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Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)
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First Attempt: List Implementation

UNION-Operation Union(hy, hp)
= Add exira pointer to the last
; . hy
element in each list i
= UNION takes constant time
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First Attempt: List Implementation
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First Attempt: List Implementation (Analysis)

d =DisjointSet()

5.3: Disjoint Sets TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

5.3: Disjoint Sets TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)

5.3: Disjoint Sets TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

5.3: Disjoint Sets TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d.Union(h1 s ho)

5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

B

1

5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

B

1

o
o B 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)

B

1

o
Sl 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

B

1

o
Sl 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)

_>.<:|<— b o

Xo

o
o B 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

(2]

[x]

o
Sl 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

5.3: Disjoint Sets



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

5y 5.3: Disjoint Sets



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)

hs

<

5y 5.3: Disjoint Sets



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

5y 5.3: Disjoint Sets



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)

ho = d,Union(h1 s ho)

h, = d MakeSet(xz)

ho = d.Union(hg, ho)

h; = d MakeSet(x3)

ho = d.Ul’lfI.Ol’l(f']s7 ho) "
3

5y 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

(%]

(2]

[x]

5y 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

\—m/lj

Xo

5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

\_I_l/lj

Xo

5y 5.3: Disjoint Sets

TS.



First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d‘Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(h3, ho)

XSQZ/‘IE =

[ Cost for n UNION operations: > 7 . i = ©(n?) ]

5.3: Disjoint Sets TS. 5



First Attempt: List Implementation (Analysis)
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[better to append shorter list to longer ~~ Weighted-Union Heuristic]
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Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[ can be done easily without significant overhead j

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
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Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[ can be done easily without significant overhead j

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).
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Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
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Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
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Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2
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Theorem 21.1
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Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation
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Analysis of Weighted-Union Heuristic

HB0
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Proof: ( Can we improve on this further? ]

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation 0

kel
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How to Improve?
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Doubly-Linked List
= MAKESET: O(1)
= FINDSET: O(n)
= UNION: O(1)
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How to Improve?

o il‘;
han; ey AN

Basic ldea: Update Backward
Pointers only during FIND-SET

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)
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Disjoint Sets via Forests

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
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Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

5
Sl 5.3: Disjoint Sets TS. 9



Disjoint Sets via Forests

{b,c, e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees
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Disjoint Sets via Forests

{b,c.e h} {d.f.g}

e

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees
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Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f7g} {b7 C7 d7 e7 f7g7 h}

N O
ONROIENO () (@
(v () » © ©

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees
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Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f:g} {b7 C7 d7 e7 f7g7 h}
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() (9 » © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[ Append tree of smaller height ~~ Union by Rank j
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Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f:g} {b7 C7 d’ e7 f7g7 h}
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Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[ Append tree of smaller height ~~ Union by Rank j
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Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 v 0

° rank= 2 és rank =2 0 rank =3
@& © @ OO
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Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[ Append tree of smaller height ~~ Union by Rank ]
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Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 4 0
° rank =2 rank =2 3 0 rank =3

AN

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[ Append tree of smaller height ~~ Union by Rank ]

5.3: Disjoint Sets TS. 9



Path Compression during FINDSET

FindSet (b):

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

S
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Path Compression during FINDSET

FindSet (b):

(6]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o
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Path Compression during FINDSET

FindSet (b):

b[h]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o
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Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o
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Path Compression during FINDSET

FindSet (b):

E

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p
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5.3: Disjoint Sets TS. 10



Path Compression during FINDSET

FindSet (b):
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: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p
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: FindSet (x)
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return x.p
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Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET
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: FindSet (x)
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FindSet (b):
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FindSet (x)
if x#xp
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Path Compression during FINDSET

FindSet (b):

(6]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

XA ) 5.3: Disjoint Sets TS. 10



Path Compression during FINDSET

FindSet (b):

o]
()

o E ©
®

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET

FindSet (b):

o E ©
®

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET

FindSet (b):

o E ©
®

Maintaining the exact height e
would be costly, hence rank
is only an upper bound!

FindSet (x)
if x#xp
X.p =FindSet (x.p)
return x.p

w N B O

55, 5.3: Disjoint Sets TS. 10



Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O
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——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,
for 8 < n <2047,

for 2048 < n < 10%°
N,

a(n) =

A WN 2O

\
More than the
number of atoms
in the universe!
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

Q
—_~~
B
N
Il
A WN 2O

log*(n), the iterated logarithm, satifies
a(n) < log*(n), but still log*(10%°) = 5.
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\.

[ In practice, «(n) is a small constant ]

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O
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Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS))

——— Theorem 21.14 \\

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\.

[ In practice, «(n) is a small constant ]

for0 < n<2,
for n =3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O
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Simulating the Effects of Union by Rank and Path Compression
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Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300

2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))
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Simulating the Effects of Union by Rank and Path Compression

Experimental Setup
1. Initialise singletons 1,2, ...,300

2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

3. Perform j € {0,100, 200, 300, 600,900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 < r < 300 is random
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Union by Rank without Path Compression
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Union by Rank with Path Compression
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Union by Rank with Path Compression (100 additional FINDSET)
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Union by Rank with Path Compression (200 additional FINDSET)
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Union by Rank with Path Compression (300 additional FINDSET)
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Union by Rank with Path Compression (600 additional FINDSET)

IERRRRRARRERRRRRRTIVO
24
AN
Bl

"
i
1
1

0

1 1l
1
1 A

2

1
11

T2
"
i i
i 211
BAALEETRPIPRIRRERRAL

5.

@

Disjoint Sets TS. 18




Union by Rank with Path Compression (900 additional FINDSET)
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Union by Rank with Path Compression (1200 additional FINDSET)
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Union by Rank with Path Compression (1500 additional FINDSET)
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Union by Rank with Path Compression (1800 additional FINDSET)
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Union by Rank with Path Compression (1800 additional FINDSET)
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Overview

Union by Rank

Union by Rank
& Path Compression

300 MAKESET & 300 UNION
100 extra FINDSET
200 extra FINDSET
300 extra FINDSET
600 extra FINDSET
900 extra FINDSET
1200 extra FINDSET
1500 extra FINDSET
1800 extra FINDSET
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