

6.5: All-Pairs Shortest Paths

Frank Stajano

Thomas Sauerwald

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson's Algorithm

Formalising the Problem

All-Pairs Shortest Path Problem

- Given: directed graph $G=(V, E), V=\{1,2, \ldots, n\}$, with edge weights represented by a matrix W :

$$
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
$$

Formalising the Problem

All-Pairs Shortest Path Problem

- Given: directed graph $G=(V, E), V=\{1,2, \ldots, n\}$, with edge weights represented by a matrix W :

$$
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
$$

- Goal: Obtain a matrix of shortest path weights L, that is

$$
\ell_{i, j}= \begin{cases}\text { weight of a shortest path from } i \text { to } j, & \text { if } j \text { is reachable from } i \\ \infty & \text { otherwise }\end{cases}
$$

Formalising the Problem

All-Pairs Shortest Path Problem

- Given: directed graph $G=(V, E), V=\{1,2, \ldots, n\}$, with edge weights represented by a matrix W :

$$
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
$$

- Goal: Obtain a matrix of shortest path weights L, that is

$$
\ell_{i, j}= \begin{cases}\text { weight of a shortest path from } i \text { to } j, & \text { if } j \text { is reachable from } i \\ \infty & \text { otherwise }\end{cases}
$$

Here we will only compute the weight of the shortest path without keeping track of the edges of the path!

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson's Algorithm

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=W_{i, j}$, so $L^{(1)}=W$

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=W_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=w_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
$$

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=W_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
$$

$$
6=
$$

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=w_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
$$

$$
\ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=W_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$
\begin{aligned}
& \ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right) \text { Recall that } w_{j, j}=0! \\
& \ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)
\end{aligned}
$$

A Recursive Approach

Basic Idea

- Any shortest path from i to j of length $k \geq 2$ is the concatenation of a shortest path of length $k-1$ and an edge
- Let $\ell_{i, j}^{(m)}$ be min. weight of any path from i to j with at most m edges
- Then $\ell_{i, j}^{(1)}=W_{i, j}$, so $L^{(1)}=W$
- How can we obtain $L^{(2)}$ from $L^{(1)}$?

$$
\begin{aligned}
& \ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right) \text { Recall that } w_{j, j}=0! \\
& \ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\end{aligned}
$$

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

$L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)$

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

$L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & ? & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

$L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)$

$$
L^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right)
$$

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path uses at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow ?
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow 0
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \\
\infty & \Leftrightarrow \\
0 & \Leftrightarrow
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path use at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow 0 \\
0 & \Leftrightarrow 1
\end{aligned}
$$

Computing $L^{(m)}$

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- $L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L$, since every shortest path uses at most $n-1=|V|-1$ edges (assuming absence of negative-weight cycles)
- Computing $L^{(m)}$:

$$
\begin{aligned}
& \ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)<\begin{array}{c}
L^{(m)} \text { can be } \\
\left(L^{(m-1)} \cdot W\right)_{i, j}
\end{array} \\
&=\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
$$

- The correspondence is as follows:

$$
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow 0 \\
0 & \Leftrightarrow 1
\end{aligned}
$$

Computing $L^{(n-1)}$ efficiently

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- For, say, $n=738$, we subsequently compute

$$
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
$$

Computing $L^{(n-1)}$ efficiently

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- For, say, $n=738$, we subsequently compute

$$
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
$$

Computing $L^{(n-1)}$ efficiently

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- For, say, $n=738$, we subsequently compute

$$
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
$$

- Since we don't need the intermediate matrices, a more efficient way is

$$
L^{(1)}, L^{(2)}, L^{(4)}, \ldots, L^{(512)}, L^{(1024)}=L
$$

Computing $L^{(n-1)}$ efficiently

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- For, say, $n=738$, we subsequently compute

$$
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
$$

- Since we don't need the intermediate matrices, a more efficient way is

$$
L^{(1)}, L^{(2)}, L^{(4)}, \ldots, L^{(512)}, L^{(1024)}=L
$$

Takes $\mathcal{O}\left(\log n \cdot n^{3}\right)$.

Computing $L^{(n-1)}$ efficiently

$$
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
$$

- For, say, $n=738$, we subsequently compute

$$
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
$$

- Since we don't need the intermediate matrices, a more efficient way is

We need $L^{(4)}=L^{(2)} \cdot L^{(2)}=L^{(3)} \cdot L^{(1)}!($ see Ex. 25.1-4)
Takes $\mathcal{O}\left(\log n \cdot n^{3}\right)$.

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson's Algorithm

Johnson's Algorithm

\square

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

Johnson's Algorithm

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

Adding a constant to every edge doesn't work!

Overview

- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and $|V|$ passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

Adding a constant to every edge doesn't work!

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

How Johnson's Algorithm works

Johnson's Algorithm

1. Add a new vertex s and directed edges $(s, v), v \in V$, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

- If there are negative weight cycles, abort
- Otherwise:

1) Reweight every edge (u, v) by $\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta$
2) Remove vertex s and its incident edges
3. For every vertex $v \in V$, run Dijkstra on (G, E, \widetilde{w})

Direct: 7, Detour: -1

Direct: 10, Detour: 2

Correctness of Johnson's Algorithm

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Correctness of Johnson's Algorithm

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1.

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1.

Let $u . \delta$ and $v . \delta$ be the distances from the fake source s

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1 .

Let $u . \delta$ and $v . \delta$ be the distances from the fake source s

$$
u . \delta+w(u, v) \geq v . \delta \quad \text { (triangle inequality) }
$$

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

Theorem

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1 .

Let $u . \delta$ and $v . \delta$ be the distances from the fake source s

$$
\begin{array}{rlrl}
u . \delta+w(u, v) & \geq v . \delta \quad \text { (triangle inequality) } \\
\Rightarrow \quad & \widetilde{w}(u, v)+u . \delta+w(u, v) & \geq w(u, v)+u . \delta-v . \delta+v . \delta
\end{array}
$$

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

Theorem

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1 .

Let $u . \delta$ and $v . \delta$ be the distances from the fake source s

$$
\begin{aligned}
u . \delta+w(u, v) & \geq v . \delta \quad \text { (triangle inequality) } \\
\Rightarrow \quad \widetilde{w}(u, v)+u . \delta+w(u, v) & \geq w(u, v)+u . \delta-v . \delta+v . \delta \\
\Rightarrow \quad \widetilde{w}(u, v) & \geq 0
\end{aligned}
$$

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

Theorem
For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path

- In the original graph, the weight is $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)$.

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path

- In the original graph, the weight is $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)$.
- In the reweighted graph, the weight is

$$
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)
$$

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path

- In the original graph, the weight is $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)$.
- In the reweighted graph, the weight is

$$
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+v_{i-1} . \delta-v_{i} . \delta\right)
$$

Correctness of Johnson's Algorithm

$$
\widetilde{w}(u, v)=w(u, v)+u \cdot \delta-v . \delta
$$

For any graph $G=(V, E, w)$ without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

Let $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ be any path

- In the original graph, the weight is $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)$.
- In the reweighted graph, the weight is

$$
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+v_{i-1} . \delta-v_{i} . \delta\right)=w(p)+v_{0} \cdot \delta-v_{k} \cdot \delta \quad \square
$$

Comparison of all Shortest-Path Algorithms

Algorithm SSSP APSP negative sparse dense sparse dense weights Bellman-Ford V^{2} V^{3} V^{3} V^{4} \checkmark Dijkstra $V \log V$ V^{2} $V^{2} \log V$ V^{3} X Matrix Mult. - - $V^{3} \log V$ $V^{3} \log V$ (\checkmark) Johnson - - $V^{2} \log V$ V^{3} \checkmark
\qquadcan handle negative weight edges, but not negative weight cycles

