
5.1: Amortized Analysis
Frank Stajano Thomas Sauerwald

Lent 2016

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43

4141

33

7070

32

54 66 82 51

min

5

0

s
4

5

∞

5

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43 4141 33 7070 32

54 66 82 51

min

5

0

s
4

5

∞

5

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43 4141 33 7070 32

54 66 82 51

min

5

0

s
4

5

∞

55

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S

total cost of 1
POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S

total cost of 1
MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2 (correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small

concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small

concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤

TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n)

≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n)

≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n)

≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Stack as a coin-operated machine (p. 83)

5.1: Amortized Analysis T.S. 8

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn − Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Stack: Analysis via Potential Method

Φi =

objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1

i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) =

1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1

i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}

Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}
ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1

i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ??

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k (correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost:��HH≤ k
number of flips (smallest index of a zero)

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k (correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

16 0 0 0 1 0 0 0 0 31

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

16 0 0 0 1 0 0 0 0 31

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments

In a sequence of n increments from 0, bit A[i] is flipped b n
2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤

k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋

≤
k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)

≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Binary Counter: Analysis via Potential Function

Φi =

ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1

i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) =

1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1

i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1

= 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Next Lecture: Fibonacci Heap

Operation Binomial heap

Fibonacci heap

worst-case cost

amortized cost

MAKE-HEAP O(1)

O(1)

INSERT O(log n)

O(1)

MINIMUM O(log n)

O(1)

EXTRACT-MIN O(log n)

O(log n)

UNION O(log n)

O(1)

DECREASE-KEY O(log n)

O(1)

DELETE O(log n)

O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!

5.1: Amortized Analysis T.S. 17

Next Lecture: Fibonacci Heap

Operation Binomial heap Fibonacci heap

worst-case cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

UNION O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!

5.1: Amortized Analysis T.S. 17

