

5.3: Disjoint Sets

Frank Stajano

Thomas Sauerwald

Lent 2016

Disjoint Sets

2

Disjoint Sets Data Structure -

Handle MakeSet (Item x)
 Precondition: none of the existing sets contains x
 Behaviour: create a new set {x} and return its handle

Disjoint Sets Data Structure -

Handle MakeSet(Item x) Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets Data Structure -

Handle MakeSet (Item x)
 Precondition: none of the existing sets contains x
 Behaviour: create a new set {x} and return its handle

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x

- Handle MakeSet (Item x)
 Precondition: none of the existing sets contains x
 Behaviour: create a new set {x} and return its handle
- Handle FindSet (Item x)
 Precondition: there exists a set that contains x (given pointer to x)
 Behaviour: return the handle of the set that contains x

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$ Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$

Disjoint Sets Data Structure

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$

Disjoint Sets Data Structure

- Handle MakeSet(Item x) Precondition: none of the existing sets contains xBehaviour: create a new set $\{x\}$ and return its handle
- Handle FindSet(Item x) Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle q) Precondition: $h \neq q$

- Handle MakeSet (Item x)
 Precondition: none of the existing sets contains x
 Behaviour: create a new set {x} and return its handle
- Handle FindSet (Item x)
 Precondition: there exists a set that contains x (given pointer to x)
 Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle g)
 Precondition: h ≠ g
 Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

- Handle MakeSet (Item x)
 Precondition: none of the existing sets contains x
 Behaviour: create a new set {x} and return its handle
- Handle FindSet (Item x)
 Precondition: there exists a set that contains x (given pointer to x)
 Behaviour: return the handle of the set that contains x
- Handle Union (Handle h, Handle g)
 Precondition: h ≠ g
 Pabaulour: marga two disjoint acts and return handle.

4h

4h

 h_2

4h

FINDSET-Operation —

 Add backward pointer to the list head from everywhere

FINDSET-Operation —

 Add backward pointer to the list head from everywhere

FINDSET-Operation —

- Add backward pointer to the list head from everywhere
- ⇒ FINDSET takes constant time

FINDSET-Operation —

- Add backward pointer to the list head from everywhere
- ⇒ FINDSET takes constant time

d = DisjointSet()

5

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $h_1 = d.$ **MakeSet** (x_1)

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

 $h_1 = d.$ MakeSet (x_1) $h_0 = d.$ Union (h_1, h_0) $h_2 = d.$ MakeSet (x_2)

d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$

h₃

Х3

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

Cost for *n* UNION operations: $\sum_{i=1}^{n} i = \Theta(n^2)$

- d = DisjointSet() $h_0 = d.\texttt{MakeSet}(x_0)$
- $\begin{array}{l} h_1 = d. \texttt{MakeSet}(x_1) \\ h_0 = d. \texttt{Union}(h_1, h_0) \\ h_2 = d. \texttt{MakeSet}(x_2) \\ h_0 = d. \texttt{Union}(h_2, h_0) \\ h_3 = d. \texttt{MakeSet}(x_3) \\ h_0 = d. \texttt{Union}(h_3, h_0) \end{array}$

better to append shorter list to longer ----> Weighted-Union Heuristic

Cost for *n* UNION operations: $\sum_{i=1}^{n} i = \Theta(n^2)$

- Weighted-Union Heuristic ------

Keep track of the length of each list

Weighted-Union Heuristic ———

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

- Weighted-Union Heuristic -

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

can be done easily without significant overhead

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

Amortized Analysis: Every operation has amortized cost $O(\log n)$, but there may be operations with total cost $\Theta(n)$.

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

Proof:

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

Proof:

• *n* MAKE-SET operations \Rightarrow at most *n* – 1 UNION operations

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $O(m + n \cdot \log n)$ time.

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer

Theorem 21.1 — Using the Weighted-Union heuristic, any sequence of *m* operations, *n* of which are MAKESET operations, takes $\mathcal{O}(m + n \cdot \log n)$ time.

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most log₂ n times

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most log₂ n times
 - Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per operation

- *n* MAKE-SET operations \Rightarrow at most *n* 1 UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
- \Rightarrow Backward pointer of x is updated at most log₂ n times
 - Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per operation

Analysis of Weighted-Union Heuristic

How to Improve?

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .*p* to its parent (for root x, x.p = x)

 $\{b,c,e,h\}$

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .*p* to its parent (for root x, x.p = x)

 $\{b,c,e,h\}$

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

 $\{b, c, e, h\} \qquad \qquad \{d, f, g\}$

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .*p* to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer .p to its parent (for root x, x.p = x)
- UNION: Merge the two trees

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

FindSet(b): С d g е

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

- 0: FindSet(X)
- 1: **if** $x \neq x.p$
- 2: x.p =**FindSet** (x.p)
- 3: return x.p

Theorem 21.14

Any sequence of *m* MAKESET, UNION, FINDSET operations, *n* of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

Theorem 21.14

Any sequence of *m* MAKESET, UNION, FINDSET operations, *n* of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

(

Theorem 21.14

Any sequence of *m* MAKESET, UNION, FINDSET operations, *n* of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

Theorem 21.14

Any sequence of *m* MAKESET, UNION, FINDSET operations, *n* of which are MAKESET operations, can be performed in $O(m \cdot \alpha(n))$ time.

11

Theorem 21.14 –

Any sequence of *m* MAKESET, UNION, FINDSET operations, *n* of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2, \\ 1 & \text{for } n = 3, \\ 2 & \text{for } 4 \le n \le 7, \\ 3 & \text{for } 8 \le n \le 2047, \\ 4 & \text{for } 2048 \le n \le 10^{80} \end{cases}$$

Combining Union by Rank and Path Compression

Experimental Setup

- 1. Initialise singletons $1,2,\ldots,300$
- 2. For every $1 \le i \le 300$, pick a random $1 \le r \le 300$, $r \ne i$ and perform UNION(FINDSET(*i*), FINDSET(*r*))

Experimental Setup -----

- 1. Initialise singletons $1,2,\ldots,300$
- 2. For every $1 \le i \le 300$, pick a random $1 \le r \le 300$, $r \ne i$ and perform UNION(FINDSET(*i*), FINDSET(*r*))
- 3. Perform $j \in \{0, 100, 200, 300, 600, 900, 1200, 1500, 1800\}$ many additional FINDSET(r), where $1 \le r \le 300$ is random

Union by Rank without Path Compression

Union by Rank with Path Compression

Union by Rank with Path Compression (100 additional FINDSET)

Union by Rank with Path Compression (200 additional FINDSET)

Union by Rank with Path Compression (300 additional FINDSET)

Union by Rank with Path Compression (600 additional FINDSET)

Union by Rank with Path Compression (900 additional FINDSET)

Union by Rank with Path Compression (1200 additional FINDSET)

Union by Rank with Path Compression (1500 additional FINDSET)

Union by Rank with Path Compression (1800 additional FINDSET)

	Union by Rank	Union by Rank
		& Path Compression
300 MakeSet & 300 Union	2.12	1.75
100 extra FINDSET	2.12	1.53
200 extra FINDSET	2.12	1.35
300 extra FINDSET	2.12	1.22
600 extra FINDSET	2.12	1.08
900 extra FINDSET	2.12	1.02
1200 extra FINDSET	2.12	1.01
1500 extra FINDSET	2.12	1.00
1800 extra FINDSET	2.12	0.98

