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How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v 2 V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by ew(u, v) = w(u, v) + u.� � v .�
2) Remove vertex s and its incident edges

3. For every vertex v 2 V , run Dijkstra on (G, E , ew)
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Direct: 7, Detour: �1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V +E))
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Formalising the Problem

Given: directed graph G = (V ,E), V = {1, 2, . . . , n}, with edge
weights represented by a matrix W :

wi,j =





weight of edge (i, j) for an edge (i, j) ∈ E ,
∞ if there is no edge from i to j,
0 if i = j.

Goal: Obtain a matrix of shortest path weights L, that is

`i,j =

{
weight of a shortest path from i to j, if j is reachable from i
∞ otherwise.

All-Pairs Shortest Path Problem

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!
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A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)
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L(2) =




0 3 8 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}
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Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)

Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W )i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)
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(L(m−1) ·W )i,j =
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`
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)
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∑

+ ⇔ ×
∞ ⇔ 0

L(m) can be
computed in O(n3)
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Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)
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Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson’s Algorithm
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Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!
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How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0

2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm
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Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))
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Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Let p = (v0, v1, . . . , vk ) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12
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Comparison of all Shortest-Path Algorithms

Algorithm
SSSP APSP negative

sparse dense sparse dense weights

Bellman-Ford V 2 V 3 V 3 V 4 X

Dijkstra V log V V 2 V 2 log V V 3 X

Matrix Mult. – – V 3 log V V 3 log V (X)

Johnson – – V 2 log V V 3 X

can handle negative weight edges,
but not negative weight cycles
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