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= pushes object x onto stack S
= total cost of 1
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Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
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Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
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= MULTIPOP (S, k)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
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A new Analysis Tool: Amortized Analysis

[ Data structure operations (Heap, Stack, Queue etc.) ]

Amortized Analysis V//
= analyse a sequence of operations

S
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A new Analysis Tool: Amortized Analysis

Amortized Analysis
= analyse a sequence of operations

= show that average cost of an operation is small
\
This is not average case analysis!]
J
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A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques

= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques

= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations
= amortized cost of each operation is the average ()

n

/]
/!

[ Even though operations may be of different types/costs j
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)
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Stack: Aggregate Analysis
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' Every item that is POPPED

had to be PUSHED earlier!
ERR AR =

N—

N N S
PUSH(B) MULTIPOP(3)
MULTIPOP(k) contributes min{k, |S|} to Tpop(n) ]
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] 2 Every item that is POPPED ]
had to be PUSHED earlier!
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Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure
to cover up for expensive operations
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Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

el - el
%‘.’ 5.1: Amortized Analysis TS.



Second Technique: Potential Method
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Stack as a coin-operated machine (p. 83)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

3

Cci < Ej, Ci = E‘,‘ or
¢ > ¢; are all possible!
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

= &; is the potential stored after operation i (¢o = 0)
~

[Function that maps states of the data structure to some value

"n"n
5.1: Amortized Analysis TS.



Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

E,' =Ci + ((b,' — ¢,'_1)
i -

« PUSH(): ¢ = 1 « PUSH(): & — &1 = 1
= POP: ¢ =1 = POP: &; — &, = —1

J
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n
Za = Z(CH—‘D/ —®iq) =
p

i=1
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n n
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n n
ZE,- = Z(Ci+¢i—¢if1) = ZC/+¢n
i=1 i=1 i=1
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

E,' =Cj + ((b,' = ¢,'_1)

n

n n
Sa=Y (a+oi-di )= G+,
i=1

i=1 i=1

If &, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!
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Stack: Analysis via Potential Method
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
B O
o 0O
I
~—

PUSH
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Stack: Analysis via Potential Method
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= actual cost: ¢; = 1 O .
. O O
= potential change: ¢, — ¢,y = 0 o
NEPENER
~— =1

PUSH

5.1: Amortized Analysis TS. 11
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
. o O
= potential change: ®; — ®;_¢ =1 o O
i a I
= amortized cost: ¢; =
~—
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Stack: Analysis via Potential Method
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

o
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Incrementing a Binary Counter: Aggregate Analysis

Counter A A2l Al :A[O]: Total
Value . 1| Cost
0 o 0o o0 ;o 0
1 0 0 0
2 0o o 110 8
3 0 0 11 4
4 0 1 0o 10, 7
5 0o 1 0 1! 8
6 o 1 1 .0 10
7 0 1 1 1

T

o
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Incrementing a Binary Counter: Aggregate Analysis

Counter A3 A2 :A[1]: A[0] Total
Value . I Cost
0 0o 0 ;0 0 0
1 0 0 10 1
2 0 0 "1, 3
3 0 0 Do 4
4 0 1 10, 0 7
5 0 1 10! 1 8
6 o 1 .1' 0 10
7 0 H W 11
| E—

o
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Incrementing a Binary Counter: Aggregate Analysis

Counter Al3) 'rA[2]: All] A[O] Total
Value . I Cost
0 0o ;o 0 0 0
1 0 10 0 1 1
2 0 10 1 0 3
3 0 1o Do 1 4
4 0 1, 0 0 7
5 0o 1! 0 1 8
6 0o .1 1 0 10
7 0 1! 1 1 11

| Ep————

o
S5, 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter :A[S] ! A2 A1) A[O] Total
Value |, I Cost
o [[or 0o o 0 0
1 por 0 0 1
2 o, o0 1 0 3
3 10, 0 1 1 4
4 ol 1 o 0 7
5 o' o1 0o 1 8
6 o' 1 1 0 10
7 oA 1 1 11
| E——

o
S5, 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments

o
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Incrementing a Binary Counter: Aggregate Analysis
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Value Cost
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Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
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= Bit A[/] is only flipped every 2 increments
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Incrementing a Binary Counter: Aggregate Analysis

= Bit A[/] is only flipped every 2 increments

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

SLE

i=0 i=0

k—

-

n
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1
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

[Aggregate Analysis: The amortized cost per operation is

™ <2

n —

k—1

UOEDS EJ

1 )
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]
tot o+t
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1
2k—1

) <2-n.
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Binary Counter: Analysis via Potential Function
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Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1 1100
= potential change: ¢; — ¢,y =1 lINC
= amortized cost: & = ¢+ (d;—d; 1) =1+1=2

1101

Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) l,NC
P, — P =

R 1000

el el
S5, 5.1: Amortized Analysis TS.



Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®,
= actual cost: ¢; =1 1100
= potential change: ®; — ®; 1 =1 lINC -
= amortized cost: G = ¢+ (®; — ®;_1) =1+1=2
i i ( i i 1) 1101 i1
0111 1%

Increment with Carry-Over
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1

1000 i—1i

el el
5.1: Amortized Analysis TS. 15




Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i ( i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

"C=C+ (P —Piq)=

el el
5.1: Amortized Analysis TS. 15




Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i ( i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

- a:Ci+(¢j—d>i_1):1+X_X+1

el el
5.1: Amortized Analysis TS. 15




Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i ( i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

L] a:Cj+(¢j—¢i_1):1+X—X—|—1 =2

el el
5.1: Amortized Analysis TS. 15




Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over o,
1100 '
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -

amortized cost: ¢ = ¢+ (®; —Pi_1)=1+1=2
i /+(/ 11) + 1101 i1

SESAS)
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC@ \
DG 1000
e AP
cG=Ct+ (P —b ) =1+x—x+1=2 5 e

el el
5.1: Amortized Analysis TS. 15



Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over o,
1100 '
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -

amortized cost: ¢ = ¢+ (®; —Pi_1)=1+1=2
i /+(/ 11) + 1101 i1

SESAS)
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC@ \
DG 1000
e AP
cG=Ct+ (P —b ) =1+x—x+1=2 5 e

el el
5.1: Amortized Analysis TS. 15



Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®,
= actual cost: ¢; =1 1100
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = ¢+ (P, — ;1) =14+1=2
i /+( i i 1) + 110 1 i1
( Amortized Cost =2 = T(n) < 2n ) P
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC @ \
DA 1000
® A
cG=Ct+ (P —b ) =1+x—x+1=2 5 e

5.1: Amortized Analysis TS. 15



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ;/
= Determine an absolute upper bound T(n)

o
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Summary

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

every operation has amortized cost @

Potential Method

» use savings from cheap operations to
compensate for expensive ones

= operations may have different amortized cost
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T
= every operation has amortized cost @ (n) D:D:D:I
[ Full power of this method will become clear later! j T(n) Dj:l]:l]

Potential Method \ .
= use savings from cheap operations to credit

compensate for expensive ones /\,/
= operations may have different amortized cost i

o
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Next Lecture: Fibonacci Heap

Operation Binomial heap
worst-case cost
MAKE-HEAP o)

INSERT O(log n)
MINIMUM O(log n)
EXTRACT-MIN O(log n)
UNION O(log n)
DECREASE-KEY O(log n)
DELETE O(log n)

55, 5.1: Amortized Analysis
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Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP 0(1) 0(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)
/

Crucial for many applications including
shortest paths and minimum spanning trees!

5, 5.1: Amortized Analysis TS. 17



