- [el o] [fe] [Fe] [19]
N8O \98 7 N8O 1\ B _~ \ 60 s \EEEs

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

credit
3 / \/
2 \
1
¢ t + + t + + i
0 1 2 3 4 5 6

5.1: Amortized Analysis

Frank Stajano Thomas Sauerwald

Lent 2016

Use of Amortized Analysis

__ [el ol Fe 9 [

N ERECEE R E

oS _1 \EEgk

PUSH(T) PUSH(B) PUSH(X) POP

PUSH(D) MULTIPOP(3)

(Amortized Analysis)

el el
S 5.1: Amortized Analysis

TS.

Use of Amortized Analysis

-
N ERECEE R EIEACEE RN GCED
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

Amortized Analysis

next week

X ()
ORO) @ @ (Fibonacci Heaps)
®® @ ®

s
E:l,,' 5.1: Amortized Analysis TS. 2

Use of Amortized Analysis

__ [el ol Fe 9 [

N ERECEE R EIEACEE RN GCED
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

Amortized Analysis

next week

Fibonacci Heaps

~ two weeks

(Finding Shortest Paths)

el el
E:',,' 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

s,‘g a 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations
= PUSH (S, x)

s,‘ﬂ a 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations
= PUSH (S, x)
= pushes object x onto stack S
\/
PUSH(S,X)

5
S 5.1: Amortized Analysis TS. 3

Motivating Example: Stack

Stack Operations

= PUSH (S, x) m

= pushes object x onto stack S T T

= total cost of 1 \."
\/

PUSH(S,X)

5.1: Amortized Analysis TS. 3

Motivating Example: Stack

Stack Operations
= PUSH (S, x) m

= pushes object x onto stack S j_,

= total cost of 1

« POP (S) N~ "

PUSH(S,X)

5
S 5.1: Amortized Analysis TS. 3

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)
= pops the top of (a non-empty) stack S

[X]
NEip

N

PUSH(S,X)

[X]
I

POP(S)

g
B

=[x
g

el el
E:I,,' 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

[X]
NEip

N

PUSH(S,X)

[X]
I

POP(S)

g
B

=[x
g

el el
E:I,,' 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)

[X]
NEip

N

PUSH(S,X)

[X]
I

POP(S)

g
B

=[x
g

el el
E:',,' 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)
= pops the k top objects (S non-empty)

B
BE

N

PUSH(S,X)

BE
B

POP(S)

BEE

|

N

MULTIPOP(S,4)

el el
%‘.’ 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

B
BE

N

PUSH(S,X)

BE
B

POP(S)

BEE

|

N

MULTIPOP(S 4)

el el
%‘.‘ 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k} N

1: while not S.empty() and k > 0

2: POP (S)

(0: MULTIPOP (S, k)
L3: k=k-1

B
BE

N

PUSH(S,X)

BE
B

POP(S)

BEE

|

N

MULTIPOP(S,4)

o
S, 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

B
BE

N

PUSH(S,X)

BE
B

POP(S)

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

BEE

|

N

MULTIPOP(S,4)

o
S, 5.1: Amortized Analysis

TS. 3

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

[X]
NEip

N

PUSH(S,X)

[X]
I

g
B

=[x
g

POP(S)

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

Simple Worst-Case Bound (stack is initially empty):

= largest cost of an operation: n
= cost is at most n- n= n?

BEE

N— —

N

MULTIPOP(S,4)

¥

o
% :‘n 5.1: Amortized Analysis

¥

TS. 3

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

[X]
NEip

N

PUSH(S,X)

[X]
I

g
B

=[x
g

POP(S)

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

BEE

Simple Worst-Case Bound (stack is initially empty): —
= largest cost of an operation: n N
= cost is at most n- n = n? (correct, but not tight!) MULTIPOP(S,4)

¥

o
% :‘n 5.1: Amortized Analysis

¥

TS. 3

Sequence of Stack Operations

el el
Sl 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

PUSH(T)

el el
Sl 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

el el
S, 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

NN P
N

PUSH(T) PUSH(B)

5.1: Amortized Analysis

TS.

Sequence of Stack Operations

— I 7
NN

PUSH(T) PUSH(B)

5.1: Amortized Analysis TS.

Sequence of Stack Operations

PUSH(T) PUSH(B) PUSH(X)

5.1: Amortized Analysis

TS.

Sequence of Stack Operations

o
S5, 5.1: Amortized Analysis TS.

Sequence of Stack Operations

- I [L
NN NN

PUSH(T) PUSH(B) PUSH(X) PO

o
S5, 5.1: Amortized Analysis TS.

Sequence of Stack Operations

NEREDRRN 4 PN PR il PN 51

//\/\/

PUSH(T) PUSH(B) PUSH(X) PO

5, 5.1: Amortized Analysis TS.

Sequence of Stack Operations

— [B 5 AL
S e e S e

PUSH(T) PUSH(B) PUSH(X POP PUSH(D)

5, 5.1: Amortized Analysis TS.

Sequence of Stack Operations

[x] [0]
NEREDERN i DN 5 PN 5 PN i PR 6 B
S e e S e

PUSH(T) PUSH(B) PUSH(X POP PUSH(D)

5, 5.1: Amortized Analysis TS.

Sequence of Stack Operations

[x] [0]
NEREDERN i DN 5 PN 5 PN i PR 6 B
S e e S e e

PUSH(T) PUSH(B) PUSH(X POP PUSH(D) MULTIPOP(3)

5, 5.1: Amortized Analysis TS. 4

Sequence of Stack Operations

[x] 0]
NEREDRRN 3 RN 1 PN il RN £ PN 1

//’_/\/\/\/

PUSH(T) PUSH(B) PUSH(X POP PUSH(D) MULTIPOP(3)

5, 5.1: Amortized Analysis TS. 4

A new Analysis Tool: Amortized Analysis

Amortized Analysis

el - el
%‘.’ 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

el - el
%‘.’ 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

[Data structure operations (Heap, Stack, Queue etc.)]

Amortized Analysis V//
= analyse a sequence of operations

S
5, 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

el - el
%‘.’ 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis
= analyse a sequence of operations

= show that average cost of an operation is small
\
This is not average case analysis!]
J

S
5, 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method

el - el
5, 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques

= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @

ol
E:',,' 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques

= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations
= amortized cost of each operation is the average ()

n

/]
/!

[Even though operations may be of different types/costs j

el - el
%‘.‘ 5.1: Amortized Analysis TS.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

0]
I
N

MULTIPOP(3)

55, 5.1: Amortized Analysis TS.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

0]
I
N

MULTIPOP(3)

55, 5.1: Amortized Analysis TS.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' Every item that is POPPED
had to be PUSHED earlier!
N—
N S

MULTIPOP(3)

ey 5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] X Every item that is POPPED]
had to be PUSHED earlier!
-
\/ \/

PUSH(B) MULTIPOP(3)

ey 5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] A Every item that is POPPED]
had to be PUSHED earlier!
-
\/ \/

PUSH(B) MULTIPOP(3)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ Every item that is POPPED

. had to be PUSHED earlier!
ERR AR =

\l/ N—

\/ \/
PUSH(B) MULTIPOP(3)
T(n) <

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] A Every item that is POPPED]
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TpusH(N)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' Every item that is POPPED

had to be PUSHED earlier!
ERR AR =

N—

N N S
PUSH(B) MULTIPOP(3)
MULTIPOP(k) contributes min{k, |S|} to Tpop(n)]
V/d
T(n) < Tpop(n) + TpusH(N)
5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] A Every item that is POPPED]
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TpusH(n) < 2 - Tpysw(n)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] A Every item that is POPPED]
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TeysH(n) < 2- TpysH(n) < 2 n.

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

] 2 Every item that is POPPED]
had to be PUSHED earlier!

-

_/ _/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + Teusr(n) < 2 Tpysp(n) < 2 n.
1
Aggregate Analysis: The amortized cost per operation is) o
5,

n —

&3

5.1: Amortized Analysis TS. 6

Second Technique: Potential Method

Potential Method

el - el
Sl 5.1: Amortized Analysis

TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure
to cover up for expensive operations

el - el
E:',,' 5.1: Amortized Analysis TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

el - el
%‘.’ 5.1: Amortized Analysis TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

s
E:',,' 5.1: Amortized Analysis TS.

Stack as a coin-operated machine (p. 83)

You fu ST O}

INSERT & OIN 1 EACH e on
To OPERLATE THE

MACHINE FoR N L“fnsbmc:” :ﬁs
ey \ CDIN TAREY To (T
PUSH oft Pob

I+ ‘tou Pof
TAg en, Yov
GET TO keed TE W

BT 1f tou Pusk AN
1N, Yov AUST

S e

J0a0G

5.1: Amortized Analysis TS.

Stack and Coins

N— 7
credit
3 4
2 +
1 +
0 1 2 3 4 5 6
TS.

S
o B 5.1: Amortized Analysis

Stack and Coins

N— 7
Nge
PUSH(T)
credit
3 4
2 +
1 +
0 1 2 3 4 5 6
TS.

S
o B 5.1: Amortized Analysis

Stack and Coins

Nge
PUSH(T)
credit
3 4
2 +
1 +
0 1 2 3 4 5 6
TS.

S
o B 5.1: Amortized Analysis

Stack and Coins

. el

oS N\ oe ~
PUSH(T) PUSH(B)
credit
3 4
2 +
1 +
0 1 2 3 4 5 6
TS.

S
o B 5.1: Amortized Analysis

Stack and Coins

Bo
. , 1Te| 1Tl

oS N\ oe ~

PUSH(T) PUSH(B)

credit
3 4
2 4
1 4
0 1 2 3 4 5 6

TS.

5.1: Amortized Analysis

Stack and Coins

Bo
N o Te ([T8]
oo 7\ oo 1\ oe ~

PUSH(T) PUSH(B) PUSH(X)

credit

o
-
N
w
N+

5.1: Amortized Analysis TS.

Stack and Coins

X9

Bo

Bo

To

\ / \ y

\Tel

\Tel

oo 7\ oo~ \oe ~

PUSH(T)

PUSH(B) PUSH(X)

credit
3 4
2 4
1 4
0 1 2 3 4 5 6
: TS.

5.1: Amortized Analysis

Stack and Coins

XS
Bo Bo
N , \Te, \Te,

PUSH(T) PUSH(B) PUSH()

POP

credit
3 4
2 4
1 4
0 1 2 3 4 5 6
- TS.

5.1: Amortized Analysis

Stack and Coins

X
Bo Bo Bo
. , 1Tl 1Tl 1T
\/ \/ e .
PUSH(T) PUSH(B) PUSH(X) POP
credit
3 4
i \
1 4
0 2 3 4 5 6
- TS.

5.1: Amortized Analysis

Stack and Coins

X
Bo Bo Bo
. , \Te, \Te, 1T
PUSH(T) PUSH(B) PUSH() POP
credit
3 4
i \
1 4
0 2 3 4 5 6
- TS.

5.1: Amortized Analysis

Stack and Coins

XS
Bo Bo Bo
. , 1T [Te| [T8|

//_/\/\/

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D)
credit
3T \/
2 4
1 4
0 2 3 4 5 6
TS.

5.1: Amortized Analysis

Stack and Coins

X9 Do
Bo Bo Bo BoS
\ / \Tez \Te, \Te, \Te,

//\/\/\/

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D)
credit

3T \/

2 4

1 4

0 2 3 4 5 6

5.1: Amortized Analysis

Stack and Coins

X9 Do
Bo Bo Bo BoS
\ / \Tez \Te, \Te, \Te

//_/\/\/@

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

credit

| 7

5.1: Amortized Analysis TS.

Stack and Coins

X9 De
Bo Bo Bo BoS
1T 1T 1T Te

\ / y

//_/\/\/@

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)
credit

3 4

2 4

1 4

0 1 2 3 4 5 6

55, 5.1: Amortized Analysis TS. 9

Stack and Coins

X9 De
Bo Bo Bo BoS
1T 1T 1T Te

\ / y

//_/\/\/\9?9'

PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)
credit

3 4

2 4

1 4

0 1 2 3 4 5 6

55, 5.1: Amortized Analysis TS. 9

Stack and Coins

XS Do
Bo Bo Bo BoS
\ / \Te, \Te, \Te, \Te, \Te, N

NG R R L CCERGEDY
PUSH(T) PUSH(B) PUSH(X) \POP PUSH(D) MULTIPOP(3)

[Every operation costs at most two coins! j

credit
3 4
2 4
1 4
0 1 2 3 4 5 6

55, 5.1: Amortized Analysis TS. 9

Potential Method in Detail

= ¢ is the actual cost of operation i

u,‘ﬂ.,, 5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

3

Cci < Ej, Ci = E‘,‘ or
¢ > ¢; are all possible!

J

el - el
Sl 5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

= &; is the potential stored after operation i (¢o = 0)
~

[Function that maps states of the data structure to some value

"n"n
5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

;‘,‘ﬂ., 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

E,' =Ci + ((b,' — ¢,'_1)
i -

« PUSH(): ¢ = 1 « PUSH(): & — &1 = 1
= POP: ¢ =1 = POP: &; — &, = —1

J

5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

;‘,‘ﬂ., 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n
Za = Z(CH—‘D/ —®iq) =
p

i=1

u,‘ﬂ.,, 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n n
ZE,-: Z(Ci+¢i—¢if1): ZC/-I—‘Dn—‘Do
i = i=

5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

Ci=¢Ci+(®— i)

n n n
ZE,- = Z(Ci+¢i—¢if1) = ZC/+¢n
i=1 i=1 i=1

5.1: Amortized Analysis TS. 10

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= &; is the potential stored after operation i (¢o = 0)

E,' =Cj + ((b,' = ¢,'_1)

n

n n
Sa=Y (a+oi-di)= G+,
i=1

i=1 i=1

If &, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

ol
E:',,' 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

EE

s,‘ﬂ % 5.1: Amortized Analysis

TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
B O
o 0O
I
~—

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH i
= actual cost: ¢; = 1 O .
. O O
= potential change: ¢, — ¢,y = 0 o
NEPENER
~— =1

PUSH

5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH ®;
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_¢ =1 o O
NEPENE
N/ i—1i

PUSH

5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
. o O
= potential change: ®; — ®;_¢ =1 o O
i a I
= amortized cost: ¢; =
~—

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
. o O
= potential change: ®; — ®;_¢ =1 o O
= amortized cost: G = ¢+ (®; — ®;_1) = Ko
16 =G+ (i 1—1) = ~_

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH o,
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_¢ =1 o O
i = I
= amortized cost: ¢;=cCi+ (¢i—di_) =1+1=2 <A PR

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH .
= actual cost: ¢ = 1 O
. O 0
= potential change: ®; — ®;_¢ =1 o O
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 Lo
Ui =4 i i—1) = = ~_
o PUSH

POP \

Sl
S5, 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(

®; = # objects in the stack after ith operation (= # coins)

PUSH

r

actual cost: ¢; = 1

potential change: ®; — ®;_1 =1
amortized cost: G = ¢+ (¢ —di_1) =1+1=2

POP

ci=1

o
(Fooo

PUSH

oo
(tm

®
e

i—1 i

5.1: Amortized Analysis

TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
~/ PUSH
POP Y i
= C= 1 .
O
"0 -0 = g o
I O
~—7 =1
~/ POP

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
~/ PUSH
POP Y i
mci=1
O
o — 1 0 o ™~
\D-' \D-' +—
~_ i—1
~/ POP

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
~/ PUSH
POP Y i
=ci =1
O
Be | =,
*C=Gi+ (- Piyg)= ~ it
~/ POP

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
~/ PUSH
POP Y i
mci=1
O
Bel -
s C=C+(Pi—Pi1)=1-1= ~_ N
~/ POP

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - H e
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Be | =,
'ain+(¢i_¢if1):1_1:0 ~_ AT

(Stack is non-empty!j ’ FoP

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Bel -
s C=C+(Pi—Pi1)=1-1= ~_ N
\ ~/ POP
——— MULTIPOP(k) <

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - H e
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Bel -
s C=C+(Pi—Pi_)=1-1= ~_ AT
\ 7 POP
—— MULTIPOP(K) N\ O
= G = min{k,|S]} H
I O
~—
MULTIPOP(3)

\.

v
o
XA) 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; =1 O H -~
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ o PUSH
- POP Y i
mci=1
0
o — 1 0 o ™~
\D-' \D-' +—

" C=C+ (P - 4)=1-1=

T i—1i
\ 7 POP
;
~—— MULTIPOP(k) N 0 o
= ¢ = min{k,|SI} H
= ¢,‘ — ¢/_1 = \D., \D_,
~— =1
MULTIPOP(3)

\.

v
o
XA) 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - H e
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Be | =,
'aICf+(¢i—¢i—1):1_1: ~_T ’ i—1 i
\ ~/ POP
o;
—— MULTIPOP(K) N\ O
= o =min{k, ||} g \
" & — ®;_; = —min{k,|S|} Lo
~_ i—1i
MULTIPOP(3)

\.

v
o
XA) 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - H e
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Bal .
'aICf+(¢i—¢i—1):1_1: ~_T ’ i—1 i
\ 7 POP
;
—— MULTIPOP(K) N O
= o =min{k, ||} g \
" & — ®;_; = —min{k,|S|} Lo
"G =0+ (P - i) = S~ =i
MULTIPOP(3)

\.

v
o
XA) 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - H e
= potential change: ®; — ®;_; = 1 E H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
\ ~/ PUSH
- POP Y i
mci=1
O
Bal .
'aICf+(¢i—¢i—1):1_1: ~_T ’ i—1 i
\ 7 POP
;
—— MULTIPOP(K) N O
= o =min{k, ||} g \
" & — ®;_; = —min{k,|S|} Lo
" G =i+ (& — ®_1) = min{k,|S|} — min{k, S|} = 0 ~_ -
L) MULTIPOP(3)

o
5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
- PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
. X PUSH
Amortized Cost <2 = T(n) <2n
—— POP i
mci=1
O
Bel -
'aZCf+(¢i—¢i—1):1_1:0 ~_T i—1 i
\ ~/ POP
;
—— MULTIPOP(K) N O
= 6 = min{k,|S]} 0 \
" & — ®;_; = —min{k,|S|} Lo
" 6=+ (9 — ®_1) =minfk, |S]} —min{k, S} =0 | S -
) MULTIPOP(3)

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins) J
p PUSH o
= actual cost: ¢; =1 - B e
= potential change: ®; — ®;_¢ =1 o O
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ‘D"\f" —I_|1—;—>
__ poP Amortized Cost < 2 = T(n)<2n e N
"o=T (n/2 PUSH, /2 POP = T(n) < n) O ~
" d—d =1 — O o
"C=C+(P—®4)=1-1=0 J ‘D"\j‘ﬂ" —
. POP
— MULTIPOP(K) - i
= ¢; = min{k,|S|} B \
" ®; — ;1 = —min{k, |S|} NE RN
= G =ci+ (®;— di_y) = min{k,|S|} — min{k,|S|} =0 ~— =1

MULTIPOP(3)

5.1: Amortized Analysis TS. 11

Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1

u,‘ﬂ.,, 5.1: Amortized Analysis

TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1

A[3]A[2] A[1] A[0]

I CIREIA RN,

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

A[3]A[2] A[1] A[0]

I CIREIA RN,

INC

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3]A[2] A[1] A[0]

ERCINETAEI Y

INC

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

= increases the counter by one

A[3]A[2] A[1] A[0]

ERCINETAEI Y

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3]A[2] A[1] A[0]

ERCINETAEI Y

>

: INC(A)

:i=0

: while i <k and A[i]== INC
A[i] =0

i=i+1

: A[i] =1 A[3]A[2] A[1] A[0]

(][] [o] 12

s WNKFO

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: 7?7

/)
L

s WNKFO

: INC(A)

:i=0

: while i <k and A[i]==
A[i] =0

i=i+1

: Ali] =1

A[3]A[2] A[1] A[0]

ERCINETAEI Y

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

5.1: Amortized Analysis

TS.

Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

= increases the counter by one
= total cost: < k

A[3]A[2] A[1] A[0]

ERCINETAEI Y

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3]A[2] A[1] A[0]

= total cost: < k
] [o] 1] [A] 11

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

(What is the total cost of a sequence of n INC operations?)

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3]A[2] A[1] A[0]

= total cost: < k
] [o] 1] [A] 11

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

(What is the total cost of a sequence of n INC operations?)

0o

Simple Worst-Case Bound:

= largest cost of an operation: k
= costis at most n- k

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3]A[2] A[1] A[0]

= total cost: < k
] [o] 1] [A] 11

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

(What is the total cost of a sequence of n INC operations?)

0o

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: 3K A[B]A[2] A[1]A[0]

number of flips (smallest index of a zero) @ 11

INC

A[3] A[l2] A[1] A[0]

(][] [o] 12

(What is the total cost of a sequence of n INC operations?)

0o

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

5.1: Amortized Analysis TS. 12

Incrementing a Binary Counter

Total

Counterl 71) Als] AW ARl A2l ANl Al | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Total

Counterl 71) Als] AW ARl A2l ANl Al | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Total

Counterl 71) Als] AW ARl A2l ANl Al | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Total

Counterl 71) Als] AW ARl A2l ANl Al | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter| yioy Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter| yioy Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| ji2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| ji2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counterl 1 Al AIB| Al ARl ARl Af AP | @
Value Cost
0 0o o o o0 ©0 o o0 o0 0
1 o o o o 0 o0 0o 1 1
2 o 0o o o o o 1 0 3
3 o o o o o 0 1 1 4
4 o o o o o0 1 0 0 7
5 o o o o 0o 1 o 1 8
6 o o o o o 1 1 0 10

o
o B 5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counterl o1 Al AIB] A4l ARl ARl A[AP | O®
Value Cost
0 o o o o0 ©0 o o0 o 0
o o o o 0 o0 0o 1 1
2 o o o o 0 o 1 0 3
3 o o o o o 0 1 1 4
4 o 0o o o 0 1 0 0 7
5 o o o o 0o 1 0o 1 8
6 o o o 0 0 1 1 0 10
7 o o o o o0 1 1 1 11

o
o B 5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counterl o1 Al AIB] A4l ARl ARl A[AP | O®
Value Cost
0 o o o o0 ©0 o o0 o 0
o o o o 0 o0 0o 1 1
2 o o o o 0 o 1 0 3
3 o o o o o 0 1 1 4
4 o 0o o o 0 1 0 0 7
5 o o o o 0o 1 0o 1 8
6 o o o 0 0 1 1 0 10
7 o o o o o 1 11 11

o
o B 5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al A | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl A2l Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl A2l Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l AlBl ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl A2l Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| yi2y Ale] Als] A4l AlBl A2l Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l A8l ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Counter| 2y Ale] Als] A4l A8l ARl Al Al | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25
26

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25
26

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25
26
31

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23
25
26
31

Al6] A[S] A4] ARl A2l A1l A0]

Al7]

Counter
Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

o
s 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A A2l Al :A[O]: Total
Value . 1| Cost
0 o 0o o0 ;o 0
1 0 0 0
2 0o o 110 8
3 0 0 11 4
4 0 1 0o 10, 7
5 0o 1 0 1! 8
6 o 1 1 .0 10
7 0 1 1 1

T

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A3 A2 :A[1]: A[0] Total
Value . I Cost
0 0o 0 ;0 0 0
1 0 0 10 1
2 0 0 "1, 3
3 0 0 Do 4
4 0 1 10, 0 7
5 0 1 10! 1 8
6 o 1 .1' 0 10
7 0 H W 11
| E—

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Al3) 'rA[2]: All] A[O] Total
Value . I Cost
0 0o ;o 0 0 0
1 0 10 0 1 1
2 0 10 1 0 3
3 0 1o Do 1 4
4 0 1, 0 0 7
5 0o 1! 0 1 8
6 0o .1 1 0 10
7 0 1! 1 1 11

| Ep————

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter :A[S] ! A2 A1) A[O] Total
Value |, I Cost
o [[or 0o o 0 0
1 por 0 0 1
2 o, o0 1 0 3
3 10, 0 1 1 4
4 ol 1 o 0 7
5 o' o1 0o 1 8
6 o' 1 1 0 10
7 oA 1 1 11
| E——

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

o
S5, 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

el - el
E:',,' 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

T(n) < g EJ

el - el
E:',,' 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments

= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

el - el
S 5.1: Amortized Analysis

TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

k—

“In n 1 1 1
< = — = —
—ZM 2 (Tatat +2k—1)

i=0 i=0

-

el - el
E:',,' 5.1: Amortized Analysis TS. 14

Incrementing a Binary Counter: Aggregate Analysis

= Bit A[/] is only flipped every 2 increments

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

SLE

i=0 i=0

k—

-

n
2i

ro(

1

o+t

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[1] is flipped | 7| times

[Aggregate Analysis: The amortized cost per operation is

™ <2

n —

k—1

UOEDS EJ

1)
Szozazn.o
j=!

]
tot o+t

2

1
2k—1

) <2-n.

o
S, 5.1: Amortized Analysis

TS.

Binary Counter: Analysis via Potential Function

®;

5.1: Amortized Analysis

TS.

Binary Counter: Analysis via Potential Function

[®; = # ones in the binary representation of /

5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over

el el
E:',,' 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over

= actual cost: ¢; = 1 1100

el el
E:',,' 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; =1

1

1

00

me

1101

5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

v : . . ;
®; = # ones in the binary representation of i]
Increment without Carry-Over o,
o 1100 ‘
= actual cost: ¢; = 1
= potential change: ¢; — ®;_y = lINC °
1101 i1

el el
%',,' 5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |

v : . . ;
®; = # ones in the binary representation of i]
Increment without Carry-Over o,
o 1100 ‘
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -
1101 -1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over

= actual cost: ¢ = 1 1100
= potential change: ®; — ¢,y =1 lINC
= amortized cost: ¢; =

1101

b;

el el
%‘.‘ 5.1: Amortized Analysis TS.

-

i1

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; =1

= potential change: ®; — ¢,y =1
= amortized cost: ¢ = ¢+ (P — d;_1) =

1100

me

1101

b;

el el
%‘.‘ 5.1: Amortized Analysis TS.

-

i1

Binary Counter: Analysis via Potential Function

D =0v & >0 |

14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; =1

= potential change: ®; — ¢,y =1
= amortized cost: ¢ = G+ (®; — D) =1+1=2

1100

me

1101

b;

el el
%‘.’ 5.1: Amortized Analysis TS.

-

i1

Binary Counter: Analysis via Potential Function

(74
®; = # ones in the binary representation of i]
Increment without Carry-Over o,
e 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -
= amortized cost: ¢ = G+ (®; — D) =1+1=2

1101 i—1i

r Increment with Carry-Over

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
174
®; = # ones in the binary representation of i]
Increment without Carry-Over ®,
= actual cost: ¢; =1 1100
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = ¢+ (P, — ;1) =14+1=2
i i +(i i 1) + 110 1 i1
0111

Increment with Carry-Over
¢ = x + 1, (x lowest index of a zero)

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
1100

= actual cost: ¢; = 1
= potential change: ®; — ¢,y =1 lINC
» amortized cost: G = ¢+ (®; — ®;_1) =141 =2 e

Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) l,NC
1000

"n"n
5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1 1100
= potential change: ¢; — ¢,y =1 lINC
= amortized cost: & = ¢+ (d;—d; 1) =1+1=2

1101

Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) l,NC
P, — P =

R 1000

el el
S5, 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174
®; = # ones in the binary representation of i]
Increment without Carry-Over ®,
= actual cost: ¢; =1 1100
= potential change: ®; — ®; 1 =1 lINC -
= amortized cost: G = ¢+ (®; — ®;_1) =1+1=2
i i (i i 1) 1101 i1
0111 1%

Increment with Carry-Over
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1

1000 i—1i

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i (i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

"C=C+ (P —Piq)=

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i (i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

- a:Ci+(¢j—d>i_1):1+X_X+1

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over ®,
1

= actual cost: ¢; = 1 11000
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = G+ (®; — D) =1+1=2
i i (i i 1) 11 0 1 i1
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC \
"0 —d_ g =—x+1
1000 i—1

L] a:Cj+(¢j—¢i_1):1+X—X—|—1 =2

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over o,
1100 '
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -

amortized cost: ¢ = ¢+ (®; —Pi_1)=1+1=2
i /+(/ 11) + 1101 i1

SESAS)
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC@ \
DG 1000
e AP
cG=Ct+ (P —b) =1+x—x+1=2 5 e

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D =0v & >0 |
14 : . . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over o,
1100 '
= actual cost: ¢; = 1
= potential change: ®; — ®; 1 =1 lINC -

amortized cost: ¢ = ¢+ (®; —Pi_1)=1+1=2
i /+(/ 11) + 1101 i1

SESAS)
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC@ \
DG 1000
e AP
cG=Ct+ (P —b) =1+x—x+1=2 5 e

el el
5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174
®; = # ones in the binary representation of i]
Increment without Carry-Over ®,
= actual cost: ¢; =1 1100
= potential change: ®; — ®;_ = 1 l,NC e
= amortized cost: ¢ = ¢+ (P, — ;1) =14+1=2
i /+(i i 1) + 110 1 i1
(Amortized Cost =2 = T(n) < 2n) P
®;
Increment with Carry-Over 0111
= ¢; = x + 1, (x lowest index of a zero) lINC @ \
DA 1000
® A
cG=Ct+ (P —b) =1+x—x+1=2 5 e

5.1: Amortized Analysis TS. 15

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

el - el
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis

el - el
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

o
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ;/
= Determine an absolute upper bound T(n)

o
S5, 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

i ; T(n
= every operation has amortized cost @ () D:D:D:I

o
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

i ; T(n
= every operation has amortized cost @ () D:D:D:I

[— Potential Method

5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
i i T(n
= every operation has amortized cost @ (n) D:I:I:D:I

Potential Method

» use savings from cheap operations to
compensate for expensive ones

o
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
i i T(n
= every operation has amortized cost @ (n) D:I:I:D:I

Potential Method
» use savings from cheap operations to
compensate for expensive ones /_/'\,/

credit

o
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

every operation has amortized cost @

Potential Method

» use savings from cheap operations to
compensate for expensive ones

= operations may have different amortized cost

7 [TTTTT]
o) [T 11T

credit

ey

o
s 5.1: Amortized Analysis TS.

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T
= every operation has amortized cost @ (n) D:D:D:I
[Full power of this method will become clear later! j T(n) Dj:l]:l]

Potential Method \ .
= use savings from cheap operations to credit

compensate for expensive ones /\,/
= operations may have different amortized cost i

o
5.1: Amortized Analysis TS. 16

Next Lecture: Fibonacci Heap

Operation Binomial heap
worst-case cost
MAKE-HEAP o)

INSERT O(log n)
MINIMUM O(log n)
EXTRACT-MIN O(log n)
UNION O(log n)
DECREASE-KEY O(log n)
DELETE O(log n)

55, 5.1: Amortized Analysis

TS.

Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP 0(1) 0(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)
/

Crucial for many applications including
shortest paths and minimum spanning trees!

5, 5.1: Amortized Analysis TS. 17

