
5.3: Disjoint Sets
Frank Stajano Thomas Sauerwald

Lent 2016

Disjoint Sets (aka Union Find)

Handle makeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle findSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=makeSet(x)

h0

h1=findSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Outline

Disjoint Sets

5.3: Disjoint Sets T.S. 2

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2

h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation (Analysis)

d = DisjointSet()

h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)

h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)

h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)

h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g}

{b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Path Compression during FINDSET

f

dc

ge

hb

h

b

b

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

b

b

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Union by Rank without Path Compression

2
2
2
2
2
2
2
1
0
1
3
2
1
1
2
2
2

2
1

1
0

1
1

3
2

2
2

1
3

0
1

1
3

2
2

2
1221223112323322213122223313123133222213232221223312112213332322132222212232333

3
3

0
2

2
2

3
2

3
3

2
2

1
3

3
3

3
1

2
2
3
3
3
2
2
3
3
3
3
3
1
2
2
3
2
2
1
3
2
2
3
2
3
1
2
2
1
2
2
2
3
3
2
2
2
2
2
2
3
2
3
3
3
2
2
3
2
1
3
3

23
131223222 2 2 2 2 3 3 3 2 2 1 3 2 3 2 2 2 3 2 3 2 2 3 3 3 3 2 2 2 1 3 2 3 3 2 3 3 2 3 2 2 2 2 2 1 3 1 2 3 2 3 3 2 2 2 1 2 3 1 1 2122231232

3
2
2
2
3
2
2
1
3
3
1
2
2
1
2
1
3
1
3
1
2
1
1
3
1
3
2
3
2
3
2
3
3
3
3

0

0

0

0

Average Height: 2.12

5.3: Disjoint Sets T.S. 13

Union by Rank with Path Compression

2
2
2
1
1
1
2
1
0
1
2
2
1
1
1
2
1

2
1

1
0

1
1

2
1

2
2

1
2

0
1

1
3

2
2

2
1121113111122322112122222213122133222213222221223211112212332222132122212222233

1
1

0
1

1
2

2
2

3
3

2
2

1
1

2
3

1
1

2
2
2
3
2
2
2
2
2
3
2
2
1
2
1
3
2
2
1
1
2
1
3
2
2
1
2
2
1
2
2
2
1
1
1
2
1
2
1
2
2
2
2
2
3
2
2
2
2
1
1
1

1
2131223122 2 2 2 1 3 2 3 2 2 1 3 2 3 2 1 1 2 2 1 1 2 3 3 3 2 2 2 1 1 2 2 2 2 1 3 2 2 1 2 2 2 2 2 1 2 1 2 3 2 3 1 2 2 1 1 2 1 1 1 2122221222

3
2
2
2
2
2
2
1
2
2
1
2
2
1
2
1
2
1
3
1
2
1
1
1
1
3
2
2
2
1
2
1
1
2
1

0

0

0

0

Average Height: 1.75

5.3: Disjoint Sets T.S. 14

Union by Rank with Path Compression (100 additional FINDSET)

1
2
1
1
1
1
1
1
0
1
2
2
1
1
1
1
1

2
1

1
0

1
1

2
1

1
2

1
2

0
1

1
1

2
2

2
1111113111112212112112122212112132222213212121223211111111332212122112212222233

1
1

0
1

1
2

1
2

3
3

1
2

1
1

1
1

1
1

2
2
1
2
2
2
2
2
2
2
1
2
1
1
1
3
2
2
1
1
2
1
3
2
1
1
2
2
1
2
2
2
1
1
1
2
1
1
1
2
2
2
2
2
3
2
1
2
2
1
1
1

1
2131212122 1 2 2 1 2 1 3 1 2 1 3 2 3 2 1 1 1 2 1 1 1 1 3 3 2 1 1 1 1 2 2 1 2 1 3 2 2 1 1 2 1 2 2 1 2 1 2 2 1 1 1 1 1 1 1 2 1 1 1 2112121122

1
2
1
2
2
2
2
1
2
2
1
1
2
1
2
1
2
1
2
1
2
1
1
1
1
3
2
2
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.53

5.3: Disjoint Sets T.S. 15

Union by Rank with Path Compression (200 additional FINDSET)

1
2
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

2
1

1
0

1
1

2
1

1
1

1
1

0
1

1
1

1
2

1
1111113111111212112111112212112122121112112121213211111111312212112111212212223

1
1

0
1

1
1

1
2

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
2
2
2
1
2
1
2
1
1
1
3
2
1
1
1
2
1
2
2
1
1
2
2
1
2
2
2
1
1
1
2
1
1
1
2
2
2
2
2
1
2
1
2
1
1
1
1

1
2131112122 1 2 2 1 2 1 3 1 2 1 3 2 2 2 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 2 2 1 1 1 3 1 1 1 1 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2112121122

1
2
1
2
1
2
1
1
2
2
1
1
2
1
1
1
2
1
2
1
2
1
1
1
1
1
1
1
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.35

5.3: Disjoint Sets T.S. 16

Union by Rank with Path Compression (300 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

2
1

1
1

1
1

0
1

1
1

1
1

1
1111111111111112112111112211112122121111111111112111111111211212112111212212221

1
1

0
1

1
1

1
2

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
1
2
2
1
2
1
2
1
1
1
3
2
1
1
1
2
1
2
2
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
2
2
2
2
2
1
2
1
1
1
1
1
1

1
2121112112 1 2 2 1 1 1 3 1 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111121121

1
2
1
2
1
1
1
1
2
2
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.22

5.3: Disjoint Sets T.S. 17

Union by Rank with Path Compression (600 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1111111111111111111111111211111111111111111111111111111111111211112111212112121

1
1

0
1

1
1

1
1

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
2
1
1
1
1
1
1

1
2121111111 1 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1

0

0

0

0

Average Height: 1.08

5.3: Disjoint Sets T.S. 18

Union by Rank with Path Compression (900 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111211112111112111111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.02

5.3: Disjoint Sets T.S. 19

Union by Rank with Path Compression (1200 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
112111111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.01

5.3: Disjoint Sets T.S. 20

Union by Rank with Path Compression (1500 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.00

5.3: Disjoint Sets T.S. 21

Union by Rank with Path Compression (1800 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1111111111 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 0.98

Coupon Collecting Time: 300 · ln(300) ≈ 1711

5.3: Disjoint Sets T.S. 22

Union by Rank with Path Compression (1800 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1111111111 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 0.98

Coupon Collecting Time: 300 · ln(300) ≈ 1711

5.3: Disjoint Sets T.S. 22

Overview

Union by Rank Union by Rank

& Path Compression

300 MAKESET & 300 UNION 2.12 1.75

100 extra FINDSET 2.12 1.53

200 extra FINDSET 2.12 1.35

300 extra FINDSET 2.12 1.22

600 extra FINDSET 2.12 1.08

900 extra FINDSET 2.12 1.02

1200 extra FINDSET 2.12 1.01

1500 extra FINDSET 2.12 1.00

1800 extra FINDSET 2.12 0.98

5.3: Disjoint Sets T.S. 23

