

5.2 Fibonacci Heaps (Analysis)

Frank Stajano

Thomas Sauerwald

Lent 2016

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

INSERT -

Create a singleton tree

INSERT -

- Create a singleton tree
- Add to root list

INSERT -

- Create a singleton tree
- Add to root list

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

— Extract-Min —

Delete min

— EXTRACT-MIN ———

■ Delete min √

- Delete min √
- Meld childen into root list and unmark them

- Delete min √
- Meld childen into root list and unmark them

- Delete min √
- Meld childen into root list and unmark them

- Delete min √
- Meld childen into root list and unmark them

- Delete min √
- Meld childen into root list and unmark them
- Consolidate so that no roots have the same degree

- EXTRACT-MIN -

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- EXTRACT-MIN -

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

— Extract-Min ———

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children)

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) ✓

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) √
- Update minimum

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) √
- Update minimum √

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) ✓
- Update minimum ✓

- EXTRACT-MIN

- Delete min √
- Meld childen into root list and unmark them √
- Consolidate so that no roots have the same degree (# children) ✓
- Update minimum √

Every root becomes child of another root at most once!

d(n) is the maximum degree of a root in any Fibonacci heap of size n

- EXTRACT-MIN

- Delete min ✓
- Meld childen into root list and unmark them
- Consolidate so that no roots have the same degree (# children) ✓
- Update minimum √

Every root becomes child of another root at most once!

d(n) is the maximum degree of a root in any Fibonacci heap of size n

DECREASE-KEY of node x —

Decrease the key of x (given by a pointer)

DECREASE-KEY of node x -

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)

5.2: Fibonacci Heaps T.S.

15

DECREASE-KEY of node x -

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list

5.2: Fibonacci Heaps T.S. 15

DECREASE-KEY of node x -

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list

15

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - · Check if parent node is marked

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

DECREASE-KEY of node x =

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

5.2: Fibonacci Heaps T.S. 15

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked,

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x =

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

15

DECREASE-KEY of node x =

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

15

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
- \Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
 - Check if parent node is marked
 - If unmarked, mark it (unless it is a root)
 - If marked, unmark and meld it into root list and recurse (Cascading Cut)

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

• INSERT: actual $\mathcal{O}(1)$

■ EXTRACT-MIN: actual O(trees(H) + d(n))

• INSERT: actual $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

• INSERT: $actual \mathcal{O}(1)$

■ EXTRACT-MIN: actual O(trees(H) + d(n))

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

• INSERT: actual $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

• INSERT: actual $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

■ INSERT: $\operatorname{actual} \mathcal{O}(1)$ amortized $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n))$

■ DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$ amortized $\mathcal{O}(1)$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Lifecycle of a node

■ INSERT: $actual \mathcal{O}(1)$ amortized $\mathcal{O}(1)$ ✓

EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n))$?

■ DECREASE-KEY: actual $\mathcal{O}(\# \text{ cuts}) \leq \mathcal{O}(\text{marks}(H))$ amortized $\mathcal{O}(1)$?

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Lifecycle of a node

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

— Change in Potential — 24 17 23 2 2 26 30 3:

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential —

• trees(H') =

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential _____

• trees(H') = trees(H) + x

Actual Cost —

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential ——

- trees(H') = trees(H) + x
- marks(H') ≤

Actual Cost -

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential ——

- trees(H') = trees(H) + x
- marks(H') < marks(H) x + 2

Actual Cost -

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential -

- trees(H') = trees(H) + x
- $marks(H') \le marks(H) x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 x.$

Actual Cost -

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

- trees(H') = trees(H) + x
- $marks(H') \leq marks(H) x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 x.$

Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi$$

Actual Cost -

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

- trees(H') = trees(H) + x
- $marks(H') \le marks(H) x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 x.$

Scale up potential units

Amortized Cost —

$$\widetilde{c}_i = c_i + \Delta \Phi \leq \mathcal{O}(x+1) + 4 - x$$

Actual Cost -

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

- trees(H') = trees(H) + x
- $marks(H') \le marks(H) x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 x.$

Scale up potential units

Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(x+1) + 4 - x = \mathcal{O}(1)$$

Actual Cost

■ DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

First Coin \sim pays cut Second Coin \sim increase of trees(H)

Change in Potential -

- trees(H') = trees(H) + x
- $marks(H') \le marks(H) x + 2$
- $\Rightarrow \Delta \Phi \leq x + 2 \cdot (-x + 2) = 4 x.$

Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi \leq \mathcal{O}(x+1) + 4 - x = \mathcal{O}(1)$$

Actual Cost —

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

- Actual Cost -

■ EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

- Actual Cost -

EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

— Change in Potential ——

- Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

marks(H') ? marks(H)

- Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential ——

marks(H') ? marks(H)

- Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential ——

• $marks(H') \leq marks(H)$

- Actual Cost -

■ EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential —

- $marks(H') \leq marks(H)$
- trees(H') ≤

- Actual Cost -

■ EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential ——

- $marks(H') \leq marks(H)$
- trees(H') ≤

Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential —

- $marks(H') \leq marks(H)$
- trees $(H') \leq d(n) + 1$

Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \operatorname{trees}(H) + 2 \cdot \operatorname{marks}(H)$$

Change in Potential —

- $marks(H') \leq marks(H)$
- trees $(H') \leq d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

degrees 0 1 2 3 d(n

Actual Cost -

• EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

- Change in Potential ----

- marks(H') ≤ marks(H)
- trees $(H') \le d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

degrees

- Amortized Cost ----

$$\widetilde{c}_i = c_i + \Delta \Phi$$

Actual Cost -

■ EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

- $marks(H') \leq marks(H)$
- trees $(H') \leq d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

- Amortized Cost ---

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(\mathsf{trees}(\mathsf{H}) + d(n)) + d(n) + 1 - \mathsf{trees}(\mathsf{H})$$

Actual Cost -

■ EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential ——

- $marks(H') \leq marks(H)$
- trees $(H') \le d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

- Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(\mathsf{trees}(\mathsf{H}) + d(n)) + d(n) + 1 - \mathsf{trees}(\mathsf{H}) = \mathcal{O}(d(n))$$

Actual Cost

EXTRACT-MIN: $\mathcal{O}(\text{trees}(H) + d(n))$

$$\Phi(H) = \mathsf{trees}(H) + 2 \cdot \mathsf{marks}(H)$$

Change in Potential —

- $marks(H') \leq marks(H)$
- trees $(H') \le d(n) + 1$
- $\Rightarrow \Delta \Phi \leq d(n) + 1 \text{trees}(H)$

- Amortized Cost -

$$\widetilde{c}_i = c_i + \Delta \Phi \le \mathcal{O}(\text{trees}(H) + d(n)) + d(n) + 1 - \text{trees}(H) = \mathcal{O}(d(n))$$

How to bound d(n)?

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap

Every tree is a binomial tree $\Rightarrow d(n) \le \log_2 n$.

$$d = 3, n = 2^3$$

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

- Fibonacci Heap ---

Not all trees are binomial trees, but still $d(n) \leq \log_{\varphi} n$, where $\varphi \approx 1.62$.

Binomial Heap -

Every tree is a binomial tree $\Rightarrow d(n) \leq \log_2 n$.

Fibonacci Heap —

Not all trees are binomial trees, but still $d(n) \leq \log_{\varphi} n$, where $\varphi \approx 1.62$.

$$d(n) \leq \log_{\varphi} n$$

$$d(n) \leq \log_{\varphi} n$$

We will prove a stronger statement: Any tree with degree k contains at least φ^k nodes.

$$d(n) \leq \log_{\varphi} n$$

• Consider any node x of degree k (not necessarily a root) at the final state

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \dots, y_k be the children in the order of attachment

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

$$d(n) \leq \log_{\varphi} n$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let y_1, y_2, \ldots, y_k be the children in the order of attachment and d_1, d_2, \ldots, d_k be their degrees

$$\Rightarrow \boxed{\forall 1 \leq i \leq k \colon \quad d_i \geq i - 2}$$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0)

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

N(0)

• 0

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$N(0)$$
 $N(1)$

• 0

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

- N(0) N(1)
 - 0 **●** 1

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0)$$
 $N(1)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0)$$
 $N(1)$ $N(2)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0)$$
 $N(1)$ $N(2)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0)$$
 $N(1)$ $N(2)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0)$$
 $N(1)$ $N(2)$ $N(3)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0) = 1$$
 $N(1)$ $N(2)$ $N(3)$ $N(4)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3)$ $N(4)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$ $N(4)$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$ $N(4) = 8$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$ $N(4) = 8$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$ $N(4) = 8$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$

• 0

N(4) = 8

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$ $N(3) = 5$

• 0

$$N(4) = 8 = 5 + 3$$

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$N(k) = F(k+2)?$$

$$N(0) = 1$$
 $N(1) = 2$ $N(2) = 3$

$$(2) = 3$$

$$N(3) = 5$$

$$N(4) = 8 = 5 + 3$$

• 0

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

$$N(k) = F(k+2)?$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i - 2$

$$N(k) = F(k+2)?$$

$$N(k) = \begin{pmatrix} 1 & & & & & & \\ & & & & & & \\ & 1 & N(2-2) & N(3-2) & & & N(k-2) \end{pmatrix}$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$\forall 1 \leq i \leq k$$
: $d_i \geq i-2$

$$N(k) = F(k+2)?$$

$$N(k) = \begin{cases} 1 & N(2-2) & N(3-2) \end{cases} & N(k-2)$$

$$N(k) = 1 + 1 + N(2-2) + N(3-2) + \dots + N(k-2)$$

$$= 1 + 1 + \sum_{\ell=0}^{k-2} N(\ell)$$

$$= 1 + 1 + \sum_{\ell=0}^{k-3} N(\ell) + N(k-2)$$

$$= N(k-1) + N(k-2)$$

= F(k+1) + F(k) = F(k+2)

Lemma 19.3 -

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

• Base
$$k = 0$$
: $F(2) = 1$ and $\varphi^0 = 1$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

■ Base
$$k = 0$$
: $F(2) = 1$ and $\varphi^0 = 1$ ✓

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2$ ✓

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \ge 2$):

$$F(k + 2) =$$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \ge 2$):

$$F(k+2) = F(k+1) + F(k)$$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $\varphi^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \ge 2$):

$$F(k+2) = F(k+1) + F(k)$$

 $\geq \varphi^{k-1} + \varphi^{k-2}$ (by the inductive hypothesis)

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $φ^1 \approx 1.619 < 2$ ✓
- Inductive Step ($k \ge 2$):

$$F(k+2) = F(k+1) + F(k)$$

$$\geq \varphi^{k-1} + \varphi^{k-2}$$
 (by the inductive hypothesis)
$$= \varphi^{k-2} \cdot (\varphi + 1)$$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $φ^1 \approx 1.619 < 2$ ✓
- Inductive Step (k > 2):

$$\begin{split} F(k+2) &= F(k+1) + F(k) \\ &\geq \varphi^{k-1} + \varphi^{k-2} \qquad \text{(by the inductive hypothesis)} \\ &= \varphi^{k-2} \cdot (\varphi + 1) \\ &= \varphi^{k-2} \cdot \varphi^2 \qquad \qquad (\varphi^2 = \varphi + 1) \end{split}$$

Lemma 19.3

For all integers $k \ge 0$, the (k+2)nd Fib. number satisfies $F(k+2) \ge \varphi^k$, where $\varphi = (1 + \sqrt{5})/2 = 1.61803...$

$$\varphi^2 = \varphi + 1$$

Fibonacci Numbers grow at least exponentially fast in k.

- Base k = 0: F(2) = 1 and $\varphi^0 = 1$ ✓
- Base k = 1: F(3) = 2 and $φ^1 \approx 1.619 < 2$ ✓
- Inductive Step (k > 2):

$$F(k+2) = F(k+1) + F(k)$$

$$\geq \varphi^{k-1} + \varphi^{k-2} \qquad \text{(by the inductive hypothesis)}$$

$$= \varphi^{k-2} \cdot (\varphi + 1)$$

$$= \varphi^{k-2} \cdot \varphi^2 \qquad (\varphi^2 = \varphi + 1)$$

$$= \varphi^k \qquad \Box$$

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

N(k)

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

$$N(k) = F(k+2)$$

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

$$N(k) = F(k+2) \ge \varphi^k$$

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

$$n \ge N(k) = F(k+2) \ge \varphi^k$$

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

$$n \ge N(k) = F(k+2) \ge \varphi^k$$

$$\Rightarrow \log_{\varphi} n \ge k$$

- INSERT: amortized cost $\mathcal{O}(1)$
- EXTRACT-MIN: amortized cost $\mathcal{O}(d(n))$ $\mathcal{O}(\log n)$
- DECREASE-KEY: amortized cost $\mathcal{O}(1)$

$$n \ge N(k) = F(k+2) \ge \varphi^k$$

$$\Rightarrow \log_{\varphi} n \ge k$$

What if we don't have marked nodes?

• INSERT: $actual \mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$

• DECREASE-KEY: actual $\mathcal{O}(1)$

What if we don't have marked nodes?

• INSERT: $actual \mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$

• DECREASE-KEY: actual $\mathcal{O}(1)$

$$\Phi(H) = \operatorname{trees}(H)$$

What if we don't have marked nodes?

• INSERT: $actual \mathcal{O}(1)$

• EXTRACT-MIN: actual O(trees(H) + d(n))

■ DECREASE-KEY: actual O(1)

$$\Phi(H) = \operatorname{trees}(H)$$

What if we don't have marked nodes?

• INSERT: $actual \mathcal{O}(1)$

• EXTRACT-MIN: actual O(trees(H) + d(n))

■ DECREASE-KEY: actual O(1)

$$\Phi(H) = \operatorname{trees}(H)$$

What if we don't have marked nodes?

■ INSERT: actual O(1) amortized O(1)

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n))$

■ DECREASE-KEY: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$$\Phi(H) = \operatorname{trees}(H)$$

What if we don't have marked nodes?

■ INSERT: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

■ EXTRACT-MIN: actual $\mathcal{O}(\text{trees}(H) + d(n))$ amortized $\mathcal{O}(d(n)) \neq \mathcal{O}(\log n)$

■ DECREASE-KEY: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$$\Phi(H) = \operatorname{trees}(H)$$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Can we perform EXTRACT-MIN in $o(\log n)$?

Operation	Linked list	Binary heap	Binomia heap	Fibon. heap
Make-Heap	O(1)	O(1)	0(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)$!

Can we perform EXTRACT-MIN in o(log n)?

		`		
Operation	Linked list	Binary heap	Binomia heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	0(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

DELETE = DECREASE-KEY + EXTRACT-MIN

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
DELETE	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	O(1)	O(1)	O(1)	O(1)
<u>Insert</u>	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	O(1)
Мінімим	$\mathcal{O}(n)$	O(1)	$\mathcal{O}(\log n)$	O(1)
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	O(1)
DECREASE-KEY	O(1)	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	<i>O</i> (1)
DELETE	O(1)	(م ممالک	O(log n)	10(log n)

Crucial for many applications including shortest paths and minimum spanning trees!

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12) -

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15) —
- Queries to marked bits are intercepted and responded with a random bit

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12) -

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15) -
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12) -

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15) -
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
- ⇒ less efficient than the original Fibonacci heap

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12) -

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!
 - Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15) -
- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
- ⇒ less efficient than the original Fibonacci heap
- ⇒ marked bit is not redundant!

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap	Van Emde Boas Tree
	amortized cost	actual cost
INSERT	O(1)	$\mathcal{O}(\log\log u)$
Мінімим	O(1)	O(1)
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$
Merge/Union	O(1)	-
DECREASE-KEY	O(1)	$\mathcal{O}(\log\log u)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$
Succ	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log\log u)$
Махімим	-	O(1)

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap	Van Emde Boas Tree
	amortized cost	actual cost
INSERT	O(1)	$\mathcal{O}(\log\log u)$
Мімімим	O(1)	O(1)
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$
Merge/Union	O(1)	-
DECREASE-KEY	O(1)	$\mathcal{O}(\log\log u)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log\log u)$
Succ	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log\log u)$
Махімим	-	O(1)

all this requires key values to be in a universe of size u!

