we perform EXTRACT-MIN in o(log $n) ?$				
Operation	Linked list	Binary heap	Binomia	heap
Fibon. heap				
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)$!

Can we perform EXTRACT-MIN in $\mathcal{O}(\log n) ?$							
Operation	Linked list	Binary heap	Binomid				
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	Fibon. heap			
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$				
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$				
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$			
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap MAKE-HEAP $\mathcal{O}(1)$ $\mathcal{O}(1)$ $\mathcal{O}(1)$ $\mathcal{O}(1)$ INSERT $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ MINIMUM $\mathcal{O}(n)$ $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ EXTRACT-MIN $\mathcal{O}(n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ UNION $\mathcal{O}(n)$ $\mathcal{O}(n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ DECREASE-KEY $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(1)$ DELETE $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\underline{\text { INSERT }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\underline{\text { INSERT }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
$\underline{\text { UNION }}$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
$\underline{\text { DECREASE-KEY }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\operatorname{lon} n)$	$\mathcal{O}(\operatorname{lon} n)$	$\mathcal{O})$
Crucial for many applications including				
shortest paths and minimum spanning trees!				

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
\Rightarrow less efficient than the original Fibonacci heap

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
\Rightarrow less efficient than the original Fibonacci heap
\Rightarrow marked bit is not redundant!

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap amortized cost	Van Emde Boas Tree actual cost
$\frac{\mathcal{I N S E R T}}{\mathrm{MINIMUM}}$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
EXTRACT-MIN	$\mathcal{O}(1)$	$\mathcal{O}(1)$
MERGE/UNION $n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
DECREASE-KEY	$\mathcal{O}(1)$	-
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
SUCC	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log \log u)$
MAXIMUM	-	$\mathcal{O}(\log \log u)$
$\mathcal{O}(1)$		

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap amortized cost	Van Emde Boas Tree actual cost
$\frac{\mathcal{I N S E R T}}{\mathrm{MINIMUM}}$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
EXTRACT-MIN	$\mathcal{O}(1)$	$\mathcal{O}(1)$
MERGE/UNION $n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
DECREASE-KEY	$\mathcal{O}(1)$	-
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
SUCC	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log \log u)$
MAXIMUM	-	$\mathcal{O}(1)$

all this requires key values to be in a universe of size u !

