5.3: Disjoint Sets

Frank Stajano Thomas Sauerwald

Lent 2016

Outline

Disjoint Sets

5.3: Disjoint Sets

TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

;‘,‘ﬂ., 5.3: Disjoint Sets

TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

s,‘ﬂ W 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

s,‘ﬁ W 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

s,‘ﬂ W 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

u,.ﬂ:., 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=FindSet (y)

u,.ﬂ:., 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=FindSet (y)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5
Sl 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5
Sl 5.3: Disjoint Sets TS. 3

First Attempt: List Implementation

hy
v
P
ho
v
..

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)

.*.—’.—"'
.—> y2

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation

Union(hy, hy)

Need to find

last element!

el el
R 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

» Add exira pointer to the last
element in each list

Union(hy, hy) | Need to find

last element!
hy
v
7’
h2 /’

el el
R 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

» Add exira pointer to the last
element in each list

Union(hy, hy) | Need to find

last element!
hy
v
’/
h2 /’

el el
R 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

Union(hy, hy)

hy
v
7’
4
h2 /’

el el
R 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation Union(hy, hp)
= Add exira pointer to the last
; . hy
element in each list i
= UNION takes constant time

..

FINDSET-Operation

5
. 5.3: Disjoint Sets TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

Union(hy, hy)

hy
v

.,
.

v
..

FindSet(z)

ha
v
R ERE

el - el
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

» Add backward pointer to the list
head from everywhere

Union(hy, hy)

hy
v
7’
4
h2 /’

FindSet(z)

ha
v
R ERE

el - el
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

» Add backward pointer to the list
head from everywhere

Union(hy, hy)

hy
v
7’
4
h2 /’

el - el
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

» Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

hy
v
7’
4
h2 /’

el - el
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

» Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

hy
v
h

2

el - el
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
= Add exira pointer to the last
. . hy
element in each list i
= UNION takes constant time
h2 /’ ’
Vo,

FINDSET-Operation

Need to update all }

backward pointers!
= Add backward pointer to the list

head from everywhere FindSet(z)
= FINDSET takes constant time

s
S 5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
= Add exira pointer to the last
i . hy
element in each list i
= Unton-takes-constanttime
h2 /”
Vo7

FINDSET-Operation

Need to update all }

backward pointers!
= Add backward pointer to the list

head from everywhere FindSet(z)
= FINDSET takes constant time

s
S 5.3: Disjoint Sets TS. 4

First Attempt: List Implementation (Analysis)

d =DisjointSet()

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d.Union(h1 s ho)

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

B

1

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)

B

1

o
o B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)

B

1

o
Sl 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

B

1

o
Sl 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)

_>.<:|<— b o

Xo

o
o B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

(2]

[x]

o
Sl 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)

5y 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)

hs

<

5y 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

5y 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)

ho = d,Union(h1 s ho)

h, = d MakeSet(xz)

ho = d.Union(hg, ho)

h; = d MakeSet(x3)

ho = d.Ul’lfI.Ol’l(f']s7 ho) "
3

5y 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

(%]

(2]

[x]

5y 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

\—m/lj

Xo

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x1)
ho = d,Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’lfI.Ol’l(f']s7 ho)

_I_l/lj

Xo

5y 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d‘Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(h3, ho)

XSQZ/‘IE =

[Cost for n UNION operations: > 7 . i = ©(n?)]

5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xo)

hi = d MakeSet(x4)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Ul’l:-I.Ol’l(f'737 ho)

Xo

X3_IX_|2/{E

[better to append shorter list to longer ~~ Weighted-Union Heuristic]

\

[Cost for n UNION operations: > 7 . i = ©(n?)]

5.3: Disjoint Sets TS. 5

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

s,‘g ‘o 5.3: Disjoint Sets

TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list
= Append shorter list to the longer list (breaking ties arbitrarily)

s,‘ﬂ W 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

s
Sl 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

el el
Sl 5.3: Disjoint Sets TS. 6

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).

o
XA) 5.3: Disjoint Sets TS. 6

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Sl
S5, 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:

el - el
Sl 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations

Sl
S5, 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

o
A) 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho
¥

R

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

o
A) 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

R =

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

o
o B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

L P
afaiafuinscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

o
A) 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

N L]
afaiaintnscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

5, 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

N L]
afaiaintnscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

5, 5.3: Disjoint Sets TS. 7

o

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

N L]
afaiaintnscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5, 5.3: Disjoint Sets TS. 7

o

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

N L]
afaiaintnscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5, 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

HB0
O-O-O-E-0-0

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Proof: (Can we improve on this further?]

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation 0

kel
5, 5.3: Disjoint Sets TS. 7

How to Improve?

|<-ho

Doubly-Linked List
= MAKESET: O(1)
= FINDSET: O(n)
= UNION: O(1)

5.3: Disjoint Sets TS.

How to Improve?

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

o
A) 5.3: Disjoint Sets TS. 8

How to Improve?

o il‘;
han; ey AN

Basic ldea: Update Backward
Pointers only during FIND-SET

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

5.3: Disjoint Sets TS. 8

Disjoint Sets via Forests

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c,e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

5
Sl 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

5
Sl 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c.e h} {d.f.g}

e

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

s
Sl 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f7g} {b7 C7 d7 e7 f7g7 h}

N O
ONROIENO () (@
(v () » © ©

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

el - el
Sl 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f:g} {b7 C7 d7 e7 f7g7 h}

N O
OBROIENO, () (@
() (9 » © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f:g} {b7 C7 d’ e7 f7g7 h}

é rank= 2 és rank =2 6 rank =3
@& © @ OO
O, O, @ © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 v 0

° rank= 2 és rank =2 0 rank =3
@& © @ OO
) O, @ © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[Append tree of smaller height ~~ Union by Rank]

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 4 0
° rank =2 rank =2 3 0 rank =3

AN

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

[Append tree of smaller height ~~ Union by Rank]

5.3: Disjoint Sets TS. 9

Path Compression during FINDSET

FindSet (b):

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

S
Sl 5.3: Disjoint Sets

Path Compression during FINDSET

FindSet (b):

(6]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

(6]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

b[h]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

b[h]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

E

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

E

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

"R
O
&

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

Elfp

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

b[h]

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

b[h]

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

(6]

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

(6]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

(6]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

XA) 5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

o]
()

o E ©
®

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

55, 5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

o E ©
®

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

55, 5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

o E ©
®

Maintaining the exact height e
would be costly, hence rank
is only an upper bound!

FindSet (x)
if x#xp
X.p =FindSet (x.p)
return x.p

w N B O

55, 5.3: Disjoint Sets TS. 10

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,
for 8 < n <2047,

for 2048 < n < 10%°
N,

a(n) =

A WN 2O

\
More than the
number of atoms
in the universe!

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\.

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

Q
—_~~
B
N
Il
A WN 2O

log*(n), the iterated logarithm, satifies
a(n) < log*(n), but still log*(10%°) = 5.

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\.

[In practice, «(n) is a small constant]

for0 < n<2,
forn=3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS))

——— Theorem 21.14 \\

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\.

[In practice, «(n) is a small constant]

for0 < n<2,
for n =3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN 2O

5.3: Disjoint Sets TS. 11

Simulating the Effects of Union by Rank and Path Compression

5.3: Disjoint Sets TS. 12

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300

2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

5.3: Disjoint Sets TS. 12

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup
1. Initialise singletons 1,2, ...,300

2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

3. Perform j € {0,100, 200, 300, 600,900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 < r < 300 is random

5.3: Disjoint Sets TS. 12

Union by Rank without Path Compression

K

I ,‘
,'.ff"ﬂ;"
I

J
§
3
§ ‘
i Y
i 5 3
[D
3 2
:
§ 4 7"'1‘ i
a A |
2 >) ! 3
i ‘Ng!a:;‘}«ﬂ WA
} g ;
b PR 3

A%

)
ol
A,

I
L \

nes;
i
Vs

5.3: Disjoint Sets TS.

Union by Rank with Path Compression

J11202212222291222250 1,
221 225,
2

2

1
24
1
2.
23

0

2
1,y
22

1
1
122

5.3: Disjoint Sets

' (Average Height: 1.75)

TS.

Union by Rank with Path Compression (100 additional FINDSET)

22121212812222251,
21
22

saap 212y,

22‘ VAN]
| A i
A0]
3 7 2
i %S i
) A N % / ng""i~.l ;
5 P - \\4'\\“ NN
) A) sTIN ?
2, S g// A “ \';}//ﬂ} % D QV.‘,AA," A @
%, 1 < e N NG N ?
05 . Q. @ sl
AN ISR U1
A DRI N YN
v QO (Average Height: 1.53)

5.3: Disjoint Sets TS. 15

Union by Rank with Path Compression (200 additional FINDSET)

LaseizizE Iz,
sl 12,
213" T,
12 A
2 24
!
!
!
v S
|
|
l
]
i
i
i
]
]
i
f
i
i
]
{
;
i
!
|
z
1 o)
!
: A Height: 1.35
a1, o (verage eignt: 1.
1 o
0z, et
Ty 21227
T131211112211131117

5.3: Disjoint Sets TS. 16

Union by Rank with Path Compression (300 additional FINDSET)

ITRTEIEA AR LTI
1 224
"
n

2
i
2

1 1l
3
1 A

2
1!

12 %

2 2

™ 12t
g2

5.3: Disjoint Sets TS. 17

Union by Rank with Path Compression (600 additional FINDSET)

IERRRRRARRERRRRRRTIVO
24
AN
Bl

"
i
1
1

0

1 1l
1
1 A

2

1
11

T2
"
i i
i 211
BAALEETRPIPRIRRERRAL

5.

@

Disjoint Sets TS. 18

Union by Rank with Path Compression (900 additional FINDSET)

IPREERARRRRRARRERERPROO

1 Ty
AN
Bl

"
i
1
1

1
1 it
I il

1l
1

T
"
i i
i 1
BAALEETRPIPRIRRERAALLN

0

5.3: Disjoint Sets TS.

Union by Rank with Path Compression (1200 additional FINDSET)

IPREERARRRRRARRERERPROO

1 1y
iRl
il

iR
i
1
1

0

‘(Average Height: 1.01)

1
1

"
T
i i
i 1
BAALEETRRTRRRRRRIRAAAAN

5.3: Disjoint Sets TS. 20

Union by Rank with Path Compression (1500 additional FINDSET)

iy,

Y

74

V!

s,

7

S
2
%

Pt @
IO
7.0 %

L7

T~
-~

s

s

775

‘.‘ ",‘\'/,‘"'\' ¢

WK % \"\\\“) '~
IS
4‘\‘, 2500

7
77
%

%

09
SRk

X
S 8

K : 1.00)

5.3: Disjoint Sets TS. 21

Union by Rank with Path Compression (1800 additional FINDSET)

IPREERARRRRRARRERERPROO
1 Ty
AN
Bl

"
i
1
1

.
:

i |
i |
i)
1 1
j !
] |
j !
i !
i ‘
! !
! !
‘ i
!]
‘]
1 A 1
‘ j
! i
| j
:]
| i
| 1 i

B
4 !
:

1
1y

‘(Average Height: 0.98)

i 1
1 1
i 1
BT PP EPPPPPPPPEERRRLAN

5.3: Disjoint Sets TS. 22

Union by Rank with Path Compression (1800 additional FINDSET)

A\
.| Coupon Collecting Time: 300 - In(300) ~ 171 1]

'
'
'
1 T
1 1
' '
1 1
! ht
1t 1
1 1
' '
i Y
o "
R T
W °
5 o
" Kl
B s
¥ 1
! 3
B 2
i P
B i
B i
i i
B p
|)
{ Y
] '
{ b
1 1
i i
i I
1 i
i i
i i
i o i
1 i
i i
i i
i 1
i i
1 |]
' i
§ i
' i
i i
']
§ B]
b i
" B
| i
| i
i i
" i
" !
" B
y L f
" B
i i
N B
R i
1 f
1 J
N, o
1, 1

Mm"':““‘(Average Height: 0.98)

i
'
1
1
i
1
",
i
i
Ty, 4 Lt
Ty, Lt
BARREEERRRRRRRRARAAN

el el
B 5.3: Disjoint Sets TS. 22

Overview

Union by Rank

Union by Rank
& Path Compression

300 MAKESET & 300 UNION
100 extra FINDSET
200 extra FINDSET
300 extra FINDSET
600 extra FINDSET
900 extra FINDSET
1200 extra FINDSET
1500 extra FINDSET
1800 extra FINDSET

212
212
212
212
212
212
2.12
212
212

1.75
1.53
1.35
1.22
1.08
1.02
1.01
1.00
0.98

5y 5.3: Disjoint Sets

TS.

23

