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Pass: 2
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Outline

Dijkstra’s Algorithm
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Historical Remarks

Edsger Wybe Dijkstra (1930-2002)

Source: Wikipedia

Dutch computer scientist

developed Dijkstra’s shortest path
algorithm in 1956 (and published in 1959)

many more fundamental contributions to
computer science and engineering

Turing Award (1972)
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Some Quotes

“It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential programmers
they are mentally mutilated beyond hope of regeneration.”

“If you want more effective programmers, you will discover that they
should not waste their time debugging, they should not introduce the
bugs to start with.”

“FORTRAN’s tragic fate has been its wide acceptance, mentally
chaining thousands and thousands of programmers to our past
mistakes.”

“Programming is one of the most difficult branches of applied
mathematics; the poorer mathematicians had better remain pure
mathematicians.”
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Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!
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We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b

f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b

f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e

d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e

d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.4: Single-Source Shortest Paths T.S. 18



Recap: Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key ⇔ safe edge of cut (V \ Q,Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!
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Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key ⇔ safe edge of cut (V \ Q,Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!
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Prim’s Algorithms vs. Dijsktra’s Algorithm

Grows a tree that will eventually become a (minimum) spanning tree

A is the set of vertices which have been connected so far
Value of a vertex:

If u ∈ A, then it has no value.
If u 6∈ A, then it is equal to the smallest weight of an edge connecting to
A (if such edge exists, otherwise ∞.)

Prim’s Algorithm

Grows a tree that will eventually become a shortest-path tree

S is the set of vertices in the (current) shortest-path tree
Value of a vertex:

If u ∈ S, then it is the actual distance from the source s to u.
If u 6∈ S, then it may be any value (including ∞) that is at least the
distance from the source s.

Dijsktra’s Algorithm
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Dijkstra’s Algorithm

Requires that all edges have non-negative weights

Use a special order for relaxing edges

The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with u.δ = u.d
2. At each step, add a vertex v ∈ V \ S with minimal v .δ
3. Relax all edges leaving v

Overview of Dijkstra

DIJKSTRA(G,w,s)
0: INITIALIZE(G,s)
1: S = ∅
2: Q = V
3: while Q 6= ∅ do
4: u = Extract-Min(Q)
5: S = S ∪ {u}
6: for each v ∈ G.Adj[u] do
7: RELAX(u, v ,w)
8: end for
9: end while
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Details of Dijkstra’s Algorithm

As in Prim, use priority queue Q to keep track of the vertices’ values.

DIJKSTRA(G,w,s)
0: INITIALIZE(G,s)
1: S = ∅
2: Q = V
3: while Q 6= ∅ do
4: u = Extract-Min(Q)
5: S = S ∪ {u}
6: for each v ∈ G.Adj[u] do
7: RELAX(u, v ,w)
8: end for
9: end while

Initialization (l. 0-2): O(V )

ExtractMin (l. 4): O(V · log V )

DecreaseKey (l. 7): O(E · 1)
⇒ Overall: O(V log V + E)

Runtime w. Fibonacci Heaps

With a binary heap instead, the overall
runtime would be O(E · log V )!

Prim’s algorithm has the same runtime!
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Execution of Dijkstra (Figure 24.6)
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Execution of Dijkstra (Figure 24.6)
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�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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HH(y , 5), (z, 7)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(y , 5), (z, 7)

(t , 8), (x , 14),��
�HHH(z, 7)

(t , 8), (x , 13),��
�HHH(z, 7)(t , 8), (x , 13),��
�H
HH(z, 7)��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(z, 7)

(t , 8), (x , 13),��
�HHH(z, 7)

(t , 8), (x , 13),��
�H
HH(z, 7)��

�HHH(t , 8), (x , 13)��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(z, 7)(t , 8), (x , 13),��
�HHH(z, 7)
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)(t , 8), (x , 14),��
�HHH(y , 5), (z, 7)(t , 8), (x , 14),��
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�HHH(z, 7)(t , 8), (x , 13),��
�H
HH(z, 7)

��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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HH(y , 5), (z, 7)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
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HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
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�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
�H
HH(y , 5), (z, 7)(t , 8), (x , 14),��
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Execution of Dijkstra (Figure 24.6)

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y ,∞), (z,∞)�
��HHH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)��
�H
HH(s, 0), (t , 10), (x ,∞), (y , 5), (z,∞)(t , 10), (x ,∞),��

�HHH(y , 5), (z,∞)(t , 8), (x ,∞),��
�H
HH(y , 5), (z,∞)(t , 8), (x , 14),��
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Dijkstra’s Algorithm: Correctness

For any directed graph G = (V ,E) with non-negative edge weights w :
E → R+ and source s, Dijkstra terminates with u.d = u.δ for all u ∈ V .

Correctness (Theorem 24.6)

Proof: Invariant: If v is extracted, v .d = v .δ

Suppose there is u ∈ V , when extracted,

u.d > u.δ

Let u be the first vertex with this property

Take a shortest path from s to u and let
(x , y) be the first edge from S to V \ S

⇒

u.δ <

u.d

≤ y .d = y .δ

u is extracted before y
since x .d = x .δ when x is extracted, and then
(x , y) is relaxed ⇒ Convergence Property

There are edge cases
like s = x and/or y = u!

This contradicts that y is on a shortest path
from s to u.

S

s

u

x y
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Why negative-weight edges don’t work

Priority Queue Q:

(s, 0), (t ,∞), (x ,∞), (y ,∞)

��
�H
HH(s, 0), (t ,∞), (x ,∞), (y ,∞)��
�H
HH(s, 0), (t ,∞), (x , 5), (y ,∞)�
��HHH(s, 0), (t ,∞), (x , 5), (y , 3)��
�H
HH(s, 0), (t ,∞), (x , 5), (y , 3)(t ,∞), (x , 4),��

�HHH(y , 3)(t , 4), (x , 5),��
�HHH(y , 3)��

�HHH(t , 4), (x , 5)�
��HHH(x , 5)
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The distance from s to t is not correct!
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Summary of Single-Source Shortest Paths

studied two algorithms for SSSP (single-source shortest path)

basic operation: relaxing edges

Overview

detects negative-weight cycles

V passes of relaxing all edges (arbitrary order)

Runtime O(V · E)

Bellman-Ford Algorithm

requires non-negative weights

Greeedy strategy to choose which edge to relax (similar to Prim)

Using Fibonacci Heaps⇒ Runtime O(V log V + E)

Dijkstra’s Algorithm
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