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Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S

total cost of 1
POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S

total cost of 1
MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2 (correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3



Sequence of Stack Operations
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A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs
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Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k ) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6
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Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state
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Stack as a coin-operated machine (p. 83)
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Stack and Coins
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Every operation costs at most two coins!
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Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!
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ci < ĉi , ci = ĉi or
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ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)
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ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1
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ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1
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ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)
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Stack: Analysis via Potential Method

Φi =

# objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n
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ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11



Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1
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amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1
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amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1
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ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11



Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1
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Second Example: Binary Counter

Array A[k − 1],A[k − 2], . . . ,A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12
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3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)
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Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0
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Incrementing a Binary Counter
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Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.
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Binary Counter: Analysis via Potential Function

Φi =

# ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n
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ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15



Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =
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amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1
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ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15



Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1
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Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit
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Next Lecture: Fibonacci Heap

Operation Binomial heap

Fibonacci heap

worst-case cost

amortized cost

MAKE-HEAP O(1)

O(1)

INSERT O(log n)

O(1)

MINIMUM O(log n)

O(1)

EXTRACT-MIN O(log n)

O(log n)

UNION O(log n)

O(1)

DECREASE-KEY O(log n)

O(1)

DELETE O(log n)

O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!
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