6.5: All-Pairs Shortest Paths

Frank Stajano Thomas Sauerwald

Lent 2016

IE UNIVERSITY OF
P CAMBRIDGE

Outline

All-Pairs Shortest Path

ol el
E:',l 6.5: All-Pairs Shortest Paths

TS.

Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

6.5: All-Pairs Shortest Paths TS.

Formalising the Problem

~— All-Pairs Shortest Path Problem \
= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

= Goal: Obtain a matrix of shortest path weights L, that is

0 weight of a shortest path from i to j, if jis reachable from i
T o otherwise.

6.5: All-Pairs Shortest Paths TS. 3

Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

= Goal: Obtain a matrix of shortest path weights L, that is

9 otherwise.

L N\

¢ {weight of a shortest path from i to j, ifjis reachable from i
ij =

A\

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

S
6.5: All-Pairs Shortest Paths TS. 3

Outline

APSP via Matrix Multiplication

s [
E:',' 6.5: All-Pairs Shortest Paths

TS.

A Recursive Approach

i ko
o @

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let e};’) be min. weight of any path from / to j with at most m edges
* Then é,(jj) =wj,s0lM =W

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let 12,(7) be min. weight of any path from / to j with at most m edges
* Then é,(jj) =wj,s0lM =W

= How can we obtain L® from L("?

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let 12,(7) be min. weight of any path from / to j with at most m edges
* Then é,(jj) =wj,s0lM =W

= How can we obtain L® from L("?

ZE? = min <£§’1j), 1r<nklgn£,(1k) A Wk,j)

i
6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
* Then é,(jj) =wj,s0lM =W

= How can we obtain L® from L("?

655) = min (KS}), 1r<nk|gn£,(1k) A Wk,j)

RES

i
~',,~-, 6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
* Then é,(jj) =wj,s0lM =W

= How can we obtain L® from L("?

655) = min (KS}), 1r<nk|gn£,(1k) A Wk,j)

g = min(ﬁf{}’“), 12"22/%_1) + Wk,j)

i
~',,~-, 6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

Let £ be min. weight of any path from i to j with at most m edges
Then ¢/') = w;j, so LD = W

How can we obtain L® from L(1?

(2) _ i (1) i (1))
Gy = bl (Ku D, e Wk’f) [Recall that w;; = O!]

g = min(ﬁf{}"”, 12"22/%_1) + Wk,j)

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko
o " —@

Basic Idea

Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

Let £ be min. weight of any path from i to j with at most m edges
Then ¢/') = w;j, so LD = W

How can we obtain L® from L(1?

(2) _ i (1) i (1))
Gy = bl (Ku D, e Wk’f) [Recall that w;; = O!]

g = min(zﬁg’—1),1r<nkign£§;"” + wk,,-) = 121@"(’3%_1) + Wk,j)

6.5: All-Pairs Shortest Paths TS. 5

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

M=w=]|

6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo —4 0 3 8 |2 -4
© 0 oo 1 7 3 0 -4 A 7
MD=wW=] co 4 0 o o @@= « 4 0 5 11
2 oo -5 0 oo 2 -1 -5 0 -2
© oo oo 6 0 8 o~© 1 6 0

o
E:EI 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

=min{0 + 00,3 + 1,8 + 00, 00 + 0, 74+6}J

|
o#oo/

0 3 8 [4 0 3 2 _4
oo 0 0o 1 7 3 0 1 7
M=W=] cc 4 0 |oo]| o =] « 4 5 11
2 o0 5|0 oo 2 4 -5 0 -2
oo 0o 0o 6 0 8 oo 1 6 0

o
E:EI 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 [0 | —4 0 3 8 2 4
oo 0 oo 1 7 3 0o -4 1 7
M=w=| c0c 4 0 |oo| o P=| o 4 0 5 11
2 oo 5|0 00 2 -1 -5 0 =2
00 00 00 6 0 8) 1 6 0

S
E:EI 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0

oo

D=w=]
2

oo

0

3

B®=1 7

2

8

3 8 oo -4
0 oo 1 7
4 0 oo oo
© -5 0
© oo 6 0
3 -3 2 -4
o -4 1 -1

4 0o 5 11

-1 -5 0 -2
5 1 6 0

2

) =min{0+ 00,3 + 1,8 + 00,00 + 0, 74+6}J

0
3
0o
2
8

DO U=

6.5: All-Pairs Shortest Paths

TS.

—4
7
11

-2
0

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8+ 00,00 + 0, 74+6}J

0 3 8 oo -4 0 3 8 2 -4
c© 0 o 1 7 3 0 -4 A1 7
D=W=] © 4 0 oo oo P=] w 4 0o 5 11
2 oo -5 0 [e%s) 2 -1 -5 0 -2
co 00 00 6 0 8 0o 1 6 0
0 3 -3 2 —4 o 1 -3 2 -4
3 0 -4 1 -1 3 0 -4 1 -1
=7 4 0o 5 11 W=17 4 o 5 [2
2 -1 -5 0 -2 2 -1 -5 0 -2
8 5 1 6 0 8 5 1 6 0
o
a1 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo -4 0 3 8 [2 -4
c© 0 oo 1|7 3 0 -4 1 7
D=—W=]| co 4 0 oo| @@= « 4 0 5 11
2 oo -5 0| 2 -1 -5 0 -2
co oo oo 6 0 8 oo 1 6 0
0 3 -3 2 -4 o 1 -3 2 -4
3 0 4 1 -1 3 0 -4 1 -1
®=|"7 4 0 5 11 =17 4 o 5 [2
2 -1 -5 0 -2 2 -1 -5 -2
8 5 1 6 0 8 5 1.6 0

[eg“; =min{7 — 4,4+ 7,0 + 00,5 + oo, 11 +0}]

S
6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 ool -4 0 3 8 2 -4
c© 0 oo 1|7 3 0 -4 1 7
D=—W=]| co 4 0 oo| @@= « 4 0 5 11
2 oo -5 0| 2 -1 -5 0 -2
co oo oo 6 0 8 00 1 6 0
0 3 -3 2 —4 0o 1 -3 2 -4
3 0 4 1 -1 3 0 -4 1 -1
® =774 0 5 11 MW=17 4 o 5 |38
2 1 -5 0 -2 2 -1 -5 —2
8 5 1 6 0 8 5 1. 0

[eg“; =min{7 — 4,4 +7,0 + 00,5 + 0, 11 +0}]

S
6.5: All-Pairs Shortest Paths TS. 6

Computing L(™

(m) __ f (m—1))
47 = min (4370 + wi)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)

-'..a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) _ mi (m—1) :
47 = gin, (457" + we)

o LD = [— [— = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

--,.a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

—
ﬁ(f]") = 12’1[("’1 (K,(",Z)¢ wk,,->

o LD = [— [— = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
€7 = min (éfk + Wk,)

1<k<n

--,.a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

—
K(T) = 1kaln (Z,(",Z)¢ wk,,->

o LD = [— [— = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
€7 = min (éfk + wk,)

1<k<n

(L(m71) W) = Z (E’(E*U X Wk,j)

1<k<n

--,.a',. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) __ f (m—1))
47 = min (4370 + wi)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ ; (m—1) .
47 = min, (457" + we)

L wy = > (4,’271) x Wk-/‘)
1<k<n

= The correspondence is as follows:

min@Z

-'-.a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) __ f (m—1))
47 = min (4370 + wi)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ ; (m—1) .
47 = min, (457" + we)

L wy = > (4,’271) x Wk-/‘)
1<k<n

= The correspondence is as follows:

-'-.a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) __ f (m—1))
47 = min (4370 + wi)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ ; (m—1) .
47 = min, (457" + we)

L wy = > (4,’271) x Wk-/‘)
1<k<n

= The correspondence is as follows:

-'-.a;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) __ f (m—1))
47 = min (4370 + wi)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ ; (m—1) .
47 = min, (457" + we)

L wy = > (4,’271) x Wk,f)

1<k<n
= The correspondence is as follows:
min
+

(0. 9]

0

-voxM

te e

-'-.g;. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

—1
47 = min (6577 + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

1<k<n
(Lm0 wy; = Z ([%71) % Wk,j)
1<k<n

= The correspondence is as follows:

€7 = min (éfk +wk,)

min
+

(0. 9]

0

—LOXM

te e

-'-.g;. 6.5: All-Pairs Shortest Paths TS.

‘-_'E-,, 6.5: All-Pairs Shortest Paths TS.

Computing L(™

(m) __ f (m—1))
47 = min (457" + wey)

o LD = [— [— = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)

= Computing L(™:
(m)
m (m—1) _ L' can be
by = @ign(‘g”k N Wk") <[computed in O(ns)J

(L(m71) W) = Z ([’(.72*1) X Wk,j)

1<k<n

= The correspondence is as follows:

min
+

(0. 9]

0

- e

te e

Computing L("-") efficiently

E(’f’) = min (47(1—1) S Wk,j)

’

b T 1<k<n

= For, say, n = 738, we subsequently compute

L(1)7 L(2)7 L(S), L(4), o

7L(737) — L

6.5: All-Pairs Shortest Paths

TS.

Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (4377 + wes)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 L(S), L(4), o L(73) — |

6.5: All-Pairs Shortest Paths TS. 8

Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (4377 + wes)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)7 L(4), e L7370 —

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o 1_(512)7 L(1024) _ 4

el - el
6.5: All-Pairs Shortest Paths TS. 8

Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (4377 + wes)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)’ L(Z), /_(3)7 L(4), e L7370 —

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o L(512), L(1024) _ 4

T~

[Takes O(log n - n®).]

el - el
6.5: All-Pairs Shortest Paths TS. 8

Computing L("-") efficiently

G =

min
1<k<n

(£2271)—% W%J)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)’ L(2)7 /_(3)7 L(4), e

1737 _

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o L(512), L(1024) _ 4

pd

T~

[We need LW = [® .13 = [®).[() (see Ex. 25.1-4)]

[Takes O(log n - n®).]

6.5: All-Pairs Shortest Paths

Outline

Johnson’s Algorithm

kel
6.5: All-Pairs Shortest Paths

TS.

Johnson’s Algorithm

Overview

el el
6.5: All-Pairs Shortest Paths

TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

o
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and | V| passes of Dijkstra

o
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

o
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.
= all edge weights are non-negative

o
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and | V| passes of Dijkstra

= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

o
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[Adding a constant to every edge doesn’t work!]

o
6.5: All-Pairs Shortest Paths TS. 10

Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[Adding a constant to every edge doesn’t work!]

5] 6.5: All-Pairs Shortest Paths TS. 10

How Johnson’s Algorithm works

~—— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

s [
E:E 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~—— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort
= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

S, 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

S, 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

s [
E:'," 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

n
[Direct: 7, Detour: —1]

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

n
[Direct: 7, Detour: —1]

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

n
[Direct: 7, Detour: —1]

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

n
[Direct: 7, Detour: —1] (Direct: 10, Detour: 2]

el el
6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~—— Johnson’s Algorithm N
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)
[Runtime: O(V-E+V-(Vlog V—|—E))]

n
[Direct: 7, Detour: —1] (Direct: 10, Detour: 2]

el el
6.5: All-Pairs Shortest Paths TS. 1

Correctness of Johnson’s Algorithm

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

s [
E:',' 6.5: All-Pairs Shortest Paths Ts.

Correctness of Johnson’s Algorithm

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1.

ol el
6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 1.
Let u.d and v.d be the distances from the fake source s

s [
E:',' 6.5: All-Pairs Shortest Paths Ts.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 1.
Let u.d and v.d be the distances from the fake source s

u.d+w(u,v)>v.é (triangle inequality)

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 1.
Let u.d and v.d be the distances from the fake source s

u.d+w(u,v)>v.é (triangle inequality)
= w(u,v)+ u.d+ w(u,v) > w(u,v)+ u.d — v.d +v.8

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 1.
Let u.d and v.d be the distances from the fake source s

u.d+w(u,v)>v.é (triangle inequality)
= w(u,v)+ u.d+ w(u,v) > w(u,v)+ u.d — v.d +v.8
= w(u,v) >0

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.

s [
E:',' 6.5: All-Pairs Shortest Paths Ts.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

~——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 2.
Let p = (w, v, ..., Vk) be any path

6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

~——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 2.
Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, vi) = w(p).

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

~——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 2.

Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, vi) = w(p).
= In the reweighted graph, the weight is

k

Z V~V(Vi—1, Vi)

i=1

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\

Proof of 2.

Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, vi) = w(p).
= In the reweighted graph, the weight is

k k

S Wi, vi) =D (W(Vie1,) + Vie1.6 — Vi.6)

i=1 i=1

6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v) + u.d — v.§

— Theorem
For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

\

Proof of 2.

Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, vi) = w(p).
= In the reweighted graph, the weight is

K K
Z w(vi_1, V) = Z (W(Viz1, Vi) + Vi—1.6 — vi.6) = w(p) + vo.0 — .6 O

i=1 i=1

6.5: All-Pairs Shortest Paths TS. 12

Comparison of all Shortest-Path Algorithms

_ SSSP APSP negative
Algorithm
sparse | dense | sparse dense weights
Bellman-Ford V2 Ve Ve v4 v
Dijkstra ViogV | V? V2log V V3 X
Matrix Mult. - - VilogV | V3logV (V)
Johnson - - V2log V & / v

VA

but not negative weight cycles

[can handle negative weight edges, J

6.5: All-Pairs Shortest Paths

TS.

	All-Pairs Shortest Path
	APSP via Matrix Multiplication
	Johnson's Algorithm

