

5.1: Amortized Analysis

Frank Stajano
Thomas Sauerwald

Use of Amortized Analysis

Amortized Analysis

Use of Amortized Analysis

Amortized Analysis

next week

Fibonacci Heaps

Use of Amortized Analysis

Amortized Analysis

next week

Fibonacci Heaps
\approx two weeks

Finding Shortest Paths

Motivating Example: Stack

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

```
0: MULTIPOP (S,k)
1: while not S.empty() and k > 0
2: POP (S)
3: k = k - 1
```


Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

A new Analysis Tool: Amortized Analysis

Amortized Analysis

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations

A new Analysis Tool: Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

- analyse a sequence of operations

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small

This is not average case analysis!

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

Aggregate Analysis

- Determine an upper bound $T(n)$ for the total cost of any sequence of n operations
- amortized cost of each operation is the average $\frac{T(n)}{n}$

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

Aggregate Analysis

- Determine an upper bound $T(n)$ for the total cost of any sequence of n operations
- amortized cost of each operation is the average $\frac{T(n)}{n}$

Even though operations may be of different types/costs

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$\operatorname{MULTIPOP}(k)$ contributes $\min \{k,|S|\}$ to $T_{\text {POP }}(n)$

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n) \leq 2 \cdot T_{P U S H}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n) \leq 2 \cdot T_{P U S H}(n) \leq 2 \cdot n .
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n) \leq 2 \cdot T_{P U S H}(n) \leq 2 \cdot n .
$$

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$

Second Technique: Potential Method

Second Technique: Potential Method

Potential Method

- allow different amortized costs
\rightsquigarrow store (fictitious) credit in the data structure to cover up for expensive operations

Second Technique: Potential Method

Potential Method

- allow different amortized costs
\rightsquigarrow store (fictitious) credit in the data structure to cover up for expensive operations

Potential of a data structure can be also thought of as

- amount of potential energy stored
- distance from an ideal state

Second Technique: Potential Method

Potential Method

- allow different amortized costs
\rightsquigarrow store (fictitious) credit in the data structure to cover up for expensive operations

Potential of a data structure can be also thought of as

- amount of potential energy stored
- distance from an ideal state

Stack as a coin-operated machine (p. 83)

You must insert a coin To operate the MACHINE FOR EACH SINGLE PUSH OR POP

if You Pop
THE ITEN, YOU
GET TO REEP THE COIN But if you Push An 12En, You nust PROVIDE THE COIN

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Potential Method in Detail

- c_{i} is the actual cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i

$$
c_{i}<\widehat{c}_{i}, c_{i}=\widehat{c}_{i} \text { or }
$$

- \widehat{c}_{i} is the amortized cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

Function that maps states of the data structure to some value

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

- PUSH(): $c_{i}=1$
- POP: $c_{i}=1$
- PUSH(): $\Phi_{i}-\Phi_{i-1}=1$
- POP: $\Phi_{i}-\Phi_{i-1}=-1$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}-\Phi_{0}
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}
$$

If $\Phi_{n} \geq 0$ for all n, sum of amortized costs is an upper bound for the sum of actual costs!

Stack: Analysis via Potential Method

$$
\Phi_{i}=
$$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after ith operation (= \# coins)

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after ith operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after i th operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after i th operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after i th operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after i th operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2 n$

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after ith operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2 n$

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

INC

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
$A[3] A[2] A[1] A[0]$
1
1 0

INC

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

INC \downarrow
$A[3] A[2] A[1] A[0]$
$1 \boxed{1} 0$
12

Second Example: Binary Counter

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: ??

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

INC \downarrow
$A[3] A[2] A[1] A[0]$
$1 \boxed{1} 0$
12

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

INC \downarrow
$A[3] A[2] A[1] A[0]$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$

What is the total cost of a sequence of n INC operations?

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$

$$
\begin{aligned}
& A[3] A[2] A[1] A[0] \\
& 10 \\
& 10
\end{aligned} 1
$$

$A[3] A[2] A[1] A[0]$
\square

Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$

$$
\begin{aligned}
& A[3] A[2] A[1] A[0] \\
& 10 \\
& 10
\end{aligned} 101511 .
$$

$A[3] A[2] A[1] A[0]$

1	1	0
0	12	

What is the total cost of a sequence of n INC operations?
Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: Z延 number of flips (smallest index of a zero)

$$
\begin{aligned}
& A[3] A[2] A[1] A[0] \\
& 100 \\
& 1
\end{aligned} 101 \quad 11 .
$$

INC
$A[3] A[2] A[1] A[0]$

$1 \boxed{1}$	0	0
12		

What is the total cost of a sequence of n INC operations?
Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Counter Value	A[7]	A[6]	A[5]	A[4]	$A[3]$	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

| Counter
 Value | $A[3]$ | $A[2]$ | $A[1]$ | $A[0]$ | Total
 Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 3 |
| 3 | 0 | 0 | 1 | 1 | 4 |
| 4 | 0 | 1 | 0 | 0 | 7 |
| 5 | 0 | 1 | 0 | 1 | 8 |
| 6 | 0 | 1 | 1 | 0 | 10 |
| 7 | 0 | 1 | 1 | 1 | 11 |

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right)
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right) \leq 2 \cdot n .
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$.

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right) \leq 2 \cdot n .
$$

$\Phi_{i}=$
$\Phi_{i}=\#$ ones in the binary representation of i

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=\#$ ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$

1100

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=$

Binary Counter: Analysis via Potential Function

$$
\left.\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark\right)
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$

Binary Counter: Analysis via Potential Function

$$
\frac{\Phi_{0}=0 \checkmark \quad \phi_{i} \geq 0 \checkmark}{\Phi_{i}}=\text { \# ones in the binary representation of } i
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}^{\Phi_{0}=0 \checkmark} \Phi_{i}=\text { \# ones in the binary representation of } i
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}^{\Phi_{0}=0 \checkmark} \Phi_{i}=\text { \# ones in the binary representation of } i
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$

0111

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$

$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ INC

1000

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\begin{aligned}
& \Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark \\
& \Phi_{i}=\text { \# ones in the binary representation of } i
\end{aligned}
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\begin{aligned}
& \Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark \\
& \Phi_{i}=\text { \# ones in the binary representation of } i
\end{aligned}
$$

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $=2 \Rightarrow T(n) \leq 2 n$
Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!
E.g. by bounding the number of expensive operations

Aggregate Analysis

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost

credit

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Full power of this method will become clear later!

Potential Method

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost
 credit

Operation	Binomial heap worst-case cost
MAKE-HEAP	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$
MINIMUM	$\mathcal{O}(\log n)$
EXTRACT-MIN	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(\log n)$
DECREASE-KEY	$\mathcal{O}(\log n)$
DELETE	$\mathcal{O}(\log n)$

Next Lecture: Fibonacci Heap

Operation	Binomial heap worst-case cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Crucial for many applications including shortest paths and minimum spanning trees!

