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Use of Amortized Analysis

—
NCEEERGCEEERECEY B 1\ 9SS _x \GEa)
PUSH(T) PUSH(B) PUSH(X)  POP  PUSH(D) MULTIPOP(3)

Amortized Analysis

next week

Fibonacci Heaps

~ two weeks

(Finding Shortest Paths)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
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PUSH(S,X)
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Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

~__

PUSH(S,X)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)
= pops the top of (a non-empty) stack S
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)
= pops the k top objects (S non-empty)

B
BB

N

PUSH(S,X)

BE
B

POP(S)

BEEE

|

N

MULTIPOP(S,4)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k} N

1: while not S.empty() and k > 0

2: POP (S)

(0: MULTIPOP (S, k)
tB: k=k-1
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

)
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

)

Simple Worst-Case Bound (stack is initially empty):

= |largest cost of an operation: n
= costis at most n-n=n?
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

)

Simple Worst-Case Bound (stack is initially empty):

= |largest cost of an operation: n

= cost is at most n- n = n? (correct, but not tight!)
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Sequence of Stack Operations
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Sequence of Stack Operations
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Sequence of Stack Operations
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Sequence of Stack Operations
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Sequence of Stack Operations
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Sequence of Stack Operations
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A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations
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A new Analysis Tool: Amortized Analysis

[ Data structure operations (Heap, Stack, Queue etc.) J

Amortized Analysis V//
= analyse a sequence of operations

5 [
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A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small
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A new Analysis Tool: Amortized Analysis

Amortized Analysis
= analyse a sequence of operations

= show that average cost of an operation is small
\

[This is not average case analysis!]

t‘n:‘n
o 5 5.1: Amortized Analysis TS.



A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques
= Aggregate Analysis
= Potential Method

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average

yi
/!

[ Even though operations may be of different types/costs ]

\;.!:.. 5.1: Amortized Analysis TS.



Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)
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Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' Every item that is POPPED
had to be PUSHED earlier!
N—
\_/Y

MULTIPOP(3)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ Every item that is POPPED
had to be PUSHED earlier!
N—

\/ \/
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TpusH(N)

5.1: Amortized Analysis TS. 6



Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ Every item that is POPPED

had to be PUSHED earlier!
FRARNERCANIANTS =

N—

\_/ \_/
PUSH(B) MULTIPOP(3)
MULTIPOP(k) contributes min{k, |S|} to Tpop(n) ]
/4
T(n) < Tpor(n) + TeusH(N)
5.1: Amortized Analysis T.S. 6



Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TeusH(N) < 2 - TpyswH(N)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Teop(n) + TpusH(n) < 2- TpysH(n) < 2 n.
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ % Every item that is POPPED ]
had to be PUSHED earlier!

-

\_/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + Teusk(n) < 2 Tpysp(n) < 2 n.
1
Aggregate Analysis: The amortized cost per operation is In) <2
5 [
o B4

n

&5

5.1: Amortized Analysis TS. 6
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Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure
to cover up for expensive operations
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Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state
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Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state
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Stack as a coin-operated machine (p. 83)
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Stack and Coins
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Stack and Coins
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Stack and Coins
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Stack and Coins

XS
BoS BoS Bo
. , \Te, \Te, L
PUSH(T) PUSH(B) PUSH() POP
credit
3_
| \

5.1: Amortized Analysis



Stack and Coins

XS
BoS BoS Bo
. , \Te, \Te, L
PUSH(T) PUSH(B) PUSH() POP
credit
3_
| \

5.1: Amortized Analysis



Stack and Coins

XS
BoS BoS Bo
N , R TS R R TS R R TS "
PUSH(T) PUSH(B) PUSH( POP PUSH(D)
credit
3T \/o

-
;
\
o4
w4
~ 4
o4

Y 5.1: Amortized Analysis



Stack and Coins
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XS Do
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Stack and Coins
XS De
BS BS Bo Bo
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PUSH(T)  PUSH(B) PUSH(X) \ POP  PUSH(D) MULTIPOP(3)

[ Every operation costs at most two coins! j

5.1: Amortized Analysis
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

3

Cc < Ei, Ci = E/ or
¢ > ¢; are all possible!

]

J
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= ¢ is the amortized cost of operation i

= @, is the potential stored after operation / ($o = 0)
~

[Function that maps states of the data structure to some value

\;,!;, 5.1: Amortized Analysis TS.



Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

E,’ =Ci + ((b,' — ¢,'_1)
7 S~

= PUSH(): ¢ =1 = PUSH(): &; — ;1 =1
= POP: ¢ =1 = POP: &, — ;1 = -1

|

.;,I,, 5.1: Amortized Analysis TS.



Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n
Zai = Z(Ci+¢i —®iq) =
i=1 i=1

5.1: Amortized Analysis TS.



Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n n
ZEiZ Z(Ci+¢/—¢i—1): ZCI+¢n—¢0
i = i=
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n n
Zai = Z(Ci+¢/—¢i—1) = ZCI+¢n
i=1 i=1 i=1
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Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

E,’ =Ci + ((b,' — ¢i—1)

n n n
Zai = Z(Ci+¢i_¢i—1) = ZCI+¢n
i=1 i=1 i=1 /]

If &, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

;,I,, 5.1: Amortized Analysis TS. 10
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢ =1 O
O O
o O
NEPENER
~—

PUSH

5.1: Amortized Analysis TS.



Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) ]
PUSH i
= actual cost: ¢; = 1 O .
) O O
= potential change: ¢; — ®;_4 = 0 o
NEPENER
\_}Y i—1

PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) ]
PUSH ®;
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 O o
NEPENER
~_ i—1i

PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) ]
PUSH ®;
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 O o
. ~ NEPENER
= amortized cost: ¢; = ; :
A i—1i

PUSH

5.1: Amortized Analysis
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) ]
PUSH i
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 |
. A~ NN
= amortized cost: G; = ¢+ (®; — ®; ) = ~_ i1

PUSH

5.1: Amortized Analysis
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) ]
PUSH i
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 |
. A~ NEPENER
= amortized cost: G; = i+ (®; —d;_1) =1+1=2 ~_ i—1i
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Second Example: Binary Counter

Binary Counter

- Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1
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Binary Counter
= Array Alk — 1], A[k — 2], ..., A[0] of k bits
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A7]

Counter
Value

10

11

12
13

13

TS.

5.1: Amortized Analysis



Incrementing a Binary Counter

Total
Cost
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11

15
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23

Al6] A[S]  A[4] AB] A2l ATl A0]

A7]

Counter
Value
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11

12
13

13

TS.
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Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25

Al6] A[B]  A[4] AB] A2l ANl A[0]

A7]

Counter
Value

10

11

12
13
14

13

TS.
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Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25

Al6] A[B]  A[4] AB] A2l ANl A[0]

A7]

Counter
Value

10

11

12
13
14

13

TS.
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Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25
26

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis



Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25
26

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis



Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23

25
26
31

Al0]

Alt]

Al2]

A3]

Al4]

Al5]

Al6]

A7]

Counter

Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis




Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23

25
26
31

Al0]

Alt]

Al2]

A3]

Al4]

Al5]

Al6]

A7]

Counter

Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis




Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter | ot Total
Value Al A2l Al :A[O]: Cost
0 0 0 0 |01 0
1 0 0 0 |
2 0 0 1T 10| 3
3 0 0 1 o4
4 0 1 0 10, 7
5 o 1 0 11! 8
6 o 1 1 .0 10
7 0 1 101 1

| Ep————

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter ! Total
Value Al A2l :A[1]: Al0] Cost
0 0o 0 [0 0 0
1 0 0 10 1
2 0 0 "1, 0 3
3 0 0 Do 4
4 0 1 10, 0 7
5 o 1 0! 1 8
6 0 1 11" 0 10
7 0 H N 11
| E—

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter et ! Total
Value AB :A[Q]; Al Ad] Cost
0 0o jo 0 0 0
1 0 1o 0 1
2 I 3
3 0 10, 1 1 4
4 0o 1! 0 0 7
5 0 1! 0 1 8
6 0o 1! 1 0 10
7 0 1! 1 1 11
!

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter | 1 Total
Value :A[3]: A2l ATl A0 Cost
o [fo. 0 o 0 0
1 100 0 1 1
2 1o o0 1 0 3
3 10, 0 1 1 4
4 o' 1 o o0 7
5 Lo! 1 0 1 8
6 0! 1 1 0 10
7 Lo 1 1 11
| E—

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments

5 [
5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

t‘n:‘n
o 5 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value ARl A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

~;.g'.. 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value ARl A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

_n.

k
T(n) <

> 2]

~;.g'.. 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

\;.I.. 5.1: Amortized Analysis TS.




Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

_n.
Y

k—
T(n) <

5 ﬂ— —1—1 = L i —I—L
2:_ 2 ' 94 ok—1
i=0 i=0

\;,!4,. 5.1: Amortized Analysis TS. 14



Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

I

k—
T(n) <

k—
i=0 \~ J i=0 2!

_n.

Y

n

ro(

1

’
+ot o+

2

4

5.1: Amortized Analysis

TS.




Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

[Aggregate Analysis: The amortized cost per operation is ”) <2.
~

k—1 k—1
n n 1 1 1
T(n)ﬁé {EJSE EZ '(1+E+Z+"'+W)§2-n.
5.1: Amortized Analysis TS. 14




Binary Counter: Analysis via Potential Function
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of /
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

4 ; . . ;
®; = # ones in the binary representation of /
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1

1100
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1

1100

e

1101

\;,I,, 5.1: Amortized Analysis TS.



Binary Counter: Analysis via Potential Function

®o=0v & >0y |

(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_y = lINC °
1101 i—1
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Binary Counter: Analysis via Potential Function

®o=0v & >0y |

(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
1101 =1
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: ¢; =

1101 =1
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over

= actual cost: ¢; = 1 1100
= potential change: ¢; — ®;_; =1 lINC
= amortized cost: ¢ = ¢+ (¢, — ;1) =

1101

P;

\;.!:.. 5.1: Amortized Analysis TS.
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Binary Counter: Analysis via Potential Function

D=0y & >0 |

(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: G = ¢+ (¢ —®;_1)=1+1=2

1101 =1
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Binary Counter: Analysis via Potential Function

Go=0v & >0y |
(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over ®
e 1100 !

= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: G = ¢+ (¢ —®;_1)=1+1=2

1101 i—1

r Increment with Carry-Over

0

,,!;.. 5.1: Amortized Analysis TS. 15



Binary Counter: Analysis via Potential Function

®o=0v & >0y |
(74 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over Y
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
. i (CG=C+(Pi—di_{)=1+1=2
amortized cost: G = ¢+ (®; — ®;_1) =1+ 1101 AP
0111

Increment with Carry-Over
= ¢; = x + 1, (x lowest index of a zero)

\;,!', 5.1: Amortized Analysis TS. 15

=



Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1
= potential change: ®; — ¢,y =1
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

Increment with Carry-Over

= ¢; = x + 1, (x lowest index of a zero)

1100

e

1101

0111

me

1000

P;

5.1: Amortized Analysis

TS.

-
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Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1 11000
= potential change: &, — &;_1 =1 l,NC
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

1101

Increment with Carry-Over o0 1
= ¢; = x + 1, (x lowest index of a zero) lINC
=0 -0 =

1000

5.1: Amortized Analysis TS.



Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1
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Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1

=G+ (P —Pq)=

5.1: Amortized Analysis TS. 15



Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

Increment with Carry-Over o0 1 ”
= ¢i = x + 1, (x lowest index of a zero) lmc \
O —b_ 1 =—x+1
"CG=C+ (P —Piq)=1T+x—x+1

1000 i—1i

\;,!.', 5.1: Amortized Analysis TS. 15

=



Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1

"G=C+(P—Piq)=1+x—x+1=2

\;,!.', 5.1: Amortized Analysis TS. 15
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Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over o
e 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: C; = ¢+ (¢, — Pi_1) =1+1=2 ——
1101 i—1i
SRS
0111 1%
Increment with Carry-Over
= ¢ = x + 1, (x lowest index of a zero) lmc @ \
DU 1000 1
~ I — 1
"C=C+(Pi—P_4)=14+x—x+1 =2 o
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Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174 . . . .
®; = # ones in the binary representation of i ]
Increment without Carry-Over o
e 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: C; = ¢+ (¢, — Pi_1) =1+1=2 ——
1101 i—1i
SRS
0111 1%
Increment with Carry-Over
= ¢ = x + 1, (x lowest index of a zero) lmc @ \
DU 1000 1
~ I — 1
"C=C+(Pi—P_4)=14+x—x+1 =2 o
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Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i ]

Increment without Carry-Over Y
= actual cost: ¢; = 1 1108 /
= potential change: ®; — ®;_1 = 1 lINC -
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

1101 i—1

( Amortized Cost =2 = T(n) < 2n )

SAS)
@
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc § \
&
=0 -0y =—x+1
1000 =1

"G=C+(P—Piq)=1+x—x+1=2

5.1: Amortized Analysis TS. 15



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!
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Aggregate Analysis
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Summary
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= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis //
= Determine an absolute upper bound T(n)

o6 5.1: Amortized Analysis TS. 16



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T(n
= every operation has amortized cost @ (n) DZI:D:D
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T(n
= every operation has amortized cost @ (n) DZI:D:D

[— Potential Method
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
. . T(n
= every operation has amortized cost @ () D:D:I:D

Potential Method
= use savings from cheap operations to
compensate for expensive ones

5 [
5.1: Amortized Analysis TS. 16



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
. . T(n
= every operation has amortized cost @ () D:D:I:D

Potential Method
= use savings from cheap operations to

compensate for expensive ones //\,/i
i
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Summary

Amortized Analysis
= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

every operation has amortized cost @

Potential Method

= use savings from cheap operations to
compensate for expensive ones

= operations may have different amortized cost

o s 5.1: Amortized Analysis TS.



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

T
= every operation has amortized cost @ (n) DZI:D:D
[ Full power of this method will become clear later! ] T(n) Dj:ﬂ:l]

Potential Method \ .
= use savings from cheap operations to credit

compensate for expensive ones //\,/
= operations may have different amortized cost j

o6 5.1: Amortized Analysis TS. 16




Next Lecture: Fibonacci Heap

Operation Binomial heap
worst-case cost
MAKE-HEAP o)

INSERT O(log n)
MINIMUM O(log n)
EXTRACT-MIN O(log n)
UNION O(log n)
DECREASE-KEY O(log n)
DELETE O(log n)

5.1: Amortized Analysis

TS.



Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP 0(1) 0(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)
/)

Crucial for many applications including
shortest paths and minimum spanning trees!

g oy 5.1: Amortized Analysis TS. 17
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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o(1) o) o(1)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o) O(log n) O(log n)
DELETE o(1) O(log n) O(log n)

5 5.2: Fibonacci Heaps

TS.




Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) o(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE O(n) o(n) O(log n) o)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

o 5.2: Fibonacci Heaps

TS.




Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)

DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.




Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)

FEY

5.2: Fibonacci Heaps

TS.




Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

o6 5.2: Fibonacci Heaps TS. 3



Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY
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Actual vs. Amortized Cost
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Reminder: Binomial Heaps

Binomial Trees

B(O 3(1) B(2 B(3) B(k)

% %\

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
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Reminder: Binomial Heaps

Binomial Trees

B(0) 3(1) B(2 B(3) B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
® & & ®&@
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

® @ (19
@@ = @&
ORORC &)

'..I.. 5.2: Fibonacci Heaps TS.
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

min
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ O OB
Do @

[How do we implement a Fibonacci Heap?]
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Magnifying a Four-Node Portion

@) T @

5 [
o s 5.2: Fibonacci Heaps TS.



Magnifying a Four-Node Portion

@&

i
S 5.2: Fibonacci Heaps

TS.



Magnifying a Four-Node Portion
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Fibonacci Heap: INSERT

INSERT
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Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1) ] min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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EXTRACT-MIN
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EXTRACT-MIN
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EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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EXTRACT-MIN
= Delete min v/
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= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @& () @)
@ @ (+)
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14



Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [ Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

min [ Actual Costs: O(trees(H) + d(n))

(1) (=)
(29 ) @
&) () (#)
©

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min
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i
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

() (8 (@)
@ W @@ @
@) () @ =

1. DECREASE-KEY 24 ~ 20
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not
min
@ (19)
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1. DECREASE-KEY 24 ~~ 20
o) () () (2)
(35) (o)
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,
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bl e
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~» 15
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min
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® W 0@ ® ®
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

1. DECREASE KEY 24 ~~ 20
@ 2. DECREASE-KEY 46 ~ 15

19 3. DECREASE-KEY 35 ~» 5
4. DECREASE-KEY 26 ~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
(30) DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min
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DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

min

. DECREASE-KEY 24 ~ 20

o R 99 5 ®
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DECREASE-KEY 26 ~~ 19
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

3 o8 13

w%wNA

min

. DECREASE-KEY 24 ~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).
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ok wn
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DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

—_

ok wn

min
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DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

—_

ok wn

min
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DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:M

1. DECREASE-KEY 24 ~ 20
2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:M

1. DECREASE-KEY 24 ~ 20
2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

Wide and
shallow tree

. DECREASE KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15
. DECREASE-KEY 35 ~ 5

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree =3, .
Nodes =4 min

::M

. DECREASE-KEY 24 ~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

I@'@

DECREASE-KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
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shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) (8) (39
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@ Q @ @ 1. DECREASE-KEY 46 ~ 15
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

6§70 0@ 6 ¢
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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2. DECREASE-KEY 35~ 5
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)
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= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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— Change in Potential
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Amortized Analysis of DECREASE-KEY

Actual Cost
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H) ]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x 4 1), where x is the number of cuts.

[ O(H) = trees(H) -+ 2 - marks(H)

First Coin ~~ pays cut
Second Coin ~~ increase of trees(H)

g

— Change in Potential

= AP<x+2-(—x+2)=4—x.

= marks(H') < marks(H) — x + 2 8 @
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Amortized Cost

= trees(H') =trees(H) + x 8 @ @ @
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Fibonacci Heap: INSERT

INSERT
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Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)
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Actual Costs: O(1) ] min

® O @ @
@@ © RONO)

,,a 5.2: Fibonacci Heaps TS. 13



Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [ Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

min [ Actual Costs: O(trees(H) + d(n))
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d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
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DECREASE-KEY of node x
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DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
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DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked,

min

o o

) 1) @@ ONO

@ @ . DECREASE-KEY 46 ~ 15 v
2.

&

DECREASE-KEY 35~ 5

]

,,!, 5.2: Fibonacci Heaps TS. 15



Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
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= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@ () é

) W @@ @ & ()
1. DECREASE-KEY 46 ~ 15 v

x @ @ 2. DECREASE-KEY 35~ 5

[ 26 }
et

3 &)

\,,I', 5.2: Fibonacci Heaps TS. 15

=



Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)
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DECREASE-KEY of node x
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[ Actual Cost: O(# cuts) mln
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

5.2: Fibonacci Heaps (Analysis) TS.



Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.



Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

oot

5.2: Fibonacci Heaps (Analysis TS
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v/
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H)

— Change in Potential
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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— Change in Potential
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H)

—— Change in Potential
= trees(H') =trees(H) + x

= marks(H') < marks(H) — x + 2

= AP <Ix+2-(—x+2)=4—x.
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x + 2
= A0 <x+2-(—x+2)=4-x.

Amortized Cost

G =c+Ad
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H) ]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.

®

5 ( Scale up potential units ]

Amortized Cost

C=Cc+AP<O(x+1)+4—x
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) = trees(H) + 2 - marks(H) ]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.
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Amortized Cost
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x 4 1), where x is the number of cuts.

[ O(H) = trees(H) -+ 2 - marks(H)

First Coin ~ pays cut
Second Coin ~ increase of trees(H)

g

— Change in Potential

= AP<x+2 - (—x+2)=4—x.

= marks(H') < marks(H) — x + 2 8 @
®)

5

Amortized Cost

= trees(H') =trees(H) + x 8 @ @ @

E[:C/+A¢§O(X+1)+4—X:O(1)
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Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))
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Actual Cost
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From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k +2)? ]7

N@©)=1 N(1)=2 N(2)=3 N(3 - N(4 8=5+3
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From Minimum Subtree Sizes to Fibonacci Numbers
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i—2 ] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(K)=1+1+N2-2)+N@B—2)+-- + N(k—2)

k—2
=1+14> N
£=0

:1+1+z_:N(e)+N(k—2)

£=0
= N(k—1) + N(k — 2)
= F(k+1)+ F(k) = F(k +2) O

5.2: Fibonacci Heaps (Analysis) TS. 11



Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,
where ¢ = (1 +/5)/2 = 1.61803... .
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Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)
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Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

» EXTRACT-MIN: amortized cost Otdéa)) O(log n)
- DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥
=- log,, n > k
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What if we don’t have marked nodes?

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE 0(1) O(log n) O(log n) O(log n)
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Summary

(Can we perform EXTRACT-MIN in o(log n)?j
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Summary

(If this was possible, then there would be a sorting algorithm with runtime o(nlog n) !)
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Summary
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o(1)

DELETE 0(1) ralilaYaWa)l ralilaYaWa)) %(Inn n\

[

Crucial for many applications including

shortest paths and minimum spanning trees!

|
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Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984
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Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap
= marked bit is not redundant!
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)

YEY
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o®) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]
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Disjoint Sets Data Structure
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Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)
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Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[ can be done easily without significant overhead ]

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

o6 5.3: Disjoint Sets TS. 7



Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

o6 5.3: Disjoint Sets TS. 7




Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

g oy 5.3: Disjoint Sets TS. 7



Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

g oy 5.3: Disjoint Sets TS. 7



S

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
I\

Proof: ( Can we improve on this further? j

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O
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How to Improve?
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= FINDSET: O(n)
= UNION: O(1)
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How to Improve?

EFEF»D»D—QD

Basic |dea: Update Backward
Pointers only during FIND-SET

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)
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Disjoint Sets via Forests

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
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( Append tree of smaller height ~~ Union by Rank )
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Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
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5.3: Disjoint Sets TS. 9



Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p
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Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET
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[b]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p

w N B O

5 5.3: Disjoint Sets
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Path Compression during FINDSET

FindSet (b):

Maintaining the exact height e
would be costly, hence rank
is only an upper bound!

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

ke
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Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,
for8 < n <2047,

for 2048 < n < 10%°
N,

a(n) =

A WO N =2 O

\
More than the
number of atoms
in the universe!
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O

/)

L
[ log*(n), the iterated logarithm, satifies ]

a(n) < log*(n), but still log*(10%°) = 5.
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\

[ In practice, «(n) is a small constant ]

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O
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Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS)]

——— Theorem 21.14 \\

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\

[ In practice, «(n) is a small constant ]

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O
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Simulating the Effects of Union by Rank and Path Compression
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Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300

2. Forevery 1 < <300, pick arandom 1 < r <300, r # i and
perform UNION(FINDSET(/), FINDSET(r))
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Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300
2. Forevery 1 </ < 300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

3. Perform j € {0,100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 < r < 300 is random

;,I.. 5.3: Disjoint Sets TS. 12



Union by Rank without Path Compression
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Union by Rank with Path Compression
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Union by Rank with Path Compression (100 additional FINDSET)
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Union by Rank with Path Compression (200 additional FINDSET)
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Union by Rank with Path Compression (300 additional FINDSET)
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Union by Rank with Path Compression (600 additional FINDSET)
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Union by Rank with Path Compression (900 additional FINDSET)
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Union by Rank with Path Compression (1200 additional FINDSET)
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Union by Rank with Path Compression (1500 additional FINDSET)
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Union by Rank with Path Compression (1800 additional FINDSET)
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Union by Rank with Path Compression (1800 additional FINDSET)
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Overview

Union by Rank

Union by Rank

& Path Compression

300 MAKESET & 300 UNION
100 extra FINDSET
200 extra FINDSET
300 extra FINDSET
600 extra FINDSET
900 extra FINDSET
1200 extra FINDSET
1500 extra FINDSET
1800 extra FINDSET
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Outline

Introduction to Graphs and Graph Searching
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Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kdnigsberg 1737
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Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?
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Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every

island exactly once?
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Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every
island exactly once?
. ~+ 1B course: Complexity Theory
é:':' 6.1 & 6.2: Graph Searching TS. 3




What is a Graph?

Directed Graph

A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)
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—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ———o

= A sequence of edges between two
vertices forms a path

Path p=(1,2,3,4)

L

V=1{1,23,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}
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What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ———o

= A sequence of edges between two
vertices forms a path

Path p=(1,2,3,1), which is a cycle

Ve

V=1{1,23,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
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What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:

= V: the set of vertices
= E: the set of edges (arcs) (—
Gis

\.

I, vy
not connected e °

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

~——— Paths and Connectivity —[ G

is connected

.'0

= A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

V=1{1,234)
E= {{1 ) 2}7 {1 ) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching
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What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: o

= V: the set of vertices "

= E: the set of edges (arcs) (—%
L G is not connected | (3) (4)
—— Undirected Graph ———————

_ . . V=1{1,2,34}
A graph G = (V, E) consists of: E={(1,2),(1,3),(2.3),(3,1), (3, 4)}

= V: the set of vertices

= E: the set of (undirected) edges o o
~——— Paths and Connectivity —[ Gis Connemeﬁ ‘
= A sequence of edges between two e °
vertices forms a path
. . V=1{1,234}
= If each pair of vertices has a path A
linking them, then G is connected E={{1,2},{1,3},{2,3},{3,4}}

J

Later: edge-weighted graphs G = (V, E, w)

6.1 & 6.2: Graph Searching TS.



Representations of Directed and Undirected Graphs

1 23 45
110 1.0 0 1
211 0 1 1 1
3|10 1.0 1 0
410 1 1 0 1
5/11.0 10
(a) (b) (©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Representations of Directed and Undirected Graphs

12345

1fo 100 1

(2) 2010 1 11

3001010

® 400 11 0 1

@ 5[ 1010
(a) (b) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G. . . . . q
(Most times we will use the adjacency-list representatlon!)
1 23 45 6
110 1.0 1 00
2(0 000 1 O
(2) ©) 30000 11
410 1 0 0 0 O
50 001 00
ORO») 6[0 000 01
(a) (©

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.
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Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

6.1 & 6.2: Graph Searching

TS.



Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets
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Single-Source/All-Pairs Shortest Paths
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Geometric Algorithms ]
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Fibonacci Heaps

Disjoint Sets J
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Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths
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[
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Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

[

Geometric Algorithms

)

Priority Queues

Sorting

Dynamic Programming

Greedy
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Overview

Amortized Analysis ))

Fibonacci Heaps G Qe

Disjoint Sets J

Graphs, DFS/BFS, Topological Sort Sorting

Minimum Spanning Trees

N/ N N [ N\

Dynamic Programming

Single-Source/All-Pairs Shortest Paths

Greedy

‘ Maximum Flow, Bipartite Matchings

[ Geometric Algorithms ]
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.
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= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)

el . bt
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Outline

Breadth-First Search
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

S
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

\.

S
6.1 & 6.2: Graph Searching TS. 8



Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2

3

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10:  v.colour = "white"
11: Q = Queue()

12:

13:

14:sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"

5
ey 6.1 & 6.2: Graph Searching TS.



Breadth-First-Search: Pseudocode

: def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i
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4: assert(s in G.vertices())

5H

6:

7: f in G.verti : .. .

g VV,';red;i'e::;‘L N = From any vertex, visit all adjacent

9: v.d = Infinity i i

LR LI e vertices before going any deeper

]; Q = Queue() = Vertex Colours:

1 White | = Unvisited

]gf gﬁﬂgeurft(:)"gfev" Grey = Visited, but not all neighbors
s 2Bt = Visited and all neighbors

19: while not Q.isEmpty(): - : nnn

20:  u=Q.extract() Runtime 777

21:  assert (u.colour == "grey") Y

22: forvin u.adjacent() . .

23:  ifv.colour = "white" Assuming that all executions of the FOR-loop
24: .colour = "grey" § : A
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assert(s in G.vertices())
: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
i vertices before going any deeper
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Depth-First Search: Basic Ideas

_] ’J_L

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time
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Depth-First-Search: Pseudocode

0:
1:
2
3
4
5:
6:
7
8
9
0

N

PN AR WN O

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

dfsRecurse(G,s)

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black”
s.f =time()

6.1 & 6.2: Graph Searching TS.



Depth-First-Search: Pseudocode

def dfs(G,s):

0:

1:

2

3

4: assert(s in G.vertices())

gi = We always go deeper before visiting
7: forvin G.vertices(): other neighbors

8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—a

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f =time()

PN AR WN O

Sl 6.1 & 6.2: Graph Searching TS. 13



Depth-First-Search: Pseudocode

def dfs(G,s):

0:
1:
2
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4: assert(s in G.vertices())

gf = We always go deeper before visiting
7. for v in G.vertices(): other nelghbors

8

9

0

v.predecessor = None = Discovery and Finish times, .d and .f
v.colour = "white"

dfsRecurse(G,s)

N

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black”
s.f =time()
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Depth-First-Search: Pseudocode

0: def dfs(G;,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ Upredszesers Mg = Discovery and Finish times, .d and .f
© v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
0: def dfsRecurse(G,s): Grey = Visited, but not all neighbors
1:  s.colour = "grey"
2: sd=time() Bl = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
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8: s.f=time()
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Depth-First-Search: Pseudocode

0: def dfs(G;,s):
1:

2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
d vjprleesn = o = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?f desfggfglercff%?g;s)i Grey = Visited, but not all neighbors
2:  sd=time() B]Ey = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white" * Runtime O(V + E)
5: v.predecessor = s
6 dfsRecurse(G,v)
7:  s.colour = "black"
8: s.f=time()
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Paranthesis Theorem (Theorem 22.7)

910111213141516

8

7
(s (v(y (xx) (r(uu)ry)v)s)(w(zz)w)

15

TS.
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Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
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Solving Topological Sort

[watch]

pants shoes

L

belt

jacket

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Output vertices in decreasing order of their finishing time
AN

2

[ Runtime O(V + E) ] tices — use DFS directly!

74
[Don’t need to sort the ver-]

S
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Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

w z S

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

w z S

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

w z S v

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

290000

) 6.1 & 6.2: Graph Searching T.S.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching TS. 19



Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching TS. 19



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

() 6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.

)

Proof:

Sl
6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
S

= Consider any edge (u, v) € E(G) being explored, @

@©—0

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

s
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f -
:»"3 :
u %

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!). teeny

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!).

2. If v is black, M

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. M

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. 4
3. If v is white, @—’Q

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. ¢
3. If v is white, we call DFS(v) and v.f < u.f.

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. ¢
3. If v is white, we call DFS(v) and v.f < u.f.

6.1 & 6.2: Graph Searching TS. 20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20



Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20



Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)
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Summary of Graph Searching

——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

» Runtime O(V + E)
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Minimum Spanning Tree Problem

——— Minimum Spanning Tree Problem —

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
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graph G = (V, E, w) with
non-negative edge weights

= Goal: Find a subgraph C E of
minimum totalflweight that links
all vertices /\

——— Minimum Spanning Tree Problem —

J

I L
[Must be necessarily a tree!]
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

Applications

= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.

el bt
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Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

w N B O
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Generic Algorithm

0: def minimum spanningTree (G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
— Definition N\

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?
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Definitions

= a cut is a partition of V into at least
two disjoint sets
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Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut

AN €y
= If g € T, then we are done / )
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:

= Let T be a MST containing A

= Let e/, be the lightest edge across the cut e ey

= If g € T, then we are done ;0
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the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut . ey
= |[f e, € T, then we are done / j
= If e, ¢ T, then adding e, to T introduces cycle ! |

S
6.3: Minimum Spanning Tree T.S. 5
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Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:

= Let T be a MST containing A

= Let e/, be the lightest edge across the cut e ey
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Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e; \ éx:
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree TU e; \ ex:
= This tree must be a spanning tree
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e; \ éx:

= This tree must be a spanning tree
= If w(er) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle
= This cycle crosses the cut through e, and
another edge ex

= Consider now the tree T U e; \ éx:

= This tree must be a spanning tree

= If w(er) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)

= If w(eg) = w(ex),then TUe; \ exisa
MST. O
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Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

'-.E» 6.3: Minimum Spanning Tree

TS. 6




Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

g 6.3: Minimum Spanning Tree

TS. 6




Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

g 6.3: Minimum Spanning Tree

TS. 6




Execution of Kruskal’s Algorithm

6.3: Minimum Spannin, g Tree TS.



Execution of Kruskal’s Algorithm

el bt
6.3: Minimum Spannin, g Tree

TS.



Execution of Kruskal’s Algorithm

. e
6.3: Minimum Spannin, g Tree

TS.



Execution of Kruskal’s Algorithm

. e
6.3: Minimum Spannin, g Tree

TS.



Execution of Kruskal’s Algorithm

'1'«
6.3: Minimum Spannin, g Tree

TS.



Execution of Kruskal’s Algorithm

'1'«
6.3: Minimum Spannin, g Tree

TS.



Execution of Kruskal’s Algorithm

5l
6.3: Minimum Spannin g Tree

TS.



Execution of Kruskal’s Algorithm

5l
6.3: Minimum Spannin g Tree

TS.



Execution of Kruskal’s Algorithm

TS.



Execution of Kruskal’s Algorithm

TS.



Execution of Kruskal’s Algorithm

e
6.3: Minimum Spanning Tree

TS.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.



Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges ()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:
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11: for edge in E:
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14: if startSet != endSet:

15: A.append (edge)
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Time Complexity

= |nitialisation (I. 4-9): O(V + Elog E)
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = O(Elog V)
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = (’)(E|C£V)

(I edges are already sorted, runtime becomes O(E - a(n))!
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
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= L. 14 ensures that we extend A by an edge that goes across the cut
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)
= L. 14 ensures that we extend A by an edge that goes across the cut

= This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

() 6.3: Minimum Spanning Tree TS. 8
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Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

1

[ Implementation will be based on vertices! ]

. 6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A
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Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge &c:nnecting to A

[ Use a Priority Queue! ]

el bt
6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
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Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!

1
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Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:
1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!

We computed same MST as Kruskal,
but in a completely different order!

}
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Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)

18: if Q.hasItem(v) and w < v.key:

19: v.predecessor = u

20: Q.decreaseKey (item=v, newKey=w)
6.3: Minimum Spanning Tree T.S. 10
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0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity
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Details of Prim’s Algorithm

©

10:
11:
179
13:
14:
Al
16:
17:
18:
19:
20:

~——— Time Complexity

©®d U s WNKHO

&
h

for

prim(G, r)

Apply Prim’s Algorithm to graph G and root r
Return result implicitly by modifying G:

MST induced by the .predecessor fields

MinPriorityQueue ()
v in G.vertices():
v.predecessor = None
if v == r:

v.key = 0
else:

v.key = Infinity
Q.insert (v)

while not Q.isEmpty () :

u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

= Fibonacci Heaps:

6.3: Minimum Spanning Tree TS.
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MST induced by the .predecessor fields

MinPriorityQueue ()
v in G.vertices():
v.predecessor = None
if v == r:

v.key = 0
else:

v.key = Infinity
Q.insert (v)

while not Q.isEmpty () :

u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

= Fibonacci Heaps:
Init (1. 6-13): O(V),
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9: v.key = 0

10: else:
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14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)
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6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)
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14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)
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Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)
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14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V - log V), DecreaseKey (16-20): O(E - 1)
= Overall: O(Vlog V + E)

= Binary/Binomial Heaps:
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Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(E log V)

\.

~— Prim’s Algorithm

= Gradually extends a tree into a MST by adding incident edges
= invokes Fibonacci heaps (priority queue)
= Runtime O(Vlog V + E)

Sl
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Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A
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Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

ANN

[ Can be implemented in time ]

O(Elog V(loglog V)?). [Thorup, 2000]
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Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

——— Chazelle, JACM'2000
= deterministic MST algorithm with runtime O(E - «(n))

Pettie, Ramachandran, JACM’'2002

= deterministic MST algorithm with asymptotically optimal runtime
= however, the runtime itself is not known...
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Shortest Path Problem
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G = (V, E) with edge weights,
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= Goal: Find a path of minimum
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Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

What if G is unweighted?

7 I

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1
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Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

Applications
| = Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange ]
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Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm
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Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)
= Shortest Paths via Matrix Multiplication
= Johnson’s Algorithm

6.4: Single-Source Shortest Paths

TS.
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Distances and Negative-Weight Cycles (Figure 24.1)

Negative-Weight Cycle
(not reachable from s)

(reachable from s)

[Negative-Weight Cycle }
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Bellman-Ford Algorithm

el . bt
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Relaxing Edges

Definition

Fix the source vertex s € V
= v.4 is the length of the shortest path (distance) from sto v
= v.d is the length of the shortest path discovered so far
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Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) —————
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Relaxing Edges

Definition

Fix the source vertex s € V
= v.d is the length of the shortest path (distance) from s to v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.0=0,v.d=ccforv #s J

= Attheend: v.d=v.d forallve V

~——— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a PRy @

better path from v using the edge (u, v)? // Y
? ‘s
v.d > u.d+ w(u,v) ‘@
ANN

After relaxing (u, v), regardless of whether we found a shortcut:
v.d <u.d+ w(u,v)
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Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d

el bt
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Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+w(u,v)

V.0 Since v.d > v.§, we have v.d = v.6.

el bt
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Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

b b
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Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.
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Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.
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Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).

Vo Vi Vo Vi1 Vi

) Q
Vo.0 Vi.0 W ) —=-=-=-=-- #
N

S
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Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)
If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).
Convergence Property = v;.d = v;.6 (now and at all later steps) O

Vo Vi Vo Vi1 Vi

Vo'é @ V2'6 ______ #

S
E:E 6.4: Single-Source Shortest Paths TS. 9




Path-Relaxation Property

[“Propagation”: By relaxing proper edges, set of vertices with v.§ = v.d gets Iarger]

Path-Relaxation PropeW(Lemma 24.15)
If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).
Convergence Property = v;.d = v;.§ (now and at all later steps) O

Vo

V4 Vo :
o @ @ ______

S
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

() 6.4: Single-Source Shortest Paths T.S.



The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)
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8:
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14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert (s in G.vertices())
1l: for v in G.vertices()

2 v.predecessor = None
3 v.d = Infinity

4: s.d=0

5E

6: repeat |V|-1 times

7 for e in G.edges()

8
9

i@ e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

if e.start.d + e.weight.d < e.end.d:

Time Complexity
= A single call of line 9-11 costs O(1)
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= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert (s in G.vertices())
1l: for v in G.vertices()

2 v.predecessor = None
3 v.d = Infinity

4: s.d=0

5E

6: repeat |V|-1 times
7 for e in G.edges()

8

9: if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
&g return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V —1)+1 = V passes = O(V - E) time
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Execution of Bellman-Ford (Figure 24.4)

Pass: 1
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Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(,2),(X,t),(y;X),(y,2),(z,X),(z

8),(s:1).(s.y)
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Execution of Bellman-Ford (Figure 24.4)
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Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z
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Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

e bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s

e bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v

b bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1

b bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

b bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE

b bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges

b bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

e bl
6.4: Single-Source Shortest Paths T.S. 12



Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
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Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.
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™~

[ Triangle inequality (holds even if w(u, v) < 0!) ]
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Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.
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Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)
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Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
P - F
= 0< Z (Vie1, i)

[This cancellation is only vaI|d if all .d-values are finite!]
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Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
i=1 i i
= 0< Z (Vie1, i)

/1
[This cancellation is only valid if all .d-values are finite!]

= This contradicts the assumption that ¢ is a negative-weight cycle! O
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

33

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

33

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
53 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Sl
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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)
0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
53 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J
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The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

33

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J
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The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
SPSE flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J

0 6.4: Single-Source Shortest Paths TS. 14
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History of the Maximum Flow Problem [Harris, Ross (1955)]
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History of the Maximum Flow Problem [Harris, Ross (1955)]

LENINGRAD
Fig. 5— Soviet and
satellite rail
network

Moscow

Infernational boundary

ting divisions. Those locat

d in two regions and ore s

since intelligence reports are unavailable. Train capacities in Russic ore for 10 t-ton troins or their equivalent. Troin capacities

in Polanu are for 666 net tons (or the equivalent). Train capacities in oll other satellites are for 400 net fons (or the equivalent)
ast Germany. In East Germany, train capacities are those of entering lines. The numbers shown in boxes are total

fonal cadacities.
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Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink t

= every edge e has a capacity c(e)
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Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges
= distinguished nodes: source s and sink t

= every edge e has a capacity c(e)
7 AN

[ Capacity function ¢ : V x V — R* ] [ c(u,v) =0« (u,v) ¢ E ]

o [
Sl 6.6: Maximum flow TS. 4



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V)

6.6: Maximum flow

TS.




Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)

0/4 0/15
® (s ®
s % 0/15

.-.,I., 6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)

0/4 0/15
® (s ®
s % 0/15

.-.,B'., 6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0

0/4 0/15
® (s ®
s % 0/15

.;,I., 6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

0/4 0/15
® (s ®
s % 0/15

.;,I., 6.6: Maximum flow TS.



Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0
The value of a flow is defined as |f| = > ., f(s, V) -~

( Suevf(s) = Zoev fv1)

veV
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Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

@ ©
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A flow is a function f : V x V — R that satisfies:
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= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)
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Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)
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Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0
The value of a flow is defined as |f| =3 ., f(s, V)

How to find a Maximum Flow?

0/4 0115
® ® ®
0/4 0115

.v,,a;, 6.6: Maximum flow TS.



A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p
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A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

|fl =16
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( Is this optimal? )
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A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

|fl =19

N

(Greedy did not succeed! j

6.6: Maximum flow TS. 5
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

0 otherwise.

c(u,v)—f(u,v) if(u,v)eE,
cr(u, v) = ¢ f(v,u) if (v,u) € E,

Graph G:
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) e E,
0 otherwise.

Graph G:
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Residual Graph

——— Original Edge

Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) e E,
0 otherwise.

Residual Graph

= Gr = (V,Ef, cr), Er :={(u,v): ¢(u,v) > 0}

Graph G:
@ 6/17 C

v

Residual G¢:
11

. ®
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Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
2/4

;.E,, 6.6: Maximum flow TS. 7



Residual Graph with anti-parallel edges

——— Original Edge
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity
For every pair (u,v) € V x V,

ct(u,v) =c(u,v) — f(u,v).

Graph G:
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Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
ct(u,v) =c(u,v) — f(u,v). ;
v
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Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
ct(u,v) =c(u,v) — f(u,v). :
v
Residual G¢:
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Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
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Residual G¢:
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Residual Graph with anti-parallel edges

——— Original Edge

Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity

For every pair (u,v) € V x V,

ct(u,v) =c(u,v) — f(u,v).

Residual Graph
= Gf = (V, E/, Cf), Ei = {(U, V): Cf(U, V) > O}

Graph G:

6/17

2/4

v
Residual G¢:
13
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Example of a Residual Graph (Handout)

Flow network G

Residual Graph G¢
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Example of a Residual Graph (Handout)

0/14

Flow network G

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

5 6.6: Maximum flow TS. 7



The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

isg initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it
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0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:
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Augmenting path: Path
from source to sink in Gt
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

ANN

If f' is a flow in Gf and f a flow
in G, then f + ' is a flow in G
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

isg initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Questions:
» How to find an augmenting path?
« Does this method terminate?
« If it terminates, how good is the solution?
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

( Using BFS or DFS, we can find an
: L augmenting path in O(V + E) time.
Questions:

/d
» How to find an augmenting path?
= Does this method terminate?
« If it terminates, how good is the solution?

el
o ey 6.6: Maximum flow TS. 8
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A Glimpse at the Max-Flow Min-Cut Theorem
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From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S

andteT.
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From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:
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Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

1. Forevery u,v e V, f(u,v) < c(u,v),
2. Foreveryu,v eV, f(u,v) = —f(v,u),
3. Foreveryue V\ {s,t},>,cyf(u,v)=0.

= Let f be any flow and (S, T) be any cut:

fl=>_f(s,v)

vev
@SS fwv)
ueSveV
Flow-Value-Lemma: =X > fluv)+> > fuv)
ueSveSs ueSveT

For any cut (S, T),

@ f(u, v)
|f|:ZZf(u,v). %:S\Z:T

ueSveT (1)

<> > e v)

ueSveT
=c(S,T).
= Since this holds for any pair of flow and cut, it follows that
max |f| < min ¢(S, T) O
f (8,T)

i
Sl 6.6: Maximum flow TS. 12
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In summary:
« After iteration 1: <2, -1, > |f| =1
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» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
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More generally,
= For every i =0,1,... after iteration 1 +4 - i 1_—¢-§/, %, ¢<_—¢2i+1
= Ford-Fulkerson does not terminate!
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= Consider subgraph of Gy consisting of edges (u, v) with ¢¢(u, v) > A
= scaling parameter A, which is initially 2% ¢ and 1 after termination
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\.

~——— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in Gy
= Runtime: O(E? - V)

.;,i'., 6.6: Maximum flow TS. 17



Outline

Matchings in Bipartite Graphs

'u!'.. 6.6: Maximum flow

TS.



Application: Maximum-Bipartite-Matching Problem

Matching

A maiching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.
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Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G equals ]

the value of a maximum flow f in the corresponding flow network G.

Graph G

e 6.6: Maximum flow TS. 21
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From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

[max cardinality matching < value of maxflow)

Graph G Graph G

S, 6.6: Maximum flow TS.
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From Flow to Matching

= Let f be a maximum flow in G of value k

5 [
ol 6.6: Maximum flow
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From Flow to Matching

= Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
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a) Flow Conservation = every node in L sends at most one unit
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From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation = every node in L sends at most one unit
b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RuU{t}) = netflow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k
[N

[value of maxflow < max cardinality matching]

L R L R
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Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (i,j) for anedge (i,j) € E,
Wj = § 00 if there is no edge from i to j,
0 iti=j.
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Formalising the Problem

——— All-Pairs Shortest Path Problem \
= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (i,j) for anedge (i,j) € E,
Wj = § 00 if there is no edge from i to j,
0 iti=j.

= Goal: Obtain a matrix of shortest path weights L, that is

oo otherwise.

L N\ )

A\

’ {weight of a shortest path from i to j, if j is reachable from i
ij =

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

nfiin
E:E 6.5: All-Pairs Shortest Paths TS. 3
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A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge
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A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let E,(.Z’) be min. weight of any path from i to j with at most m edges
= Then E,(.j/.) =wj,s0Ll =W

= How can we obtain L® from L(1?

2 _ (1) in (1) )
¢j = min (4",/' > D S Wk*’) [ Recall that w;,; — 0! ]

0 —1 . —1 . =1
A7 = min(e7™" gin 427"+ was) = gin (457 + )
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo -4
o~ 0 00 1 7
M=W=] ©c 4 0 oo
2 oo -5 0 oo
oo oo 00 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0
00
00

2
00

28 prow
8 Ho8 o
»o8 =3

oy wo

O W

~1

o O 01 =
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TS.
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

[zﬂ:min{o+oo,3+1,8+oo,oo+o, —4+6}]

0 3 8 | 0o | —4 0 3 8 2 _4
oo 0 oo |1 7 3 0 -4 A1 7
M=W=] cc 4 0 |oo]| o B=1 4 0 5 11
2 oo 5|0 o 2 -1 -5 0 -2
0o 0o 00 6 0 8 00 1 6 0

5 [
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

[zﬂ:min{o+oo,3+1,8+oo,oo+o, 74+6}]

|
oL ®

0 3 8 [ | 4 0 3 3 4

o~ 0 00 1 7 3 0 1 7

M=w=| © 4 0 |oo| o B=| « 4 5 11
2 o~ 5|0 00 2 -1 -5 0 -2

0o 0o o0 6 0 8 oo 1 6 0

5 [
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8 + 00,00 + 0, 74+5}]

0 3 8 oo -4 0 3 8 |2 -4
c© 0 00 1 7 3 0 —4 1 7
DW=—W=] co 4 0 oo oo @@= « 4 0 5 11
2 oo -5 0 o) 2 -1 -5 0 -2
c© oo oo 6 0 8 oo 1 6 0
0 3 -3 2 -4
3 0 -4 1 —1
=7 4 o 5 11
2 -1 -5 0 -2
8 5 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo | —4
o~ 0 00 1 7
co 4 0 oo | oo
2 oo -5 0| x
© oo oo 6 0
0 3 -3 2 -4
3 0 -4 1 -1

7 4 0o 5 11

2 -1 -5 0 -2
8 5 1 6 0

oY wo

o N WwWo

3 8 2 -4
0 -4 1 7
4 0 5 11
-1 -5 0 -2
oo 1 6 0
1 -3 2 -4
0 -4 1 -1
4 0 5 ?
1 -5 2
5 1 0

[eg“; =min{7 — 4,4+ 7,0 + 00,5 + 0o, 11 +0}]
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)
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3 8 2 -4
0 -4 1 7
4 0 5 11
-1 -5 0 -2
oo 1 6 0
1 -3 2 -4
0 -4 1 -1
4 0 5 |8
1 -5 2
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[eg“; =min{7 — 4,4+ 7,0 + 00,5 + 00, 11 +0}]

6.5: All-Pairs Shortest Paths

6



Computing L(™

(m) __ f (m—1) )
47 = min (457 + )

2 [0 = W = () — = [ since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
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Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [ since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)

= Computing L(™:
(m)
m (m— L'™ can be
tij = 12!2!1(£ '+ Wk’) {computed in O(n3)}
(L(mf1) W)= Z (4%*1) X Wk,/)

= The correspondence is as follows:

min & Z
+ & X
©x < 0
0 & 1
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Computing L("~) efficiently

&™ = min (K(-'Z_” + Wk,j)

= For, say, n = 738, we subsequently compute

L(1)’ L(2)7 L(S)’ L(4), o L7370 — |
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Computing L("~) efficiently

A™ = min (E,(fz_1) + w;q)

L 1<k<n

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /

L(1)7 L(2)7 L(S), L(4), o

7 L3
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Computing L("~) efficiently

(m) __ ; (m—1) )
47 = min (4370 + wi)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)’ L(4), o L7370

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)7 L(2), I_(4)7 o L(512), L(1024) _
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Computing L("~) efficiently

¢ = min
, 1<k<n

(¢

—1
,('Z )+ Wk,f)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)7 L(4), o L(737)

=L

= Since we don’t need the intermediate matrices, a more efficient way is

L L@@

I

L(512)7 [(1024) _

T~

[ Takes O(logn - n®). ]

6.5: All-Pairs Shortest Paths



Computing L("~) efficiently

(m) __ (m—1) .
47 = min (4370 + wi)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
LO @@ @ 0 —

= Since we don’t need the intermediate matrices, a more efficient way is
L(”, L(z)’ L(4), N L(512) [ (1024) _ L

rd

[We need L) = 1®.1® = |®.1 1 (see Ex. 25.1-4 J [ Takes O(logn - n®). ]
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Overview
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= Otherwise:
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How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort
= Otherwise:

1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

[Runtime: O(V-E+V-(Vlog V—i—E))]
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Theorem
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2. Shortest Paths are preserved
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~—— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

Proof of 1.
Let u.d and v.4 be the distances from the fake source s
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Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
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Correctness of Johnson’s Algorithm
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1. After reweighting, all edges are non-negative
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\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
Let p = (w, v, ..., Vk) be any path

= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).

= In the reweighted graph, the weight is

Z W(Vi—N Vf)

i=1
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Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
Let p = (w, v, ..., Vk) be any path

= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).

= In the reweighted graph, the weight is

k

S o w(vicr,vi) =Y (W(Vie1, Vi) + Vie1.0 — v.5)

i=1 i=1
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Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

——— Theorem
For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

\.

Proof of 2.
Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).
= In the reweighted graph, the weight is
k
S o w(vie,vi) = (W(Vie1, Vi) + Vie1.0 — vi.8) = w(p) + vo.0 — s O

i=1 i=1
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Comparison of all Shortest-Path Algorithms

] SSSP APSP negative
Algorithm
sparse | dense | sparse dense weights
Bellman-Ford V2 Ve Ve v4 v
Dijkstra ViogV | V? V2log V V3 X
Matrix Mult. - - VilogV | V3log V (V)
Johnson - - V2log V Ve / v

VA

but not negative weight cycles

[ can handle negative weight edges, }

5
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4
3
2
1
> X
(0,0) 1 2 3 4 5
(s = p1) x (P2 — pr) = (—=3,-1) x (-4,2) = —10
(Ps = p1) x (P2 — p1) = (-2,2) x (—4,2) =4
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Introduction

—— Computational Geometry ——————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line
segments etc.

\ J

~——— Applications N\
= computer graphics
= computer vision

= textile layout

VLSI design

Pa

P

A

[ Do these lines intersect?]

S
0 7: Geometric Algorithms
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Cross Product (Area)

y

Ap=(19
pi = (2a 1)
>» X
(0,0)
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[ How large is this area? ]

P :(2a1)

> .4

X1
2

p1><p2:det( ;z) =Xi)yo—Xoy; =2:-3—1-1=5
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Cross Product (Area)

[ How large is this area? ]

P :(2a1)

> .4

X1
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P2 X P1 = Y1Xo — Yo X1

p1><p2:det( ;z) =Xi)yo—Xoy; =2:-3—1-1=5
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Cross Product (Area)

[ How large is this area? ]

P :(2a1)

> .4

X1 Xo
= — =2-3-1-1=5
i y2) X1Y2 — X2 )1

p1><p2:det(
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Cross Product (Area)

[ How large is this area? ]

P :(2a1)

> .4

X1 Xo
= — =2-3-1-1=5
i y2) X1Y2 — X2 )1

p1><p2:det(

P2 X p1 = y1Xo — YoX1 = —(p1 X pP2) = =5

ey 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area?]

P :(271)

> .4

(0,0)

Alternatively, one could take the dot-product (but not used here):
p1 - p2 = [|p1]] - [Pl - cos(¢).

o X1 Xo
p1 X po = det (}/1 v

P2 X p1 = y1Xo — YoX1 = —(p1 X pP2) = =5

) :X1y27X2y1:2'371~1:5

() 7: Geometric Algorithms T.S. 4



Cross Product in 3D
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P2 ,D1-|-p2
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Cross Product in 3D

z
A
p1 x p2 = (0,0, Xx1)2 — Xz}/1)A
y
P p1+ p2
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Cross Product in 3D

p1 X p2 = (0,0, x1y2 — Xay1)

. e
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Using Cross product to determine Turns

p2:(173)

P = (271)

(0,0)
ps=(1,-1)
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Using Cross product to determine Turns

A
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<[ pi x po > 0: left (counterclockwise) turn ]
P = (27 1)
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(0,0)
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Using Cross product to determine Turns

A
pz = (1,3)
<[ pi x po > 0: left (counterclockwise) turn ]
P = (27 1)
) [ o .
0.0) , \ p1 X ps < 0: right (clockwise) turn
p3 - (1 ) _1)
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Using Cross product to determine Turns

A
pe = (1.9)

<[ pi x po > 0: left (counterclockwise) turn ]

PP = (2,1)

(,\\” [
s X. \ p1 x ps < 0: right (clockwise) turn ]
Pz = (1 ) _1)

Sl 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns

A
pz = (1,3)
<[ p1 x p2 > 0: left (counterclockwise) turn ]
B =(2,1)
= / I p1 x ps < 0O: right (clockwise) turn ]
_.-(00) X
- ps=(1,-1)
Sign of cross product determines turn! l
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Using Cross product to determine Turns

A
pz = (1,3)
{ p1 x p2 > 0: left (counterclockwise) turn ]
B =(2,1)
/ 0: right (clockwise) t
‘&05 / {k p1 x ps < 0O: right (clockwise) turn
ps = (1,-1)

| Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinear]

7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (origin shifted)

p1 = (47 2)

p0:(271)

e > x

(0,0) P =(3,0)
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Using Cross product to determine Turns (origin shifted)

p1 = (47 2)

p0:(271)

e > x
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Using Cross product to determine Turns (origin shifted)

A
<[ (p1 — po) x (P2 — po) > 0: left turn ]
P = (47 2)
Po = (27 1)
. >» X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

A p: = (3,4) [ 2,1) x (1,3) = 5 J
<[ (P1 — po) X (;(;/2 — po) > 0: left turn ]
pi = (4,2)
Po=(2,1)
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Using Cross product to determine Turns (origin shifted)

y
A ps = (3,4) [ 21) x (1,3) = 5 ]
<[ (P1 — po) % (;2 — po) > 0: left turn ]
p1:(472)
po=(2,1) ) <[ (p1 — po) x (ps — po) < O: right turn J
. >» X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

y
A pe = (3,4) [ 2.1) x (1,3) = 5 ]
<[ (P1 — po) % (;2 — po) > 0: left turn ]
p1 = (4,2) [ 2,1)x(1,-1)=-3 ]
po=(2,1) ) <[ (p1 — po) X (pl:—po) < 0: right turn J
. >» X
(0,0) ps = (3,0)
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Using Cross product to determine Turns (origin shifted)

A P = (3.4) ([ enxay-s |
<[ (P1 — po) X (;(;/2 — po) > 0: left turn ]
P 42) [ (2,1) x (1,-1) = -3 ]
po=(2,1) i <[ (1 — po) x (pl;/—po) < 0: right turn J
I (0,0) ps = (3,0) >
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Solving Line Intersection

J
A
Pa
4--
3+
2--
1 4
Ps
t t t t > X
0o 1 2 3 ~
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Solving Line Intersection

)

A

. P2 Pa

3.-

27 P+

1__

Ps3
t t t t t —>»X
0ol 1 2 3 4 5 7
TS.

S
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Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (b1 — Ps) % (ps — ps)

S
Sl 7: Geometric Algorithms TS.



Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa — ps) = (3,1) x (1,3)
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Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa—ps) =(3,1) x (1,3)=8
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Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa—ps) =(3,1) x (1,3)=8

(P2 — p3) x (ps — p3)

S
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Solving Line Intersection

X

4__

3+

2.-

1+

O (I B T T I e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (=1,3) x (1,3)

S
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Solving Line Intersection

X

4__

3+

2.-

1+

O (I B T T I e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (—1,3) x (1,3) = -6
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Solving Line Intersection

X

4__

3+

2.-

1+

O B I T R T e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (—1,3) x (1,3) = -6

S
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Solving Line Intersection

A
4-_
3+
2-_
1+
. : : : : —>»X
(0,0) 1 2 3 4 5
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 — p3) x (ps — ps) = (—1,3) x (1,3) = -6

Opposite signs = p1p2 crosses
(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8



Solving Line Intersection

)

A

. P2 P4

3.-

27 P+

1-_

P3

t t t t t —>»X
ool /32 3 4 5 7

Opposite signs = p1p2 crosses
(infinite) line through ps and p4

B
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Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (ps — p1) X (P2 — p1)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
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Solving Line Intersection

J
A
4__
3+
2.-
1+
. : : : : —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, 1) x (-4,2)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
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Solving Line Intersection

)
A
4__
3.-
2.-
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 — p1) = (=3, -1) x (-4,2) = =10

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
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Solving Line Intersection

)
A
4__
3.-
2.-
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 — p1) = (=3, -1) x (-4,2) = =10

(Pa — p1) x (P2 — p1)
g

[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
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Solving Line Intersection

A
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10
(ps = P1) (P2 = p1) = (~2,2) x (~4.2)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8



Solving Line Intersection

A
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10
(P = p1) (P2 = p1) = (~2,2) x (~4,2) =4

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8



Solving Line Intersection

X
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10

(Ps —pr) % (P2 — 1) = (~2.2) x (~4.2) = 4

Opposite signs = p1p2 crosses Opposite signs = pPsps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

ked
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Solving Line Intersection

X
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10

(s — 1) x (P2 — pr) = (~2,2) x (—4,2) = 4
= ~-

[Opposite signs = p1 P2 crosses} [Opposite signs = PaPs crosses}

(infinite) line through ps and ps4 (infinite) line through pi and p,

ked
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Solving Line Intersection

y
A
P2 P4
4._
3--
27 P+
1 4
Ps3
g ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

|5
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Solving Line Intersection

y
A
P2 P4
4-_
3--
21 P1
1-_
Ps
P1P2 N Papa #
p1P2 N Pspa 7
= ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

|5
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Solving Line Intersection

A

4__

P2 P4

P

* P1P2 N\ P3Pa 2 P12 N Paps # 0
* P1P2 1\ PaPa 2 P1P2 N Paps # 0

== ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,
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Solving Line Intersection

A

4__

P2 P4

Ps

* P12 N Pspa 2 PiP2 N Papa # 0

* P12 N Papa 2 P12 N PapPa # O

= Since p1p2 N Psps consists of (at most) one point
= P1P2 N Paps # 0

== ~N-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,
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Solving Line Intersection

y
A
P2 P4

4__

3--

27 P+

1__

P3
t t t t t —>»X
(0,0) 1 2 3 4 5
[ [P1P2 CrOSSES P34 ]

== ~o
[Opposite signs = p1p2 crosses} [Opposite signs = P3P crosses}

(infinite) line through ps and ps4 (infinite) line through pi and p,

%
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Solving Line Intersection

P

S
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Solving Line Intersection

)
A
P2

4.-

3--

2+ P4 e P

A

P3
N A'Y

'(00) T2 3 4 5 2F

S
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Solving Line Intersection

)
A
P2
4._
3._
21 Pa e P
Nl /-
Ps3
' ' A
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

S
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Solving Line Intersection

)
A
P2
4._
i \
21 Ps g -+ -|- - =8 Pi
| /-
Ps
' ' N,
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

S
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Solving Line Intersection

)
A
P2
4._
i \
21 Ps g -+ -|- - =8 Pi
| /-
Ps
' ' N,
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

(Pa —p1) x (P2 —p1) <0

S
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Solving Line Intersection

)
A
P2
4._
i \
2 Ps g -+ -|- - =8 Pi
| /-
Ps3
' ' ' ' ' ' A
0o 1 2 3 4 5 -
T (ps = p1) x (P2 —p1) <0

(Pa —p1) x (P2 —p1) <0

[ p1P2 does not cross pspq ]
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Solving Line Intersection

y

(0,0)

0: DIRECTION(p;, pj, Pk)
1: return (px — pi) X (B — i)

S
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Solving Line Intersection

y Pa
P2

(0,0)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

5
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

S
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3)

ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gk Wi = O
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

. SEGMENTS-INTERSECT(p; . ps, 3. p2)

o = DIRECTION(ps, pi, 1)

d> = DIRECTION(ps, ps, p2)

ds = DIRECTION(p1., p2, p3)

dy = DIRECTION(p1, p2, P4)

If dy-do < 0andds-dy < 0return TRUE

9 g1k WiV = O

S
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)
dy = DIREGTION(ps, pa, p1)
d> = DIRECTION(ps, ps, p2)
d; = DIRECTION(py1, p2, p3)
d; = DIRECTION(p1. 2., ps) — -
If dy - do < 0and ds - ds < O return TRUE{ In total 4 satisfying cond|t|ons!]

9 g1k WiV = O
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3)

ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)
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Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)
P4

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3) P1
ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)

ey 7: Geometric Algorithms TS.



Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

P4 p.
: SEGMENTS-INTERSECT (1, 02, Ps. Pa)
dy = DIREGTION(ps, pa, p1) P
d> = DIRECTION(ps, ps, p2)
ds = DIRECTION(p, p2, P3) P

ds = DIRECTION(p1, P2, ps)
If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)
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Outline

Convex Hull

7: Geometric Algorithms

TS.



Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull
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Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.
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Convex Hull

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

[ Smallest perimeter fence enclosing the points ]

e bl
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

el bt
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N

el bt
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N
= Input: set of points Q in the Euclidean space

el bt
7: Geometric Algorithms TS. 11



Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N
= Input: set of points Q in the Euclidean space

= Output: return points of the convex hull in counterclockwise order

e bl
7: Geometric Algorithms TS. 11




Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

L
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Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.
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Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.
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Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

A\N
[ can be solved by computing the Convex hull! ]
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate
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Graham’s Scan
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Basic Idea

= Start with the point with smallest y-coordinate
= Sort all points increasingly according to their polar angle
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Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
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Graham’s Scan
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Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
= If it does not introduce non-left turn, then fine

b bl
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
= If it does not introduce non-left turn, then fine v*

b bl
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine v/
= QOtherwise,
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added
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Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added
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Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

b bl
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Graham’s Scan

) [ Efficient Sorting by comparing (not computing!) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
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Graham’s Scan

®
y
O @] 0
—€)—>x

) [ Efficient Sorting by comparing (not computing!) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added
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Graham’s Scan

) [ Efficient Sorting by comparing (not computing!) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
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Graham’s Scan

( Use Cross Product! j

) [ Efficient Sorting by comparing (not computingT) polar angles ]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
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Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)

Let pg be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0
PUSH(po,S)
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S
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5
6
7
8

9:
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12:
13:
14:

GRAHAM-SCAN(Q)

Let py be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0 DN
PUSH(py,S) [ Takes O(nlog n) time ]
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S
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S=0 DN
PUSH(py,S) [ Takes O(nlog n) time ]
PUSH(p1,S)
PUSH(p2,S)
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Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)
: Let pp be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
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Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\
= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN

[ Improves Graham'’s scan only if h = O(log n)

\

[ There exists an algorithm with O(nlog h) runtime! ]

Lessons Learned

= cross product very powerful tool
(avoids trigonometry and divison!)

= take care of degenerate cases
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Linear Programming and Simplex

maximize
subject to

» Goto End

el bt
.

3X1 + X2 + 2X3
Xq + X2 + 3X3 S 30
2X4 + 2X + 5x3 < 24
4x4 + Xo +  2x3 < 36
X1, X2, X3 > 0
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, axp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;;
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.
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Travelling Salesman Problem: The 42 (49) Cities

© 00 =T D U LN

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
. Los Angeles, Calif.
. Phoenix, Ariz.

. Santa Fe, N. M.

. Denver, Colo.

. Cheyenne, Wyo.
24.
. Des Moines, Towa
26. Kansas City, Mo.

. Topeka, Kans.

. Oklahoma City, Okla.
. Dallas, Tex.

. Little Rock, Ark.

. Memphis, Tenn.

. Jackson, Miss.

33.

Carson City, Nev.

Omaha, Neb.

New Orleans, La.

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.
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Road Distances

43 77 73 4 H
24| 85 89 44 48 gg 41 33 28 29 22 23 35 69105102 73 56 88 99 BT 54 32 29
34 27 19 21 14 29 30 77114111 84 b4 96107 87 6o 0 37 8
26| 87 89 44 46 46 3o 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39 12 11
27| 91 g3 48 50 48 34 32 33 36 30 34 4§ 77115110 83 63 97 91 72 44 32 36 9 15 3

2] 8 TABLE I

i gg f RoAp D1sTANCES BETWEEN CITIES IN ApJUsTED UNits

H ISR The figures in the table are mileages between the two specified numbered cities, less 11,
6| 61 62 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 6o 16 17 18 6

8| 359 15 20 26 17 10

9| 62 66 2 25 31 25 15

10| 81 81 40 44 o 41 35 24 20

2105 10h 62 B3 by 47 36 4 Si 38 36 sp Buignig 8 66 o8 79 59 31 36 32 28 33 21 20

29117113 69 71 66 51 53 56 b1 §7 59 71 96130126 98 75 98 85 62 38 37 53 39 42 29 jo 12

30| o1 92 50 5T 46 30 34 38 43 49 6o 71103131 136109 9O 115 99 81 $3 61 62 36 34 24 28 20 2

31| 83 85 42 43 38 22 26 32 36 SI 63 75106142 140112 93126108 88 6o 64 66 39 36 27 31 28 28 8

32| 89 o1 55 55 SO 34 39 44 49 63 76 87120155150123100123109 86 62 71 78 52 49 39 44 35 24 15 12

33| 95 97 b3 63 36 42 39 56 60 75 86 97126160155 128 104128113 go 67 76 82 62 59 49 53 40 29 25 23 I

34| 74 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 124101 75 79 81 $4 50 42 46 43 39 23 14 14 20

35| b7 69 42 41 31 25 32 41 46 63 83 90130164 160133114 136134111 85 84 86 59 32 47 ST 53 49 32 24 24 3 9

36| 74 76 61 60 42 44 51 60 66 83102110147 185 179 155 133 159 146122 98105107 79 71 66 70 70 60 48 40 36 33 25 18

37| 57 39 46 41 25 30 36 47 52 71 93 98136 172172148126 lgﬁ 147124 121 97 99 71 65 59 63 67 62 46 38 37 43 23 13 17

38| 45 46 41 34 20 34 38 48 53 73 96 99137176 178 151 131 163159 135108 102103 73 67 bs 69 75 72 54 46 49 54 34 24 29 12

39| 35 37 35 26 18 34 36 46 51 70 93 97134171 176 151 129 161 163139 118 102 101 7T 65 65 70 82 78 58 0 6 62 41 32 38 2 ¢

40| 29 33 30 21 18 35 33 40 45 65 87 91 117166171 134125157156 139113 95 97 67 60 62 b7 79 82 62 53 59 66 45 38 45 27 15 6

41| 3 11 41 37 47 §7 §5 58 63 837105109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101108 88 B0 86 92 I 64 7T 54 41 32 25

42| 5 12 55 31 55 by b1 br 6b 84111113150 186 192 166 147 180 188 167 140124 119 9o 87 90 94107174 77 86 92 98 Bo 74 77 60 48 38 32 6
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
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The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

F1a. 16. The optimal tour of 49 cities.

ey 7: Geometric Algorithms TS. 23



Iteration 1: Objective 641
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Iteration 1: Objective 641, Eliminate Subtour 1,2 41,42
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Iteration 2: Objective 676
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Iteration 2: Objective 676, Eliminate Subtour 3 — 9
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Iteration 3: Objective 681
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Iteration 3: Objective 681, Eliminate Subtour 24,25, 26,27
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Iteration 4: Objective 682.5

14
lﬁ
o 13

0.50
16
’
1
18,
1

7: Geometric Algorithms

TS.

27



Iteration 4: Objective 682.5, Eliminate Small Cut by 13 — 17
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Iteration 5: Objective 686
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Iteration 5: Objective 686, Eliminate Subtour 10,11,12
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Iteration 6: Objective 686
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Iteration 6: Objective 686, Eliminate Subtour 13 — 23
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Iteration 7: Objective 688
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Iteration 7: Objective 688, Eliminate Subtour 11 — 23
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Iteration 8: Objective 697
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Iteration 8: Objective 697, Branch on x(13,12)
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Iteration 9, Branch a x(13,12) = 1: Objective 699 (Valid Tour)
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Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.9
with Simplex, Mixed Integer & Barrier Optimizers

5725-A@6 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-¥55 5655-Y21

Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help® for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX=> read tsp.lp

Problem 'tsp.lp’' read.

Read time = @.8@ sec. (@.86 ticks)

CPLEX= primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = @.8@ sec. (@.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective 151@.eeeeee
Iteration: 98 Objective = 923.000000
Iteration: 155 Objective 711.e00000

Primal simplex - Optimal: Objective = 6.990000R000e+02
Solution time = @.e@ sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

crLEx= I

e bl
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CPLEX> display solution variables —

Variable Name Solutien Value
x_2_1 1.000000
x_42_1 1.000000
x_32 1.000000
x_4_3 1.000000
x_5_4 1.000000
x_6_5 1.000000
x_7_6 1.000000
x_8_7 1.000000
x 9.8 1.000000
x_10_9 1.000000
x_11_1@ 1.000000
x_12_11 1.000000
x_13_12 1.000000
x_14_13 1.000000
x_15_14 1.000000
x_16_15 1.000000
x_17_16 1.000000
x_18_17 1.000000
x_19_18 1.000000
x_20_19 1.000000
x_21_20 1.000000
x_22_21 1.000000
x_23_22 1.000000
x_24_23 1.000000
x_25_24 1.000000
x_26_25 1.000000
x_27_26 1.000000
x_28_27 1.000000
x_29_28 1.000000
x_30_29 1.000000
x_31_30 1.000000
x_32_31 1.000000
x_33_32 1.000000
x_34_33 1.000000
x_35_34 1.000000
x_36_35 1.000000
x_37_36 1.000000
x_38_37 1.000000
x_39_38 1.000000
x_40_39 1.000000
x_41_40 1.000000
x_42_41 1.000000

A1l other variables in the range 1-861 are 0.
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Iteration 10, Branch b x(13,12) = 0: Objective 701
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

= Don't forget to visit the online feedback page!

= Please send comments on the slides to:
tms4l@cam.ac.uk
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