

5.3: Disjoint Sets

Thomas Sauerwald

Outline

Disjoint Sets

Disjoint Sets (aka Union Find)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x) Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x) Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x) Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
$h_{1}=$ FindSet (y)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x) Behaviour: return the handle of the set that contains x
$h_{1}=$ FindSet (y)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=\operatorname{Union}\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

First Attempt: List Implementation

$\operatorname{Union}\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

First Attempt: List Implementation

UNION-Operation

- Add extra pointer to the last element in each list

First Attempt: List Implementation

UNION-Operation

- Add extra pointer to the last element in each list

First Attempt: List Implementation

$\operatorname{Union}\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

First Attempt: List Implementation

- UNION-Operation
- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time

Union $\left(h_{1}, h_{2}\right)$

FIndSet-Operation

FindSet $\left(z_{3}\right)$

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time

Union $\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere

FindSet $\left(z_{3}\right)$

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere

FindSet $\left(z_{3}\right)$

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time

FindSet $\left(z_{3}\right)$

Union $\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time

FindSet $\left(z_{3}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time

Union $\left(h_{1}, h_{2}\right)$

Need to update all backward pointers!

FindSet $\left(z_{3}\right)$

FindSET-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time

Union $\left(h_{1}, h_{2}\right)$

Need to update all backward pointers!

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

Cost for n UNION operations: $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

better to append shorter list to longer \rightsquigarrow Weighted-Union Heuristic

Cost for n UNION operations: $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)
can be done easily without significant overhead

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)
can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)
can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Amortized Analysis: Every operation has amortized cost $\mathcal{O}(\log n)$, but there may be operations with total cost $\Theta(n)$.

Analysis of Weighted-Union Heuristic

> Theorem 21.1 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Analysis of Weighted-Union Heuristic

> Theorem 21.1 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

Analysis of Weighted-Union Heuristic

> Theorem 21.1
> Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations

Analysis of Weighted-Union Heuristic

Theorem 21.1
 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

> Theorem 21.1
> Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, Make-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, Make-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:
Can we improve on this further?

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, MaKe-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- UNION: $\mathcal{O}(1)$

How to Improve?

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- Union: $\mathcal{O}(1)$

Weighted-Union Heuristic

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(1)$
- UnIon: $\mathcal{O}(\log n)$ (amortized)

How to Improve?

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- UNION: $\mathcal{O}(1)$

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)

Disjoint Sets via Forests

$\{b, c, e, h\}$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)

Disjoint Sets via Forests

$\{b, c, e, h\}$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Disjoint Sets via Forests

$$
\{b, c, e, h\} \quad\{d, f, g\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Disjoint Sets via Forests

$$
\{b, c, e, h\} \quad\{d, f, g\} \quad\{b, c, d, e, f, g, h\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Disjoint Sets via Forests

$\{b, c, e, h\} \quad\{d, f, g\}$
$\{b, c, d, e, f, g, h\}$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

$\{b, c, e, h\} \quad\{d, f, g\}$
$\{b, c, d, e, f, g, h\}$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }x\not=x.
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }x\not=x.
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet(x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet(x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet(x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quadx.p=\mathrm{ FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):

$b h$


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

$b h$


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }X\not=X.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }X\not=X.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }X\not=X.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet(x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Combining Union by Rank and Path Compression

Theorem 21.14
Any sequence of m MAKESET, Union, FindSet operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

Combining Union by Rank and Path Compression

Theorem 21.14
Any sequence of m MAKESET, Union, FindSet operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UnION, FINDSET operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

More than the number of atoms in the universe!

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

$\log ^{*}(n)$, the iterated logarithm, satifies $\alpha(n) \leq \log ^{*}(n)$, but still $\log ^{*}\left(10^{80}\right)=5$.

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UnION, FINDSET operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

Combining Union by Rank and Path Compression

Data Structure is essentially optimal! (for more details see CLRS)
Theorem 21.14

Any sequence of m MAKESET, UnION, FINDSET operations, n of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

Simulating the Effects of Union by Rank and Path Compression

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons $1,2, \ldots, 300$
2. For every $1 \leq i \leq 300$, pick a random $1 \leq r \leq 300, r \neq i$ and perform Union(FindSet(i), FindSet (r))

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons $1,2, \ldots, 300$
2. For every $1 \leq i \leq 300$, pick a random $1 \leq r \leq 300, r \neq i$ and perform Union(FindSet(i), FindSET(r))
3. Perform $j \in\{0,100,200,300,600,900,1200,1500,1800\}$ many additional FINDSET (r), where $1 \leq r \leq 300$ is random

Union by Rank without Path Compression

5.3: Disjoint Sets

Union by Rank with Path Compression

Union by Rank with Path Compression (100 additional FindSet)

5.3: Disjoint Sets

Union by Rank with Path Compression (200 additional FindSet)

5.3: Disjoint Sets

Union by Rank with Path Compression (300 additional FindSet)

Union by Rank with Path Compression (600 additional FindSet)

Union by Rank with Path Compression (900 additional FindSet)

Union by Rank with Path Compression (1200 additional FindSet)

Union by Rank with Path Compression (1500 additional FindSet)

Union by Rank with Path Compression (1800 additional FindSet)

Union by Rank with Path Compression (1800 additional FindSet)

Overview

	Union by Rank	Union by Rank \& Path Compression
300 MAKESET \& 300 UNION	2.12	1.75
100 extra FINDSET	2.12	1.53
200 extra FINDSET	2.12	1.35
300 extra FINDSET	2.12	1.22
600 extra FINDSET	2.12	1.08
900 extra FINDSET	2.12	1.02
1200 extra FINDSET	2.12	1.01
1500 extra FINDSET	2.12	1.00
1800 extra FINDSET	2.12	0.98

