[De]
. [FE E EE

NS 1 \8C 1\ OO 1\ E_s \ SO 1 \EES
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

credit

2 //\/

0 i s ; 0 ; s
5.1: Amortized Analysis
Frank Stajano

Thomas Sauerwald

Lent 2016

UNIVERSITY OF
» CAMBRIDGE

Use of Amortized Analysis

. [@ [fE FEOFE

NCEEERGCEEERECEY I

A GCERDY

PUSH(T) PUSH(B) PUSH(X) POP

PUSH(D) MULTIPOP(3)

(Amortized Analysis)

i.n'-. 5.1: Amortized Analysis

TS.

Use of Amortized Analysis

—
NCEEERGCEEERECEY B 1\ 9SS _x \GEa)
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

@ @ Q)
@@ ©® 0
00 <)

Amortized Analysis

next week

(Fibonacci Heaps)

;,I,, 5.1: Amortized Analysis TS.

Use of Amortized Analysis

—
NCEEERGCEEERECEY B 1\ 9SS _x \GEa)
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)

Amortized Analysis

next week

Fibonacci Heaps

~ two weeks

(Finding Shortest Paths)

;,!',. 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

aa = 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations
= PUSH (S, x)

'—.a = 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S

~__

PUSH(S,X)

5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

~__

PUSH(S,X)

‘».a = 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

~__

PUSH(S,X)

',,E;, 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)
= pops the top of (a non-empty) stack S

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
g

\;,I,, 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
g

\;,I,, 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
g

\;,I,, 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)
= pops the k top objects (S non-empty)

B
BB

N

PUSH(S,X)

BE
B

POP(S)

BEEE

|

N

MULTIPOP(S,4)

\;.!:.. 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

B
BB

N

PUSH(S,X)

BE
B

POP(S)

BEEE

|

N

MULTIPOP(S,4)

\;.!'.. 5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k} N

1: while not S.empty() and k > 0

2: POP (S)

(0: MULTIPOP (S, k)
tB: k=k-1

B
BB

N

PUSH(S,X)

BE
B

POP(S)

BEEE

|

N

MULTIPOP(S,4)

i
o 0 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

)

B
BB

N

PUSH(S,X)

BE
B

POP(S)

BEEE

|

N

MULTIPOP(S,4)

i
o 0 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

)

Simple Worst-Case Bound (stack is initially empty):

= |largest cost of an operation: n
= costis at most n-n=n?

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
g

BEEE

N— —

N

MULTIPOP(S,4)

£ K

5 [
$;-, 5.1: Amortized Analysis

TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?
N

)

Simple Worst-Case Bound (stack is initially empty):

= |largest cost of an operation: n

= cost is at most n- n = n? (correct, but not tight!)

N

PUSH(S,X)

[X]
Ny

POP(S)

g

B
g

BEEE

N— —

N

MULTIPOP(S,4)

£ K

5 [
$;-, 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

~;.i'- 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

S
PUSH(T)

\;.!:.. 5.1: Amortized Analysis TS.

Sequence of Stack Operations

\;.I.'- 5.1: Amortized Analysis

TS.

Sequence of Stack Operations

NP
N

PUSH(T) PUSH(B)

5.1: Amortized Analysis

TS.

Sequence of Stack Operations

- I o
NN

PUSH(T) PUSH(B)

5.1: Amortized Analysis TS.

Sequence of Stack Operations

PUSH(T) PUSH(B) PUSH(X)

5.1: Amortized Analysis

TS.

Sequence of Stack Operations

5.1: Amortized Analysis TS.

Sequence of Stack Operations

NEEDEEN il PN Sl PN 5
//\/\/

PUSH(T) PUSH(B) PUSH(X) PO

5.1: Amortized Analysis TS.

Sequence of Stack Operations

NN i RN i PR L PN i1 B

/’/\/\/

PUSH(T) PUSH(B) PUSH(X) PO

0 5.1: Amortized Analysis TS.

Sequence of Stack Operations

NN i RN i PEEN L PR i B
S e e S e

PUSH(T) PUSH(B) PUSH(X POP PUSH(D)

0 5.1: Amortized Analysis TS.

YEY

Sequence of Stack Operations

NEIPEEN i RN P

X]
m

5

NEiD

/’/\/\/\/

PUSH(D)

PUSH(T) PUSH(B) PUSH(X

POP

5 5.1: Amortized Analysis

TS.

YEY

Sequence of Stack Operations

NEIPEEN i RN P

X]
m

5

NEiD

/’/_/\/\/\/

PUSH(D) MULTIPOP(3)

PUSH(T) PUSH(B) PUSH(X

POP

5 5.1: Amortized Analysis

TS.

YEY

Sequence of Stack Operations

[x] [0]
N— \._/ |_| m m \m/

/’/_/\/\/\/

PUSH(T) PUSH(B) PUSH(X POP PUSH(D) MULTIPOP(3)

By 5.1: Amortized Analysis TS. 4

A new Analysis Tool: Amortized Analysis

Amortized Analysis

\;.!:.. 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

\;.!:.. 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

[Data structure operations (Heap, Stack, Queue etc.) J

Amortized Analysis V//
= analyse a sequence of operations

5 [
5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

\;.!:.. 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis
= analyse a sequence of operations

= show that average cost of an operation is small
\

[This is not average case analysis!]

t‘n:‘n
o 5 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method

\;.I,'n 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques
= Aggregate Analysis
= Potential Method

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @

;,I,, 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average

yi
/!

[Even though operations may be of different types/costs]

\;.!:.. 5.1: Amortized Analysis TS.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

0]
I
"

MULTIPOP(3)

o oy 5.1: Amortized Analysis T.S.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

0]
I
"

MULTIPOP(3)

o oy 5.1: Amortized Analysis T.S.

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' Every item that is POPPED
had to be PUSHED earlier!
N—
_/Y

MULTIPOP(3)

o oy 5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

IE' % Every item that is POPPED]
had to be PUSHED earlier!

-

_/ \/

PUSH(B) MULTIPOP(3)

o oy 5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ Every item that is POPPED
had to be PUSHED earlier!
N—

\/ \/
PUSH(B) MULTIPOP(3)
T(n) <

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TpusH(N)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ Every item that is POPPED

had to be PUSHED earlier!
FRARNERCANIANTS =

N—

_/ _/
PUSH(B) MULTIPOP(3)
MULTIPOP(k) contributes min{k, |S|} to Tpop(n)]
/4
T(n) < Tpor(n) + TeusH(N)
5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TeusH(N) < 2 - TpyswH(N)

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ A Every item that is POPPED 1
had to be PUSHED earlier!

-

\/ \/

PUSH(B) MULTIPOP(3)

T(n) < Teop(n) + TpusH(n) < 2- TpysH(n) < 2 n.

5.1: Amortized Analysis TS. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

@ % Every item that is POPPED]
had to be PUSHED earlier!

-

_/ \/

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + Teusk(n) < 2 Tpysp(n) < 2 n.
1
Aggregate Analysis: The amortized cost per operation is In) <2
5 [
o B4

n

&5

5.1: Amortized Analysis TS. 6

Second Technique: Potential Method

Potential Method

\;.!.'- 5.1: Amortized Analysis

TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure
to cover up for expensive operations

\;,I,, 5.1: Amortized Analysis TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

\;.!:.. 5.1: Amortized Analysis TS.

Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

;,I,, 5.1: Amortized Analysis TS.

Stack as a coin-operated machine (p. 83)

You ru ST O""-Lu y
INSERT A CDIN
To OPERATE THE (—_:9]\
MACHINE Fol o)
EACH SINGWE L:—j
PUSH oft. Pob
o
)
o
o L

EACH (TeTt OoN
THE STAC wAS

N\1’« AMDITIONAL

DN THMED To (T

I Ytou Pof
e 1ten, Yov
GET TO keed T™E W

BT f cou PusH AN
1Ten, YYov AUST
PROVID € THE cotn

5.1: Amortized Analysis

TS.

Stack and Coins

N—
credit
3 +
2 4
1 4
0 1 2 3 4 5 6
TS.

i
ol 5.1: Amortized Analysis

Stack and Coins

N—
\89/"
PUSH(T)
credit
3 +
2 4
1 4
1 2 3 4 5 6
TS.

5.1: Amortized Analysis

Stack and Coins

credit

N4

5.1: Amortized Analysis

Stack and Coins

. =
oo\ oo

PUSH(T) PUSH(B)

credit

N4

5.1: Amortized Analysis

Stack and Coins

Bo
\Tel

2

, TS

ERCEENCTY

PUSH(T) PUSH(B)

credit

N4

Y 5.1: Amortized Analysis

Stack and Coins

Bo
TS TS|

NSS 7\ 8 1\ eC
PUSH(X)

PUSH(T) PUSH(B)

2

credit

Y 5.1: Amortized Analysis

Stack and Coins

X

Bo

Bo

To

N 2

\Tel

\Tel

NN NCY

PUSH(T)

credit

PUSH(B)

PUSH(X)

N4

Y 5.1: Amortized Analysis

Stack and Coins

X9
Bo Bo
TS| 1TSS

//\/\PP/"

PUSH(B)

PUSH(T)

credit

PUSH(X)

5.1: Amortized Analysis

Stack and Coins

XS
BoS BoS Bo
. , \Te, \Te, L
PUSH(T) PUSH(B) PUSH() POP
credit
3_
| \

5.1: Amortized Analysis

Stack and Coins

XS
BoS BoS Bo
. , \Te, \Te, L
PUSH(T) PUSH(B) PUSH() POP
credit
3_
| \

5.1: Amortized Analysis

Stack and Coins

XS
BoS BoS Bo
N , R TS R R TS R R TS "
PUSH(T) PUSH(B) PUSH(POP PUSH(D)
credit
3T \/o

-
;
\
o4
w4
~ 4
o4

Y 5.1: Amortized Analysis

Stack and Coins
XS Do
Bo Bo Bo BS
\ / \Tel \Te, \Te, \Te,
_/ _/ _/ NI ANCEVY
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D)
credit
3 1 °
) \/

5.1: Amortized Analysis

PUSH(X)

POP

Stack and Coins
XS Do
Bo Bo Bo BS
\ / \Tel \Te, \Te, \Te
\/ \/ \/ NI ANCEF ANV
PUSH(D) MULTIPOP(3)

PUSH(T)

credit

PUSH(B)

5.1: Amortized Analysis

Stack and Coins
XS Do
Bo Bo Bo BS
\ / \Tel \Te, \Te, \Te,
\/ \/ \/ NI ANCEVY \egy
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)
credit
3 4
271 /\/
1 4
0 1 2 3 4
TS.

5.1: Amortized Analysis

Stack and Coins
XS Do
Bo Bo Bo BS
\ / \Tel \Te, \Te, \Te,
\/ \/ \/ NI ANCEVY \egy
PUSH(T) PUSH(B) PUSH(X) POP PUSH(D) MULTIPOP(3)
credit
3 4
271 /\/
1 4
0 1 2 3 4
TS.

5.1: Amortized Analysis

Stack and Coins
XS De
BS BS Bo Bo
AN / A\ T e y A\ T e y N T e " A\ T e y \
NCEP R GCE R G R E I AGCEDY
PUSH(T) PUSH(B) PUSH(X) \ POP PUSH(D) MULTIPOP(3)

[Every operation costs at most two coins! j

5.1: Amortized Analysis

N4

Potential Method in Detail

= ¢ is the actual cost of operation i

'..a = 5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

‘».a = 5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i

3

Cc < Ei, Ci = E/ or
¢ > ¢; are all possible!

]

J

.;,I,, 5.1: Amortized Analysis

TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

',,a By 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= ¢ is the amortized cost of operation i

= @, is the potential stored after operation / ($o = 0)
~

[Function that maps states of the data structure to some value

\;,!;, 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

'.,a By 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

E,’ =Ci + ((b,' — ¢,'_1)
7 S~

= PUSH(): ¢ =1 = PUSH(): &; — ;1 =1
= POP: ¢ =1 = POP: &, — ;1 = -1

|

.;,I,, 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

'.,a By 5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n
Zai = Z(Ci+¢i —®iq) =
i=1 i=1

5.1: Amortized Analysis TS.

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n n
ZEiZ Z(Ci+¢/—¢i—1): ZCI+¢n—¢0
i = i=

',,a oy 5.1: Amortized Analysis TS. 10

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

Ci=¢Ci+(®— i)

n n n
Zai = Z(Ci+¢/—¢i—1) = ZCI+¢n
i=1 i=1 i=1

',,a oy 5.1: Amortized Analysis TS. 10

Potential Method in Detail

= ¢ is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation / ($o = 0)

E,’ =Ci + ((b,' — ¢i—1)

n n n
Zai = Z(Ci+¢i_¢i—1) = ZCI+¢n
i=1 i=1 i=1 /]

If &, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

;,I,, 5.1: Amortized Analysis TS. 10

Stack: Analysis via Potential Method

s

'—.a = 5.1: Amortized Analysis

TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)

r,,!',. 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH

~;.g'.. 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢ =1 O
O O
o O
NEPENER
~—

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH i
= actual cost: ¢; = 1 O .
) O O
= potential change: ¢; — ®;_4 = 0 o
NEPENER
_}Y i—1

PUSH

5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH ®;
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 O o
NEPENER
~_ i—1i

PUSH

5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH ®;
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 O o
. ~ NEPENER
= amortized cost: ¢; = ; :
A i—1i

PUSH

5.1: Amortized Analysis

TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH i
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 |
. A~ NN
= amortized cost: G; = ¢+ (®; — ®;) = ~_ i1

PUSH

5.1: Amortized Analysis

TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH i
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 |
. A~ NEPENER
= amortized cost: G; = i+ (®; —d;_1) =1+1=2 ~_ i—1i

PUSH

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
. PUSH N
= actual cost: ¢ =1 O
! o d
= potential change: ¢; — ®;_; =1 O o
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 o b
{ Ui =L i i-1) — = ~_
o PUSH
r POP .

\;.I,'n 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)
. PUSH N
= actual cost: ¢ =1 O
! O O
= potential change: ¢; — ®;_; =1 O o
= amortizedcost: ¢ =¢i+ (P —di_1)=1+1=2 a2 &
1Ci=GC+ (i~ 1—1) =1+1= ~_
- o PUSH
r POP .
mci=1
O
o O
NEPENER
.) —
POP

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH Y ®i
= actual cost: ¢; = 1 - B "
= potential change: ®; — ®; 1 = 1 H ﬂ
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
o PUSH
POP w i
"G = 1 .
O
"0 -9 = g G
N PR P N
~— =1
/ POP

5 [
E:E 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH Y ®i
= actual cost: ¢; = 1 - B "
= potential change: ®; — ®; 1 = 1 H ﬂ
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
o PUSH
POP w i
mci=1
O
=0 -0 =1 g G o
\D-' \D-' >
~_ i—1i
/ POP

5 [
E:E 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH Y ®i
= actual cost: ¢; = 1 - B "
= potential change: ®; — ®; 1 = 1 H ﬂ
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
o PUSH
POP w i
mc=1
O
Bel =,
" Ci=Cit (P —Pig) =)~ R
POP

5 [
E:E 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
PUSH Y ®i
= actual cost: ¢; = 1 - B "
= potential change: ®; — &;_; = 1 H ﬂ
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
o PUSH
POP w i
mc=1
O
Bel =,
" C=C+(®i—P_1)=1-1=0] ~_ R
POP

5 [
E:E 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
. PUSH N ®;
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
~ o PUSH
e POP) ¢’i
mci=1
O
Bel
'aiCj+(¢/—¢i,1):1—1:0 ~_ k i1

l Stack is non-empty!j g PoP

5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
- PUSH Y ®i
= actual cost: ¢; = 1 - B "
= potential change: ®; — ®; 1 = 1 H ﬂ
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
\ o PUSH
- POP w i
mci=1
O
Bel
L "C=C+(P—®4)=1-1=0] ~_ R
POP
~——— MULTIPOP (k) \

5 [
E:E 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
p PUSH \ Y
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 ~ AT ?
~ o PUSH
- POP \ ®;
mci=1
O
" ¢,‘ — ¢/,1 =-1 O O \
\D-' \D-' >

. a:Ci+(¢/—¢i,1):1—1:0

~— f=ti
~ o POP
—— MULTIPOP(k) N\ O
= ¢ = min{k, |S|} H
O O
~—7
MULTIPOP(3)

\.

v
i
o 0 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
p PUSH \ Y
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 ~ AT ?
~ o PUSH
- POP \ ®;
mci=1
O
" ¢,‘ — ¢/,1 =-1 O O \
\D-' \D-' >

. a:c,-+(¢;—d>;,1):1—1:0

T i—1i
- o POP
>
~—— MULTIPOP (k) N\ O .
= ¢ = min{k, |S|} H
PSP a4 o
N =1
MULTIPOP(3)

\.

J
5 [
o 0 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
p PUSH \ Y
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 ~ AT ?
~ o PUSH
- POP \ ®;
mci=1
O
" ¢,‘ — ¢/,1 =-1 O O \
\D-' \D-' >

. a:c,-+(¢;—d>;,1):1—1:0

~— f=ti
~ o POP
;i
— MULTIPOP(k) N O
* ¢ = min{k, |S|} H \
= ¢/—¢[,1 :—min{k,|S|} \D., \D.,
~_ i—1 i
MULTIPOP(3)

\.

J
5 [
o 0 5.1: Amortized Analysis TS. 11

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
p PUSH \ Y
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 ~ AT ?
~ o PUSH
- POP \ ®;
mci=1
O
" ¢,‘ — ¢/,1 =-1 O O \
\D-' \D-' >

. a:c,-+(¢;—d>;,1):1—1:0

T i—1i
- o POP
®;
——— MULTIPOP (k) \ 0
* ¢ = min{k, |S|} H \
=P — b4 :—min{k,|S|} I O

" G=0it (0 - i) = ~—7 =t
MULTIPOP(3)

J
5 [
o 0 5.1: Amortized Analysis TS. 11

\.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
p PUSH \ Y
= actual cost: ¢; = 1 - H "
= potential change: ¢; — ®;_; =1 E H
= amortized cost: ¢ = ¢+ (¢ —®i_1) =1+1=2 ~ AT ?
~ o PUSH
- POP \ ®;
mci=1
O
" ¢,‘ — ¢/,1 =-1 O O \
\D-' \D-' >

. a:c,-+(¢;—d>;,1):1—1:0

T i—1i
- o POP
®;
——— MULTIPOP (k) \ 0
* ¢ = min{k, |S|} H \
=P — b4 :—min{k,|S|} I O

MULTIPOP(3)

5 [
5.1: Amortized Analysis TS. 11

* G =G+ (P — ®_1) = min{k,|S|} — min{k, |S|} =0 N =i

\.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
- PUSH N @
= actual cost: ¢; = 1 - B "
= potential change: ¢; — ®;_; =1 H E
= amortized cost: G = G+ (®; —®;_1) =14+1=2 ~ it
\ X PUSH
Amortized Cost <2 = T(n) < 2n
—— POP Y
mci=1
O
Bel
'5/':0/+(¢/—¢i71):1—1:0 ~_7 k i—1 i
~ o POP
®;
~——— MULTIPOP (k) N O
* ¢ = min{k, |S|} B \
= ¢,‘—¢[,1 :—min{k,|S|} \D., \D.,
* G =G+ (¥ — 9i1) = min{k, S|} — min{k,|S|} = 0 S ot
) MULTIPOP(3)

5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation (= # coins)]
- PUSH »;
= actual cost: ¢; = 1 O "
= potential change: ¢; — ®;_; =1 E E
= amortized cost: G; = ¢i+ (®; — Dj_1) =1+1=2 \D;_j‘ll i
 rop Amortized Cost < 2 = T(n) <2n e o
o= (n/2PUSH, n/2 POP = T(n) < n) O ~
= ¢,‘ — ¢/,1 = -1 — | O
-a:Cj+(¢/—¢/,1):1—1:0 J ‘D;_f" -_i—'1_;'_)
~ POP
— MULTIPOP(k) - @
= ¢ = min{k, |S|} B \
" ®; — ®;_y = —min{k, |S|} I O
= G =ci+ (¥ — di_1) = min{k,|S|} — min{k,|S|} =0 ~— =t

MULTIPOP(3)

5.1: Amortized Analysis TS. 11

Second Example: Binary Counter

Binary Counter

- Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

‘..a = 5.1: Amortized Analysis

TS.

Second Example: Binary Counter

Binary Counter

- Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

A3 Al2] A[1] A[0]

(] o] 1] [1]

‘».a = 5.1: Amortized Analysis

TS.

11

Second Example: Binary Counter

Binary Counter

= Array Alk — 1], A[k — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

A3 Al2] A[1] A[0]

EINCIEIRET Y

INC

‘».a;. 5.1: Amortized Analysis

TS. 12

Second Example: Binary Counter

Binary Counter

- Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC
= increases the counter by one

A[3]Al2] A[1] A[0]

EINCIEIRET Y

INC

r,,!',. 5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter

« Array Ak — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC
= increases the counter by one

A[3] A[2] A[1] A[0]

A fo] [l [

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

~;.g'.. 5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3] A[2] A[1] A[0]

A fo] [l [

~

: INC(A)

8 500 . INC

: while i <k and A[i]==

A[i]l] =0

g i=i+1

FRRI=E A[3] A[2] A[1] A0]

(][] [o] [o] 2

b WNDREO

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
« Array Ak — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: 7?

/)

b WNDREO

: INC(A)

:i=0

: while i <k and A[i]==
A[i] =0

i=i+1

: A[i] =1

A[3]Al2] A[1] A[0]

A fo] [l [

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

5.1: Amortized Analysis

TS.

Second Example: Binary Counter

Binary Counter

« Array Ak — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: < k

A[3]Al2] A[1] A[0]

A fo] [l [

INC

A[3] A[2] A[1] A[0]

(][] [o] [o] 2

;,I,, 5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3] A[2] A[1] A[0]

= total cost: < k
EKICIREIREN

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

(What is the total cost of a sequence of n INC operations?)

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter

« Array Ak — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: < k

(What is the total cost of a sequence of n INC operations?)

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n- k

A[3]Al2] A[1] A[0]

A fo] [l [

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

5.1: Amortized Analysis

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one A[3] A[2] A[1] A[0]

= total cost: < k
EKICIREIREN

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

(What is the total cost of a sequence of n INC operations?)

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

5.1: Amortized Analysis TS. 12

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], A[k — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: 3K A[3]A[2] A[1] A[0]
number of flips (smallest index of a zero) @ 11

INC

A[3]A[2] A[1] A[0]

(][] [o] [o] 2

(What is the total cost of a sequence of n INC operations?)

Simple Worst-Case Bound:

= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

5.1: Amortized Analysis TS. 12

Incrementing a Binary Counter

Total

Counter| y2 ais] Als] AWl A3l ARl AN A] | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Total

Counter| y2 ais] Als] AWl A3l ARl AN A] | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter| 2 als] Als] AWl A8l ARl Al Ap] | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1

5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter| 2 als] Als] AWl A8l ARl Al Ap] | O
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1

5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Counter
Value

Total
Cost

0
1
2

5.1: Amortized Analysis

Incrementing a Binary Counter

Counter
Value

Total
Cost

0
1
2

5.1: Amortized Analysis

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 alel Als] A4l ARl A2l ANl ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 alel Als] A4l ARl A2l ANl ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al AR | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al AR | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
5.1: Amortized Analysis TS. 13

Incrementing a Binary Counter

Coumter| 71 alel Als] A4l ARl A2l ANl ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
5.1: Amortized Analysis Ts. 13

Incrementing a Binary Counter

Coumter| 71 alel Als] A4l ARl A2l ANl ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
5.1: Amortized Analysis Ts. 13

Incrementing a Binary Counter

Counter| Jo1 alg] Al A4l ABl ARl Al Ao | O
Value Cost
0 o 0o o0 o0 o o o o 0
1 o o o o o o0 0 1 1
2 o o o o 0o o0 1 0 3
3 o o o o 0o o 1 1 4
4 o o o o o 1 0 0 7
5 o o o o o 1 0 1 8
6 o o o o o 1 1 0 10
7 o o o o o 1 1 1 11

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Counter| Jo1 alg] Al A4l ABl ARl Al Ao | O
Value Cost
0 o 0o o0 o0 o o o o 0
1 o o o o o o0 0 1 1
2 o o o o 0o o0 1 0 3
3 o o o o 0o o 1 1 4
4 o o o o o 1 0 0 7
5 o o o o o 1 0 1 8
6 o o o o o 1 1 0 10
7 o o o o o 1 1 1 11

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter

Coumterl 71 el Als] A4l ARl A2l Al AR | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumterl 71 el Als] A4l ARl A2l Al AR | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l ANl APl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l ANl APl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
1 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Coumter| 71 el Als] A4l ARl A2l Al ARl | 0@
Value Cost
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
1 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

Al6] A[S] A[4] AB] A2l ATl A0]

A7]

Counter
Value

10

11

12
13

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

Al6] A[S] A[4] AB] A2l ATl A0]

A7]

Counter
Value

10

11

12
13

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25

Al6] A[B] A[4] AB] A2l ANl A[0]

A7]

Counter
Value

10

11

12
13
14

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25

Al6] A[B] A[4] AB] A2l ANl A[0]

A7]

Counter
Value

10

11

12
13
14

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25
26

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total
Cost

10

11

15
16
18
19
22
23

25
26

Al6] A[B] A[4] AB] A2l A[T] A0]

A7]

Counter
Value

10

11

12
13
14
15

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23

25
26
31

Al0]

Alt]

Al2]

A3]

Al4]

Al5]

Al6]

A7]

Counter

Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23

25
26
31

Al0]

Alt]

Al2]

A3]

Al4]

Al5]

Al6]

A7]

Counter

Value

10

11

12
13
14
15
16

13

TS.

5.1: Amortized Analysis

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter | ot Total
Value Al A2l Al :A[O]: Cost
0 0 0 0 |01 0
1 0 0 0 |
2 0 0 1T 10| 3
3 0 0 1 o4
4 0 1 0 10, 7
5 o 1 0 11! 8
6 o 1 1 .0 10
7 0 1 101 1

| Ep————

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter ! Total
Value Al A2l :A[1]: Al0] Cost
0 0o 0 [0 0 0
1 0 0 10 1
2 0 0 "1, 0 3
3 0 0 Do 4
4 0 1 10, 0 7
5 o 1 0! 1 8
6 0 1 11" 0 10
7 0 H N 11
| E—

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter et ! Total
Value AB :A[Q]; Al Ad] Cost
0 0o jo 0 0 0
1 0 1o 0 1
2 I 3
3 0 10, 1 1 4
4 0o 1! 0 0 7
5 0 1! 0 1 8
6 0o 1! 1 0 10
7 0 1! 1 1 11
!

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter | 1 Total
Value :A[3]: A2l ATl A0 Cost
o [fo. 0 o 0 0
1 100 0 1 1
2 1o o0 1 0 3
3 10, 0 1 1 4
4 o' 1 o o0 7
5 Lo! 1 0 1 8
6 0! 1 1 0 10
7 Lo 1 1 11
| E—

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments

5 [
5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

t‘n:‘n
o 5 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value ARl A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

~;.g'.. 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value ARl A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

_n.

k
T(n) <

> 2]

~;.g'.. 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

\;.I.. 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

_n.
Y

k—
T(n) <

5 ﬂ— —1—1 = L i —I—L
2:_ 2 ' 94 ok—1
i=0 i=0

\;,!4,. 5.1: Amortized Analysis TS. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2 increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

I

k—
T(n) <

k—
i=0 \~ J i=0 2!

_n.

Y

n

ro(

1

’
+ot o+

2

4

5.1: Amortized Analysis

TS.

Incrementing a Binary Counter: Aggregate Analysis

Counter Total
Value A A2l Al AlO] Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[/] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | ;| times

[Aggregate Analysis: The amortized cost per operation is ”) <2.
~

k—1 k—1
n n 1 1 1
T(n)ﬁé {EJSE EZ '(1+E+Z+"'+W)§2-n.
5.1: Amortized Analysis TS. 14

Binary Counter: Analysis via Potential Function

;=

;,a By 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of /

5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D=0y & >0 |

4 ; . . ;
®; = # ones in the binary representation of /

;,I,, 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over

;,!',. 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1

1100

\;,I,, 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1

1100

e

1101

\;,I,, 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

®o=0v & >0y |

(74
®; = # ones in the binary representation of i]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_y = lINC °
1101 i—1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

®o=0v & >0y |

(74
®; = # ones in the binary representation of i]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
1101 =1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D=0y & >0 |

(74
®; = # ones in the binary representation of i]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: ¢; =

1101 =1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D=0y & >0 |

1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over

= actual cost: ¢; = 1 1100
= potential change: ¢; — ®;_; =1 lINC
= amortized cost: ¢ = ¢+ (¢, — ;1) =

1101

P;

\;.!:.. 5.1: Amortized Analysis TS.

-

i—1i

Binary Counter: Analysis via Potential Function

D=0y & >0 |

(74
®; = # ones in the binary representation of i]
Increment without Carry-Over ®
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: G = ¢+ (¢ —®;_1)=1+1=2

1101 =1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

Go=0v & >0y |
(74
®; = # ones in the binary representation of i]
Increment without Carry-Over ®
e 1100 !

= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: G = ¢+ (¢ —®;_1)=1+1=2

1101 i—1

r Increment with Carry-Over

0

,,!;.. 5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

®o=0v & >0y |
(74
®; = # ones in the binary representation of i]
Increment without Carry-Over Y
o 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
. i (CG=C+(Pi—di_{)=1+1=2
amortized cost: G = ¢+ (®; — ®;_1) =1+ 1101 AP
0111

Increment with Carry-Over
= ¢; = x + 1, (x lowest index of a zero)

\;,!', 5.1: Amortized Analysis TS. 15

=

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1
= potential change: ®; — ¢,y =1
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

Increment with Carry-Over

= ¢; = x + 1, (x lowest index of a zero)

1100

e

1101

0111

me

1000

P;

5.1: Amortized Analysis

TS.

-

i—1i

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% : . . .
®; = # ones in the binary representation of i

Increment without Carry-Over
= actual cost: ¢; = 1 11000
= potential change: &, — &;_1 =1 l,NC
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

1101

Increment with Carry-Over o0 1
= ¢; = x + 1, (x lowest index of a zero) lINC
=0 -0 =

1000

5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1

=G+ (P —Pq)=

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

Increment with Carry-Over o0 1 ”
= ¢i = x + 1, (x lowest index of a zero) lmc \
O —b_ 1 =—x+1
"CG=C+ (P —Piq)=1T+x—x+1

1000 i—1i

\;,!.', 5.1: Amortized Analysis TS. 15

=

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over Y
1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -

amortized cost: G = ¢+ (¢, — ;1) =1+1=2 - ,
1101 i—1i

®;
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc \
=0 -0y =—x+1
1000 =1

"G=C+(P—Piq)=1+x—x+1=2

\;,!.', 5.1: Amortized Analysis TS. 15

=

Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174
®; = # ones in the binary representation of i]
Increment without Carry-Over o
e 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: C; = ¢+ (¢, — Pi_1) =1+1=2 ——
1101 i—1i
SRS
0111 1%
Increment with Carry-Over
= ¢ = x + 1, (x lowest index of a zero) lmc @ \
DU 1000 1
~ I — 1
"C=C+(Pi—P_4)=14+x—x+1 =2 o

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

®o=0v & >0y |
174
®; = # ones in the binary representation of i]
Increment without Carry-Over o
e 1100 !
= actual cost: ¢; = 1
= potential change: ®; — ®;_¢ =1 lINC -
= amortized cost: C; = ¢+ (¢, — Pi_1) =1+1=2 ——
1101 i—1i
SRS
0111 1%
Increment with Carry-Over
= ¢ = x + 1, (x lowest index of a zero) lmc @ \
DU 1000 1
~ I — 1
"C=C+(Pi—P_4)=14+x—x+1 =2 o

5.1: Amortized Analysis TS. 15

Binary Counter: Analysis via Potential Function

D=0y & >0 |
1% ; : . ;
®; = # ones in the binary representation of i]

Increment without Carry-Over Y
= actual cost: ¢; = 1 1108 /
= potential change: ®; — ®;_1 = 1 lINC -
= amortized cost: G = ¢+ (®; — P;_1) =1+1=2

1101 i—1

(Amortized Cost =2 = T(n) < 2n)

SAS)
@
Increment with Carry-Over o0 1
= ¢ = x + 1, (x lowest index of a zero) lmc § \
&
=0 -0y =—x+1
1000 =1

"G=C+(P—Piq)=1+x—x+1=2

5.1: Amortized Analysis TS. 15

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

\;,!.;, 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis

\;,!.;, 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

el b
E:E 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis //
= Determine an absolute upper bound T(n)

o6 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T(n
= every operation has amortized cost @ (n) DZI:D:D

el b
E:E 5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T(n
= every operation has amortized cost @ (n) DZI:D:D

[— Potential Method

5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
. . T(n
= every operation has amortized cost @ () D:D:I:D

Potential Method
= use savings from cheap operations to
compensate for expensive ones

5 [
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
. . T(n
= every operation has amortized cost @ () D:D:I:D

Potential Method
= use savings from cheap operations to

compensate for expensive ones //\,/i
i

5 [
5.1: Amortized Analysis TS. 16

Summary

Amortized Analysis
= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

every operation has amortized cost @

Potential Method

= use savings from cheap operations to
compensate for expensive ones

= operations may have different amortized cost

o s 5.1: Amortized Analysis TS.

Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

T
= every operation has amortized cost @ (n) DZI:D:D
[Full power of this method will become clear later!] T(n) Dj:ﬂ:l]

Potential Method \ .
= use savings from cheap operations to credit

compensate for expensive ones //\,/
= operations may have different amortized cost j

o6 5.1: Amortized Analysis TS. 16

Next Lecture: Fibonacci Heap

Operation Binomial heap
worst-case cost
MAKE-HEAP o)

INSERT O(log n)
MINIMUM O(log n)
EXTRACT-MIN O(log n)
UNION O(log n)
DECREASE-KEY O(log n)
DELETE O(log n)

5.1: Amortized Analysis

TS.

Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP 0(1) 0(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)
/)

Crucial for many applications including
shortest paths and minimum spanning trees!

g oy 5.1: Amortized Analysis TS. 17

0

@ @ 0
DO T® OB
ORCIORNG

5.2 Fibonacci Heaps

Frank Stajano Thomas Sauerwald

Lent 2016

5 UNIVERSITY OF
¥ CAMBRIDGE

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o(1) o) o(1)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o) O(log n) O(log n)
DELETE o(1) O(log n) O(log n)

5 5.2: Fibonacci Heaps

TS.

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o(1) o) o(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE O(n) o(n) O(log n) o)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

o 5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)

DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)

FEY

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

g 5y 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

o6 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

s =C=--=c0c=0O(logn)

o6 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

= C :CZZ---:Ck:O(logn)
= Y. ¢ = O(klogn)

o6 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
s =C=--=c0c=0O(logn)

= Y. ¢ = O(klogn)

o6 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
s =C=--=c0c=0O(logn) s Ci=C=--=0C=0(1)

= Y. ¢ = O(klogn)

o6 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o®)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

[n is the number of items in the heap when the operation is performed.]

Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2

+ k/2 INSERT DECREASE-KEY + k/2 INSERT
s =C=--=c0c=0O(logn) s Ci=C=--=0C=0(1)

= Y%, ¢ =0O(klogn) = YK <k, e =0k)

o6 5.2: Fibonacci Heaps TS. 3

Actual vs. Amortized Cost

(

14-0(1)

14

5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

(ZL Ci
14.0(1)1
2.0(1) +
o) +
N , , , , , , , , , , , , >k
0 4 5 14
ﬂlﬁ 5.2: Fibonacci Heaps TS. 4

Actual vs. Amortized Cost

Zf-(:1 C; wmmm

\&.i'n 5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

ZL ¢ —

Zf-(:1 C; wmmm

\&.i'n 5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

(

14.-0(1)

Yl — L0

Potential > 0, but should be
also as small as possible

1 2 14

5.2: Fibonacci Heaps TS. 4

Outline

Structure

5.2: Fibonacci Heaps

TS.

Reminder: Binomial Heaps

Binomial Trees

B(O 3(1) B(2 B(3) B(k)

% %\

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

;.I.. 5.2: Fibonacci Heaps TS. 6

Reminder: Binomial Heaps

Binomial Trees

B(O 3(1) B(2 B(3) B(k)

% %\

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

;.I.. 5.2: Fibonacci Heaps TS. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) 3(1) B(2 B(3) B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap

\;.I.. 5.2: Fibonacci Heaps TS. 6

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

:gg@g

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

e

W &

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

i

W @

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

i

W @

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

@

o &7, &

&

00 11 7
0 1 11 =1

| @
011 0
1 1

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

@

g &7, ¢

&

00 11 7
0 1 11 =1

1 O,
0 | (o)
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

@

N

&

00 11 7
0 1 11 =1

1 ()
0 1 (18)
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

By 8° By 2°

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

o &7, Spn &

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

o &7, Spn &

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Merging two Binomial Heaps

o &7, Spn &

o o

0 11 7
1011 11

1
0
11

10010 =18

—_
—_

5.2: Fibonacci Heaps TS. 7

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

\;.!:.. 5.2: Fibonacci Heaps TS.

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
® & & ®&@
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

@@

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

@@

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

@@

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

@@ @

‘».a:. 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

® @ (19
@@ = @&
ORORC &)

;.! 3 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

® @ (19
@@ = @&
ORORC &)

'..I.. 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

'..I.. 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

@@ & @
ORORC &)

;.I.. 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

min

®@ ®» @®
& & @ Q)

;.I.. 5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

D@ O OB
Do @

[How do we implement a Fibonacci Heap?]

5.2: Fibonacci Heaps TS.

A single Node

Previous Sibl

TParent

payload marked degree

r-=---

e

0

3

f

O

lOne of the Children

Next Sibling
—

Sl 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

@) T @

5 [
o s 5.2: Fibonacci Heaps TS.

Magnifying a Four-Node Portion

@&

i
S 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

58

-
O

501 411[1][2] OO 831[o][1] O
QO QO
- 54

Outline

Operations

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: INSERT

INSERT

;,I,, 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree

;,I.. 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

@ ORROERCORRO
@ @ o OO
(=) »

i
5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

X

@ @ O—e—E
@ @ © o OO
©)

i
5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X
OERO @ @@ (@
@ @ © o OO
(=) »

5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1)] min

® O @ @
@@ © RONO)

,,a 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

min

@ @ @

© &=«
D ®

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

min

@ @ &

© &=«
D ®

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/

;,I,, 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@ @

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

fen e

;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

fen e

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

@@@

;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen T et

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

@@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

® @ e e

‘».a'. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1 0 1

T le d

;,a;. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

fen e

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
L Tl T 1

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal T |

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tall |

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]

—>

A}

Lo ek

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

6" 1

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

tz: :

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

tz: :

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
N

®Q
@0
oY Y0,
0
030

(®)
®6

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(72 OERORR0)
OR.)
RO
©

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(7) OERORR0)
RO,)
@
©

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

OERORR0)
©

(7)
RO,
@
©

;,I,, 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

OERORR0)
©

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

|—."~-.
~
v

(@
o 0

(7)
@ @ @&
O © RO,
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
2

(7) (9 @
® ©

() @ &)
= @®
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
2

(7) (9 @
® ©

() @ &)
= @®
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

degree

=
S
J—}H

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @& () @)
@ @ (+)
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min

[Actual Costs:

]
@ ® @
ofoRo ofc
5 @ @
@

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(7)
@ @ &) (s
OB ORO (#)
©

t‘n:‘n
o 5 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

min [Actual Costs: O(trees(H) + d(n))

(1) (=)
(29) @
&) () (#)
©

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

Nadik

i
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
x W® @@ @
@) () @ =
00

i
5.2: Fibonacci Heaps TS. 15

1. DECREASE-KEY 24 ~ 20

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

min

() (12)
@2 @ @@ @
@) () @ =
00

i
5.2: Fibonacci Heaps TS. 15

1. DECREASE-KEY 24 ~ 20

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

() (8 (@)
@ W @@ @
@) () @ =

1. DECREASE-KEY 24 ~ 20

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min
@ (19)
) 1) @@ @
1. DECREASE-KEY 24 ~~ 20
o) () () (2)
(35) (o)

o 0 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not
min
@ (19)
) 1) @@ @
1. DECREASE-KEY 24 ~~ 20
o) () () (2)
(35) (o)

o 0 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

() (8 (@)
@ W @@ @
@) () @ =
00

bl e
'i‘l" 5.2: Fibonacci Heaps TS. 15

1. DECREASE-KEY 24 ~ 20

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

() (8 (@)
@ W @@ @
@) () @ =
00

bl e
'i‘l" 5.2: Fibonacci Heaps TS. 15

1. DECREASE-KEY 24 ~ 20

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

@ (18) (39

()) @ @

6 %) () @) 2. DECREASEKEY 46 - 18
(35) (o)

bl e
'i‘l" 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

@ (18) (39

()) @ @

6 %) () @) 2. DECREASEKEY 46 - 18
16

(35) (o)

bl e
'i‘l" 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

@ (18) (39

()) @ @

6 1) () @) 2. DECREASEKEY 46 - 18
(35) (o)

i
_!'4' 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

min

@ e 00 ®
@@ & § Deorerse ey 26 20
® @

i
n!n 5.2: Fibonacci Heaps TS. 15

\h!)

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@ e 00 ®
@@ & § Deorerse ey 26 20
® @

i
n!n 5.2: Fibonacci Heaps TS. 15

\h!:’n

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~» 15

“ @12

\;.!'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

“ B-@-B-12

\;.!'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

- @2

\;.!'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

T
G
¥

% @02

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

T
G
¥

@ D@02

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e do d &

@ 1. DECREASE-KEY 24 ~ 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

T
G
¥

% ®-@-E-2

\,,I,, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e fell
® W 0@ ® ®
@ @ @ 1. DECREASE-KEY 24 ~» 20

2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19

%@NA

\,,I,, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

1. DECREASE KEY 24 ~~ 20
@ 2. DECREASE-KEY 46 ~ 15

19 3. DECREASE-KEY 35 ~» 5
4. DECREASE-KEY 26 ~ 19

\,,I,, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
@ DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19

%QNA

\,,I, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

DECREASE KEY 24 ~ 20
(30) DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19

%QNA

\,,I, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

P B0 3 8¢

DECREASE KEY 24 ~ 20
8 DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19

%@NA

\,,I,, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

& @ : & @
® e @O ®
5 ® DeorenseKer 2420

DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19

%@NA

\,,I,, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

min

. DECREASE-KEY 24 ~ 20

o R 99 5 ®
@ W @@ @
Q @ . DECREASE-KEY 46 ~~ 15

w%wNA

DECREASE-KEY 35 ~ 5
DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12

\;.If.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

3 o8 13

w%wNA

min

. DECREASE-KEY 24 ~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12

\;.If.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

—_

ok wn

min

é

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12

\;.If.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

—_

ok wn

min

é

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12

\;.If.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

—_

ok wn

min

é

DECREASE-KEY 24 ~~ 20
DECREASE-KEY 46 ~ 15
DECREASE-KEY 35 ~ 5

DECREASE-KEY 26 ~~ 19
DECREASE-KEY 30 ~ 12

\;.If.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:M

1. DECREASE-KEY 24 ~ 20
2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

\;,I;,. 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

:M

1. DECREASE-KEY 24 ~ 20
2. DECREASE-KEY 46 ~+ 15
3. DECREASE-KEY 35~ 5

4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12

\;.!:.. 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

Wide and
shallow tree

. DECREASE KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15
. DECREASE-KEY 35 ~ 5

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree =3, .
Nodes =4 min

::M

. DECREASE-KEY 24 ~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12

i
E:E 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Try)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

I@'@

DECREASE-KEY 24 ~~ 20
. DECREASE-KEY 46 ~ 15

1
2
3. DECREASE-KEY 35~ 5
Wide and 4
5

shallow tree

. DECREASE-KEY 26 ~ 19
. DECREASE-KEY 30 ~ 12

5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)

@ (8 (@)
@ WE® @@ @
@) () @ (=)
@))

5 [

~;.i'- 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min

@) (8) (39

g) @@ @

@ Q @ @ 1. DECREASE-KEY 46 ~ 15
(35) (s9)

i
\;.I.. 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) (8) (39

g) @@ @

@ Q @ @ 1. DECREASE-KEY 46 ~ 15
olo

5 [

\;.!.'- 5.2: Fibonacci Heaps

TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) (8) (39

g) @@ @

@ e @ @ 1. DECREASE-KEY 46 ~ 15
(35) (s9)

i
\;.!:.. 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) (8) (39

)) @@ @

@ e @ @ 1. DECREASE-KEY 46 ~ 15
@

i
5.2: Fibonacci Heaps TS. 16

\h! 2

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

@) (8) (39

)) @@ @

@ ° @ @ 1. DECREASE-KEY 46 ~ 15
@

i
5.2: Fibonacci Heaps TS. 16

\h! 2

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

6§70 0@ 6 ¢
@ W @@

(2¢) @ @ @ . DECREASE-KEY 46 ~ 15
©

5 [

\;.!.'- 5.2: Fibonacci Heaps

TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

6§70 0@ 6 ¢
@ W @@

(2¢) @ @ @ . DECREASE-KEY 46 ~ 15
©

5 [

\;.!:'n 5.2: Fibonacci Heaps

TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

6§70 0@ 6 ¢
@ W @@

(2¢) @ @ @ . DECREASE-KEY 46 ~ 15
©

i
'::E 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

OITIC)
©

5 [

\;,I;, 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v

5.2: Fibonacci Heaps TS.

T
G
¥

% H-@0- ()2

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

T
G
¥

“ 9002

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

i
nlm 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

¥
G
¥

“ 0@ -2

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

@
Q
&
®

5.2: Fibonacci Heaps TS.

YHY
&=
-

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

T
G
¥

i o Yo Yo

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

0@:@

@ . DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

T
G
¥

i o Yo Yo

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

= |f marked,
min
® @ : ? o
) W OE
. DECREASE-KEY 46 ~» 15 vV
@ @ 2. DECREASE-KEY 35~ 5
&
é:':’ 5.2: Fibonacci Heaps TS. 16

T

"0 @00

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min
@ : ? o
(7)) (20 ()
@ . DECREASE-KEY 46 ~» 15 vV

2. DECREASE-KEY 35~ 5

(5 5.2: Fibonacci Heaps TS. 16

T

5 %

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & : ? ® @
) W @E
’:‘ @ @ . DECREASE-KEY 46 ~» 15 vV

2. DECREASE-KEY 35~ 5

!;', 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

oo ol 1"
5 &

8 @ @ 1. DEGCREASE-KEY 46 ~ 15 v
&)

2. DECREASE-KEY 35~ 5

5 [

3 !.;, 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & é ®
@D W OE
8 @ @ . DECREASE-KEY 46 ~» 15 vV

2. DECREASE-KEY 35~ 5

\,,!.‘, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o & é ® ®
@D W OE
8 @ @ . DECREASE-KEY 46 ~» 15 vV

2. DECREASE-KEY 35~ 5

\,,!.‘, 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min
& @ &
5 &
@ © @ |ooemeeen
&
w

i
5.2: Fibonacci Heaps TS.

\h!:’n

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min
o & : ? ONCRC
(7)) (20 ()
. DECREASE-KEY 46 ~» 15 vV
@ @ 2. DECREASE-KEY 35~ 5

\;,!.;, 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min
o & : ? ONCRC
(7)) (20 ()
. DECREASE-KEY 46 ~» 15 vV
@ @ 2. DECREASE-KEY 35~ 5V

\;,!.;, 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: min
® o : : ® e ®
® ® . occwcsackerisssy

\;.!:.. 5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: O(# cuts) g;
0 () @ (=) : :
. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5 Vv

\;.!:.. 5.2: Fibonacci Heaps TS. 16

5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2016 _

T UNIVERSITY OF
¥ CAMBRIDGE

Outline

Glimpse at the Analysis

'».I—. 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

oot

5.2: Fibonacci Heaps (Analysis TS

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

b

5.2: Fibonacci Heaps (Analysis TS

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v/
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Outline

Amortized Analysis

'».I—. 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

;,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

;,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= trees(H') =trees(H) + x

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =trees(H) + x
= marks(H') <

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =trees(H) + x
= marks(H') < marks(H) — x + 2

,.!,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

—— Change in Potential
= trees(H') =trees(H) + x

= marks(H') < marks(H) — x + 2

= AP <x+2- (—x+2)=4—x.

,.!,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x + 2
= A0 <x+2-(—x+2)=4-x.

Amortized Cost

C=¢c+Ad

S

',,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.

e

5 (Scale up potential units]

Amortized Cost

C=C+AP<O(x+1)+4—x

S

;.!;. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.

e

5 (Scale up potential units]

Amortized Cost

E[:C/+A¢§O(X+1)+4—X=O(1)

S

'..I.. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x 4 1), where x is the number of cuts.

[O(H) = trees(H) -+ 2 - marks(H)

First Coin ~~ pays cut
Second Coin ~~ increase of trees(H)

g

— Change in Potential

= AP<x+2-(—x+2)=4—x.

= marks(H') < marks(H) — x + 2 8 @
O

5

Amortized Cost

= trees(H') =trees(H) + x 8 @ @ @

E[:C/+A¢§0(X+1)+4—X:O(1)

el b

;,I,, 5.2: Fibonacci Heaps (Analysis) TS.

5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2016 _

T UNIVERSITY OF
¥ CAMBRIDGE

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

r,,!',, 5.2: Fibonacci Heaps (Analysis) TS.

Fibonacci Heap: INSERT

INSERT

;,I,, 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree

;,I.. 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

@ ORROERCORRO
@ @ o OO
(=) »

i
5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

X

@ @ O—e—E
@ @ © o OO
©)

i
5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X
OERO @ @@ (@
@ @ © o OO
(=) »

5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

Actual Costs: O(1)] min

® O @ @
@@ © RONO)

,,a 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

min

@ @ @

© &=«
D ®

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

min

@ @ &

© &=«
D ®

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/

;,I,, 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them

@ @

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

fen e

;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

fen e

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

@@@

;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen T et

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

@@@

~;.g'.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

fen e

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

® @ e e

‘».a'. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1 0 1

T le d

;,a;. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

fen e

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
L Tl T 1

~;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal T |

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tall |

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]

—>

A}

Lo ek

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

6" 1

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

tz: :

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

tz: :

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

¥

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
N

®Q
@0
oY Y0,
0
030

(®)
®6

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(72 OERORR0)
OR.)
RO
©

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

(7) OERORR0)
RO,)
@
©

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

OERORR0)
©

(7)
RO,
@
©

;,I,, 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

OERORR0)
©

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

|—."~-.
~
v

(@
o 0

(7)
@ @ @&
O © RO,
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
2

(7) (9 @
® ©

() @ &)
= @®
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]
[[T4

N
2

(7) (9 @
® ©

() @ &)
= @®
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

(7)
@ @ @&
O © RO,
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

degree

=
S
J—}H

(7)
@ @ @&
O © RO,
©

\;.!:.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

(7) (1) (=)
@ @ @& () @)
@ @ (+)
©

\;.g'.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min

(7)
@ @ @&
O © RO,
©

\;.I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

min

[Actual Costs:

]
@ ® @
ofoRo ofc
5 @ @
@

;,I.. 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

. [Actual Costs:
min

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

(7)
@ @ &) (s
OB ORO (#)
©

t‘n:‘n
o 5 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v

Every root becomes child of
another root at most once!

min [Actual Costs: O(trees(H) + d(n))

(1) (=)
(29) @
&) () (#)
©

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

@ Gy (@)
& W= @@ O

2) (o) (=) ()
() (@ ()

5 [

;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min

) () (3)

ey T ® @@ @

@ o @ e 1. DECREASE-KEY 46 ~ 15
(3s) (35) (s0)

5 [

\;.I.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min
) () (3)
ey T ® @@ @
1. DECREASE-KEY 46 ~ 15
SJOIONENNC
(3s) (35) (s0)

5 [

\;.!:.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

) () (3)

ey T ® @@ @

@ @ @ e 1. DECREASE-KEY 46 ~ 15
(3s) (35) (s0)

5 [

\;.!:.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

@ Gy (@)
@) W= @@ O

@ @ @ e 1. DECREASE-KEY 46 ~ 15
() (@)

5 [

\;.!:.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

@ Gy (@)
@) W= @@ O

@ @ e 1. DECREASE-KEY 46 ~ 15
() (@ ()

5 [

\;.!:.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

Nak
OERORONO! o NONO
@@ e 1. DECREASE-KEY 46 ~ 15
() ()

5 [

\;.!:.. 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

Nak
OERORONO! o NONO
@@ e 1. DECREASE-KEY 46 ~ 15
() ()

5 [

\;,I', 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

Nak
OERORONO! o NONO
@@ e 1. DECREASE-KEY 46 ~ 15
() ()

5 [

\;,I', 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

oo
D e 0@ @ ®
@@ @ 1. DECREASE-KEY 46 ~ 15
() ()

sl
E:E 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

JaRiXE

DECREASE-KEY 46 ~» 15 v

i
\;,I;, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ (9)
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5

;.!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

in

3

@

(D @@ @
1. DECREASE-KEY 46 ~ 15 v

@ @ 2. DECREASE-KEY35:5

@)

5.2: Fibonacci Heaps TS. 15

T
G
¥

= &

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ (9)
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5

;.!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ (9)
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5

;.!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ (9)
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5

;.!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

@ () ®
) W @@ @ &

1. DECREASE-KEY 46 ~ 15 v
@ @ @ 2. DECREASE-KEY 35~ 5

;.!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked,

min

o o

) 1) @@ ONO

@ @ . DECREASE-KEY 46 ~ 15 v
2.

&

DECREASE-KEY 35~ 5

]

,,!, 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

=

5|

min

& @ o
) W @@ @ (&

1. DECREASE-KEY 46 ~ 15 v
x @ e 2. DECREASE-KEY 35~ 5

[26 }
et

) &

!', 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@ () é

) W @@ @ & ()
1. DECREASE-KEY 46 ~ 15 v

x @ @ 2. DECREASE-KEY 35~ 5

[26 }
et

3 &)

\,,I', 5.2: Fibonacci Heaps TS. 15

=

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

e foll’]

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

[26 }
et

i
5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@ é

) () () ()

e 1. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

é

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

é

. DECREASE-KEY 46 ~ 15 v
. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &
()) @) @ (o ()
1. DECREASE-KEY 46 ~ 15 v
@ e 2. DECREASE-KEY 35~ 5

\;,I', 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

o 0 &
()) @) @ (o ()
1. DECREASE-KEY 46 ~ 15 v
@ e 2. DECREASE-KEY 35~ 5 v

\;,I', 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: m'n

GQ®@® :’

. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5V

\;.!:.. 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: O(# cuts) mln

GQ®@® :’

. DECREASE-KEY 46 ~ 15 v
2. DECREASE-KEY 35~ 5V

\;.!:.. 5.2: Fibonacci Heaps TS. 15

Outline

Glimpse at the Analysis

'».I—. 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

oot

5.2: Fibonacci Heaps (Analysis TS

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

b

5.2: Fibonacci Heaps (Analysis TS

Amortized Analysis via Potential Method

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v/
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Outline

Amortized Analysis

'».I—. 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

;,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

;,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= trees(H') =trees(H) + x

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =trees(H) + x
= marks(H') <

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential
= trees(H') =trees(H) + x
= marks(H') < marks(H) — x + 2

,.!,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

—— Change in Potential
= trees(H') =trees(H) + x

= marks(H') < marks(H) — x + 2

= AP <Ix+2-(—x+2)=4—x.

,.!,. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x + 2
= A0 <x+2-(—x+2)=4-x.

Amortized Cost

G =c+Ad

S

',,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.

®

5 (Scale up potential units]

Amortized Cost

C=Cc+AP<O(x+1)+4—x

S

;.!;. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)]

— Change in Potential

= trees(H') =trees(H) + x
= marks(H') < marks(H) — x +2
= AP <Xx+2-(—x+2)=4-x.

®

5 (Scale up potential units]

Amortized Cost

E[:C/+A¢§O(X+1)+4—X=O(1)

S

'..I.. 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x 4 1), where x is the number of cuts.

[O(H) = trees(H) -+ 2 - marks(H)

First Coin ~ pays cut
Second Coin ~ increase of trees(H)

g

— Change in Potential

= AP<x+2 - (—x+2)=4—x.

= marks(H') < marks(H) — x + 2 8 @
®)

5

Amortized Cost

= trees(H') =trees(H) + x 8 @ @ @

E[:C/+A¢§O(X+1)+4—X:O(1)

el b

;,I,, 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

;_a % 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

;,a w 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

— Change in Potential

,‘a b, 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

— Change in Potential

= marks(H’) ? marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

p
®(H) = trees(H) + 2 - marks(H)

.
— Change in Potential

= marks(H') ? marks(H) @

o

—.a = 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

p
®(H) = trees(H) + 2 - marks(H)

.
— Change in Potential

= marks(H’) < marks(H) @

o

—.a = 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))
p
®(H) = trees(H) + 2 - marks(H)
.
degrees
— Change in Potential SI0)
= marks(H’) < marks(H) L]
= trees(H') <
o

.,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))
~
®(H) = trees(H) + 2 - marks(H)
L
degrees
— Change in Potential
= marks(H’) < marks(H)
= trees(H') <

,,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))
~
®(H) = trees(H) + 2 - marks(H)
"
degrees
— Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) +1

,,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

— Change in Potential

= marks(H’) < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

,,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

— Change in Potential

= marks(H’) < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

E,'ZC,'—FACD

.,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

— Change in Potential

= marks(H’) < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢+ Ad < O(trees(H) +d(n)) + d(n) + 1 — trees(H)

,,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

— Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢+ Ad < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))

,,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

— Change in Potential
= marks(H’) < marks(H)
= trees(H') < d(n) +1

= A® < d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢+ A® < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))
g

L How to bound d(n)?]

,.a,. 5.2: Fibonacci Heaps (Analysis) TS. 6

Outline

Bounding the Maximum Degree

i.n'-. 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

\;.I.'n 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

|

5 [
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

d=3,n=2%

i
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

|

5 [
5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.]

T

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

5 [
5.2: Fibonacci Heaps (Analysis) TS. 8

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.]

T

Fibonacci Heap
Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

H

» Skip Analysis

s [

S 5.2: Fibonacci Heaps (Analysis) TS. 8

Lower Bounding Degrees of Children

[d(n) <log,n

'..a = 5.2: Fibonacci Heaps (Analysis)

TS.

Lower Bounding Degrees of Children

[We will prove a stronger statement:

J

Any tree with degree k contains at least ©* nodes.

[d(n) gvlogq, n

\;,!.;,, 5.2: Fibonacci Heaps (Analysis) TS.

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ©* nodes.

[d(n) gvlogq, n }

= Consider any node x of degree k (not necessarily a root) at the final state

\;.I,'n 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ©* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

®
D,

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ©* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

()

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

7

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ©* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

(D
& ®

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

G@

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

()
G@@

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
\;.;'a 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlog(p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlogv n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥o, ..., ¥k be the children in the order of attachment
and d;, ds, . . ., dk be their degrees

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

[d(n) gvlogv n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥o, ..., ¥k be the children in the order of attachment
and d;, ds, . . ., dk be their degrees

= |Vi<i<k: d>i-2|

5 [
5.2: Fibonacci Heaps (Analysis) TS. 9

From Degrees to Minimum Subtree Sizes

(Vi<i<k: d>i-2
ﬂlé TS. 10

,,! 5.2: Fibonacci Heaps (Analysis)

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)
e0

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)
e0

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1)
o0 [I
-

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1)

®(I1
0

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1) N@)

®(I1
0

;,a;. 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1) N@)

[X0] I1 e2
0

',,a ™ 5.2: Fibonacci Heaps (Analysis) TS.

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1) N@)

®(I1 IZ\
0 0 0

e
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1) N@) N(3)

®(I1 IZ\
0 0 0

n i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)
3

S R
0 o0 w0

n i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO) N(1) N@) N(3)

ol e B
0 00 o0 e0ef

n i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O) N(1) N@) N(3)
"’ I 1 I2\' 3
0 00 IMI 1
0
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3) N(4)
"’ I 1 I2\' 3
0 00 IMI 1
0
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3) N(4)
"’ I 1 I2\' 3 d
0 00 IMI 1
0
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

N(4)
3 4
*° I; Ii\o IMF mz
0

i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)
" I 1 I2\' 3
0 0 @0 0 e0 1
0
é:é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(©)=1 N(1) N(2) N(3)
" I 1 I2\' 3
0 0 @0 0 e0 1
0
é:é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N(2) N(3)
" I 1 I2\' 3
0 0 @0 0 e0 1
0
é:é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N@2)=3 N(3)

e0 I1 I2\
0 0 0 0 @0

il
“l“ 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(2)=3 N(@3)=5

e0 I1 I2\
0 0 0 0 @0

il
“l“ 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

e0 I 1 I2\ 3
0 0 @0 0 e0 1
0
é:é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

"’ I 1 I2\' 3
0 0 @0 0 ®0 1
0
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

"’ I 1 I2\. 3
0 0 @0 0 ®0 1
0
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N()=1 N(1)=2 N(2)=3 N(3 - N(4
°0 1 2
Io Io\o I\I w

n i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(©)=1 N(1)=2 N(@2)=3 N(3 - N(4 8=51+3
" I 1 I2\'
0 00 I\I w
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition
Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k +2)?]7

N@©)=1 N(1)=2 N(2)=3 N(3 - N(4 8=5+3
"’ I 1 I2\.
0 00 I\I w
n::é 5.2: Fibonacci Heaps (Analysis) TS. 10

From Minimum Subtree Sizes to Fibonacci Numbers

[Vi<i<k: d>i—2] N(k) = F(k + 2)?

;,a $ 5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i—2] N(k) = F(k + 2)?
1

N(k) =
1 N2-2)NB-2) N(k — 2)

;l;

;,I,, 5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i—2] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(K)=1+1+N2-2)+N@B—2)+-- + N(k—2)

k—2
=1+14> N
£=0

:1+1+z_:N(e)+N(k—2)

£=0
= N(k—1) + N(k — 2)
= F(k+1)+ F(k) = F(k +2) O

5.2: Fibonacci Heaps (Analysis) TS. 11

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,
where ¢ = (1 +/5)/2 = 1.61803... .

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
= Base k = 0: F(2) = 1and ¢° =1

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
= Base k = 1: F(8) =2and ¢' ~ 1.619 < 2

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):

Fk+2) =

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):

F(k+2) = F(k+1) + F(k)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):
F(k+2)=F(k+ 1)+ F(k)
> f T k2 (by the inductive hypothesis)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):
F(k+2)=F(k+ 1)+ F(k)
> f T k2 (by the inductive hypothesis)

=% (p+1)

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):

F(k+2) = F(k+1) + F(k)

> f T k2 (by the inductive hypothesis)

=¢" 2 (p+1)

=77 (¥ = +1)
TS. 12

5.2: Fibonacci Heaps (Analysis)

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k +2)nd Fib. number satisfies F(k 42) > ¥,]
where ¢ = (1 ++/5)/2 = 1.61803. ... y

(Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F(2)=1and * =1
*Basek=1: F(8)=2and ¢' ~1.619<2 v
= Inductive Step (k > 2):

F(k+2) = F(k+1) + F(k)

> f T k2 (by the inductive hypothesis)
=¢" 2 (p+1)

=2 (¥ =p+1)
= (pk D

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

N(k)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis

= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

N(K) = F(k + 2)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis

= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

N(k) = F(k +2) > ¢

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis

= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis

= INSERT: amortized cost O(1)
= EXTRACT-MIN: amortized cost O(d(n))
- DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥
=- log,, n > k

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~——— Amortized Analysis
= INSERT: amortized cost O(1)

» EXTRACT-MIN: amortized cost Otdéa)) O(log n)
- DECREASE-KEY: amortized cost O(1)

n> N(k) = F(k +2) > ¥
=- log,, n > k

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

5.2: Fibonacci Heaps (Analysis)

TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

d(H) = trees(H)

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

d(H) = trees(H)

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

d(H) = trees(H)

=(7) (1) 9

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(1) amortized O(1)

d(H) = trees(H)

=(7) (18) (@)

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) # O(log n)
= DECREASE-KEY: actual O(1) amortized O(1)

d(H) = trees(H)

=(7) (18) (@)

5.2: Fibonacci Heaps (Analysis) TS. 14

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE 0(1) O(log n) O(log n) O(log n)

< B 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

(Can we perform EXTRACT-MIN in o(log n)?j

Operation Linked list | Binary heap Binomk\\eap Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE 0(1) O(log n) O(log n) O(log n)

< B 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

(If this was possible, then there would be a sorting algorithm with runtime o(nlog n) !)

(Can we p\)’erform EXTRACT-MIN in o(log n)?j

Operation Linked list | Binary heap Binomk\\eap Fibon. heap
MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM o(n) oQ) O(log n) \ o)
EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)
DELETE 0(1) O(log n) O(log n) O(log n)

o6 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE 0(1) O(log n) O(log n) O(log n)

< B 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE\ 0(1) O(log n) O(log n) O(log n)

(DELETE — DECREASE-KEY + EXTRACT-MIN]

i
9.:5 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE\ 0(1) O(log n) O(log n) O(log n)

(DELETE — DECREASE-KEY + EXTRACT-MIN]

7\

[EXTRACT—MIN - MIN + DELETE j

5 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP 0(1) o) 0(1) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o(1)

DELETE 0(1) ralilaYaWa)l ralilaYaWa)) %(Inn n\

[

Crucial for many applications including

shortest paths and minimum spanning trees!

|

5.2: Fibonacci Heaps (Analysis)

TS.

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago

= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

\;.!,'.. 5.2: Fibonacci Heaps (Analysis) TS.

Recent Studies

= Fibonacci Numbers were discovered =800 years ago

= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

= Queries to marked bits are intercepted and responded with a
random bit

;,I,, 5.2: Fibonacci Heaps (Analysis) TS.

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

\;.i'.. 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)
= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap

i
nlm 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap
= marked bit is not redundant!

\;.I.. 5.2: Fibonacci Heaps (Analysis) TS. 16

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)

YEY

5.2: Fibonacci Heaps (Analysis)

TS.

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o®) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]

5.2: Fibonacci Heaps (Analysis)

TS.

5.3: Disjoint Sets

Frank Stajano Thomas Sauerwald

Lent 2016

Outline

Disjoint Sets

5.3: Disjoint Sets

TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

;'I" 5.3: Disjoint Sets

TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

;‘a o 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

;‘a o 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=MakeSet (x)

;.a o 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

'..a =, 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=FindSet (y)

‘..a =, 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=FindSet (y)

‘..a =, 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

;.a 5 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

;.a;. 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

;.a;. 5.3: Disjoint Sets TS. 3

First Attempt: List Implementation

hy
Do

he

v

][

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation

Union(hy, hy)

hy
v

EI !
he

v

..

i.n'-. 5.3: Disjoint Sets

TS. 4

First Attempt: List Implementation

UNION-Operation

Union(hy, hy)

Need to find

last element!

\;.!.'- 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

Union(hy, hy) | Need to find

last element!
f11
hy e a

\;.!.'- 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

Union(hy, hy) | Need to find

last element!
hy
v
’/
h2 /’

\;.!.'- 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

Union(hy, hy)

hy
v
7’
4
h2 /’

\;,I,, 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

Union(hy, hp)

hy

v
..

‘».a;. 5.3: Disjoint Sets

TS.

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

Union(hy, hy)

hy

v
fiz /’/
..

FindSet(z)
ha

P

~;.i'- 5.3: Disjoint Sets

TS. 4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

Union(hy, hy)

hy
v
7’
4
h2 /’

FindSet(z)
ha

P

~;.i'- 5.3: Disjoint Sets

TS. 4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

Union(hy, hy)

hy
v
7’
4
h2 /’

FindSet(z)

hy
v
R

~;.i'- 5.3: Disjoint Sets

TS.

4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

hy
v
7’
4
h2 /’

FindSet(z)

hy
v
R

\;.!‘- 5.3: Disjoint Sets

TS.

4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

hy
'
hs 2
¢
1

a*pk

’

FindSet(z)

\;.!‘- 5.3: Disjoint Sets

TS.

hy
v
R
4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= UNION takes constant time

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

Need to update all
backward pointers!

FindSet(z)

\;.I.'- 5.3: Disjoint Sets

hy

v

:
TS. 4

First Attempt: List Implementation

UNION-Operation

= Add extra pointer to the last
element in each list

= YUNtoN-takes-constanttime

FINDSET-Operation

= Add backward pointer to the list
head from everywhere

= FINDSET takes constant time

Union(hy, hy)

Need to update all
backward pointers!

FindSet(z)

\;.!.'- 5.3: Disjoint Sets

hy

v

:
TS. 4

First Attempt: List Implementation (Analysis)

d =DisjointSet()

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

B

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d.MakeSet(x;)
ho = d.Union(h1 N ho)

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d.MakeSet(x;)
ho = d.Union(h1 N ho)

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)

B

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)

B

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)

B

1

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)

B

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)

Xo

5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)

(2]

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)

X2

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)

X2

x|

1

Xo

5 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)

s

3

X2

x|

1

Xo

el e
5 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

s

3

X2

x|

1

Xo

el e
5 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

Xo

5 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

(%]

(2]

(%]

el e
5 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

o6 5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

[Cost for n UNION operations: Y7 ;i = ©(n?)]

5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hy = d MakeSet(xq)
ho = d.Union(h1 N ho)
h, = d MakeSet(x2)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(hg, ho)

[better to append shorter list to longer ~~ Weighted-Union Heuristic]

\
N

Cost for n UNION operations: Y7 ;i = ©(n?)]

5.3: Disjoint Sets TS. 5

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

;,a oy 5.3: Disjoint Sets

TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list
= Append shorter list to the longer list (breaking ties arbitrarily)

'—.a -, 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead]

;.I.. 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead]

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

\;.I.. 5.3: Disjoint Sets TS. 6

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead]

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).

i
o 5.3: Disjoint Sets TS. 6

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

\;.I.'n 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:

\;.!:, 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations

i
0 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

Sl
G 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho

R0

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

i
o6 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

5 [
o B 5 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

O

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer

o6 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

o6 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

o6 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

g oy 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

g oy 5.3: Disjoint Sets TS. 7

S

Analysis of Weighted-Union Heuristic

e0-O-CHCHEHCHD

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n - log n) time.
I\

Proof: (Can we improve on this further? j

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of its backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O

g oy 5.3: Disjoint Sets TS. 7

How to Improve?

Doubly-Linked List
= MAKESET: O(1)
= FINDSET: O(n)
= UNION: O(1)

5.3: Disjoint Sets

TS.

How to Improve?

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

5.3: Disjoint Sets TS. 8

How to Improve?

EFEF»D»D—QD

Basic |dea: Update Backward
Pointers only during FIND-SET

Doubly-Linked List Weighted-Union Heuristic
= MAKESET: O(1) = MAKESET: O(1)
= FINDSET: O(n) = FINDSET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

5.3: Disjoint Sets TS. 8

Disjoint Sets via Forests

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

;.a b, 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

;.a b, 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

r,,l,, 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c,e, h} {d,f,g}

oNC

ofolNo

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

r,,l,, 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h} {d,f,g} {b,c,d,e,f,g,h}

AN

@ © . 48
OBNO

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

;,I.. 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h} {d,f,g} {b,c,d,e,f,g,h}

N

@ © . 48
OBNO

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

(Append tree of smaller height ~~ Union by Rank)
L)

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c, e, h} {d,f,g} {b,c,d,e,f,g,h}

() (% ()
rank =2 rank =2 rank =3
& w © oo
ONNO

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

(Append tree of smaller height ~~ Union by Rank)
L)

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c.e h} {d.f,g} {b,c.d,e,f,g, h}
(Rank may be just an upper bound on the height!]

0 v 0
° rank =2 (% rank =2 0 rank =3
& B © oo
ONNO

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

(Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c.e h} {d.f,g} {b,c.d,e,f,g, h}
(Rank may be just an upper bound on the height!]

0 4 0
° rank =2 (% rank =2 3 0 rank =3
& B © oo
ONNO

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

(Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets TS. 9

Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p

w N B O

5 5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

5[]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

5[]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets

TS. 10

Path Compression during FINDSET

FindSet (b):

E 0

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

E 0

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

E

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

w N B o

5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

E

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

Bl

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

Bl

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

5[]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

5[]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

Path Compression during FINDSET

FindSet (b):

[b]

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

5.3: Disjoint Sets TS. 10

YEY
¥

Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p

w N B O

5 5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

: FindSet (x)
if x#x.p

x.p =FindSet (x.p)
return x.p

w N B O

5 5.3: Disjoint Sets

TS.

Path Compression during FINDSET

FindSet (b):

Maintaining the exact height e
would be costly, hence rank
is only an upper bound!

: FindSet (x)
if x#xp

x.p =FindSet (x.p)
return x.p

w N B O

ke
g oy 5.3: Disjoint Sets TS. 10

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O

5.3: Disjoint Sets TS. 1

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,
for8 < n <2047,

for 2048 < n < 10%°
N,

a(n) =

A WO N =2 O

\
More than the
number of atoms
in the universe!

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.

\

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O

/)

L
[log*(n), the iterated logarithm, satifies]

a(n) < log*(n), but still log*(10%°) = 5.

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\

[In practice, «(n) is a small constant]

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS)]

——— Theorem 21.14 \\

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m - a(n)) time.
/4

\

[In practice, «(n) is a small constant]

for0 < n<2,
for n =3,

fora <n<7,

for8 < n <2047,
for 2048 < n < 10%

a(n) =

A WO N =2 O

5.3: Disjoint Sets TS. 11

Simulating the Effects of Union by Rank and Path Compression

5.3: Disjoint Sets TS. 12

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300

2. Forevery 1 < <300, pick arandom 1 < r <300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

r,,l,, 5.3: Disjoint Sets TS. 12

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300
2. Forevery 1 </ < 300, pick arandom 1 < r < 300, r # i and
perform UNION(FINDSET(/), FINDSET(r))

3. Perform j € {0,100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 < r < 300 is random

;,I.. 5.3: Disjoint Sets TS. 12

Union by Rank without Path Compression

13

[
— S = s Al

s

WS iy

@
=
1> H
-@w :
2
[
2]
£
S,
@2
o
@
3
£

Union by Rank with Path Compression

252212222291222205 5,
12,
22
22
12

% '\‘\\

A
S

A N4
W

{7
0

Ve
MR
@i ¢

7 'V;"'%‘
.
'

AR

)i
wad)

/]
8

)
K

AT
87 "'" N/

PN
Vg

XA
V‘w"‘i!'.'ll,‘\\

s

W'i‘,,ni
)

{
ﬁg%g

Wi

3,

RX

%

5.3: Disjoint Sets TS.

Union by Rank with Path Compression (100 additional FINDSET)

' A i
\\7\0\\' K LN
2 \“b SASTHN KOOSR ¢
SIS

“',//‘%V O @'A’ E

0z 74 SNTAI
Y
Ts. 15

5.3: Disjoint Sets

Union by Rank with Path Compression (200 additional FINDSET)

11 12
11! 21y
431 1y
22 2
21 T2
‘
‘
‘
‘
b
S
i
‘
‘
|
}
]
]
‘
j
i
;
i
{
;
;
:
;
‘
;
‘
]
<
/
|
‘
Average Height: 1.35
‘
22, jart!
Ty, 212212
“Mznnzzwmau“

5.3: Disjoint Sets

Union by Rank with Path Compression (300 additional FINDSET)

PSR RERRRRARARES X
1 224
AN
AR

24
2,
1

1

1 1
3 1
1 o

1

22y, 212!
1 2
BALEEPRPIPPRRRERARLAN

5.3: Disjoint Sets TS. 17

Union by Rank with Path Compression (600 additional FINDSET)

IRRERRRARREEEERRRS
(RN Ty
i 24,
i
1

"
",
1

1
1
1

1
Il
2 !

1

B, e
1 2
BAALEEPRPTPRIRRIRARLA

5.3: Disjoint Sets TS. 18

Union by Rank with Path Compression (900 additional FINDSET)

RREEARERRREREETTION

o (Average Height: 1.02]

AR
1 21
Ty 11

1 11

BAALEEPRPIPRIRRERARAAN

5.3: Disjoint Sets TS. 19

Union by Rank with Path Compression (1200 additional FINDSET)

RTEREERAARRRARRERRRVUN

1 1

il
AN
1

gt
.
!
Q
‘
s
’
il 1
: :
(Average Height: 1.01]
““"I{ m‘z‘”
BAALERTRRIRRRRRRIRARAAN
TS. 20

5.3: Disjoint Sets

Union by Rank with Path Compression (1500 additional FINDSET)

T
i $)
" el
|)
BRI TP PPPP IR RRAAA

REARAARRRRERERTFION
1y
iRl
ik
"
1

1
i

1
1

! (Average Height: 1.00]

5.3: Disjoint Sets

TS.

21

Union by Rank with Path Compression (1800 additional FINDSET)

RREEARERRREREETTION

o (Average Height: 0.98]

N 1
1 1
1y el
TP AL

5.3: Disjoint Sets TS. 22

Union by Rank with Path Compression (1800 additional FINDSET)

A\
Coupon Collecting Time: 300 - In(300) ~ 171 1]

!
'
'
| T
11 "
; '
E '
1 '
1! R
E '
| '
¥ "
E '
1 G 1
i K
E o,
Al D 1
E |
E |
1‘ N
w‘ P
; o
B <
;)
] ‘
; s
] s
; D
] \
] Y
p)
i 4
] b
1 !
] !
! |
] i
i i
i & }
i i
i i
i i
i i
1 i
1 L]
i i
: i
! |
i !
|]
| L]
!]
) B
) i
3]
X B
) B
1‘ ﬂ
X |
1, A y
, ;
) “
1 h
X i
i
Ny .
f
', |
" n
§ i
1y 4!
1 n

M‘*"“M‘(Average Height: 0.98]

Rl
"
i
1
'
",
",
"
iy, N
iy RN
Ty it
(AREEERREERRRRR

\;.!:.. 5.3: Disjoint Sets TS. 22

Overview

Union by Rank

Union by Rank

& Path Compression

300 MAKESET & 300 UNION
100 extra FINDSET
200 extra FINDSET
300 extra FINDSET
600 extra FINDSET
900 extra FINDSET
1200 extra FINDSET
1500 extra FINDSET
1800 extra FINDSET

2.12
212
212
212
212
2.12
212
212
212

1.75
1.53
1.35
1.22
1.08
1.02
1.01
1.00
0.98

ke
5 5.3: Disjoint Sets

TS.

23

6.1 & 6.2: Graph Searching

Frank Stajano Thomas Sauerwald

Lent 2016

[UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction to Graphs and Graph Searching

el b
6.1 & 6.2: Graph Searching

TS.

Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kdnigsberg 1737

6.1 & 6.2: Graph Searching TS.

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

'..E,, 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

'..E,, 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

@ Is there a tour which crosses

each bridge exactly once?
©
©

. 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

0 Is there a tour which crosses

. each bridge exactly once?

. 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every

island exactly once?

. e
E:E 6.1 & 6.2: Graph Searching TS. 3

Origin of Graph Theory

S.ource: Wikipedia Source: Wikipedia
Seven Bridges at Konigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every
island exactly once?
. ~+ 1B course: Complexity Theory
é:':' 6.1 & 6.2: Graph Searching TS. 3

What is a Graph?

Directed Graph

A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

b bl
6.1 & 6.2: Graph Searching

TS.

What is a Graph?

Directed Graph

A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

6.1 & 6.2: Graph Searching

TS.

What is a Graph?

Directed Graph

A graph G = (V, E) consists of:

= V: the set of vertices
= E: the set of edges (arcs)

Ve

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

.'0

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~—— Paths and Connectivity ——

= A sequence of edges between two
vertices forms a path

Ve

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ———o

= A sequence of edges between two
vertices forms a path

Path p=(1,2,3,4)

L

V=1{1,23,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~——— Paths and Connectivity ———o

= A sequence of edges between two
vertices forms a path

Path p=(1,2,3,1), which is a cycle

Ve

V=1{1,23,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\. J

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\ J

~—— Paths and Connectivity ——
= A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

Ve

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

Ve

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph
A graph G = (V, E) consists of:

= V: the set of vertices
= E: the set of edges (arcs) (—
Gis

\.

I, vy
not connected e °

—— Undirected Graph ———————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

V =1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

~——— Paths and Connectivity —[G

is connected

.'0

= A sequence of edges between two
vertices forms a path

= If each pair of vertices has a path
linking them, then G is connected

V=1{1,234)
E= {{1) 2}7 {1) 3}7 {273}, {374}}

6.1 & 6.2: Graph Searching

TS.

What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: o

= V: the set of vertices "

= E: the set of edges (arcs) (—%
L G is not connected | (3) (4)
—— Undirected Graph ———————

_ . . V=1{1,2,34}
A graph G = (V, E) consists of: E={(1,2),(1,3),(2.3),(3,1), (3, 4)}

= V: the set of vertices

= E: the set of (undirected) edges o o
~——— Paths and Connectivity —[Gis Connemeﬁ ‘
= A sequence of edges between two e °
vertices forms a path
. . V=1{1,234}
= If each pair of vertices has a path A
linking them, then G is connected E={{1,2},{1,3},{2,3},{3,4}}

J

Later: edge-weighted graphs G = (V, E, w)

6.1 & 6.2: Graph Searching TS.

Representations of Directed and Undirected Graphs

1 23 45
110 1.0 0 1
211 0 1 1 1
3|10 1.0 1 0
410 1 1 0 1
5/11.0 10
(a) (b) (©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

5y 6.1 & 6.2: Graph Searching TS.

Representations of Directed and Undirected Graphs

12345

1fo 100 1

(2) 2010 1 11

3001010

® 400 11 0 1

@ 5[1010
(a) (b) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G. q
(Most times we will use the adjacency-list representatlon!)
1 23 45 6
110 1.0 1 00
2(0 000 1 O
(2) ©) 30000 11
410 1 0 0 0 O
50 001 00
ORO») 6[0 000 01
(a) (©

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

6.1 & 6.2: Graph Searching TS.

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

6.1 & 6.2: Graph Searching

TS.

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort]
Minimum Spanning Trees]

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings ’

[

Geometric Algorithms]

6.1 & 6.2: Graph Searching

TS.

Overview

Amortized Analysis))

Fibonacci Heaps

Disjoint Sets J

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings ’

[

Geometric Algorithms]

6.1 & 6.2: Graph Searching TS.

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

[

Geometric Algorithms

)

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching

TS.

Overview

Amortized Analysis))

Fibonacci Heaps G Qe

Disjoint Sets J

Graphs, DFS/BFS, Topological Sort Sorting

Minimum Spanning Trees

N/ N N [N\

Dynamic Programming

Single-Source/All-Pairs Shortest Paths

Greedy

‘ Maximum Flow, Bipartite Matchings

[Geometric Algorithms]

Sl 6.1 & 6.2: Graph Searching TS. 0

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

el . bt
6.1 & 6.2: Graph Searching TS. 6

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

e ke
E:E 6.1 & 6.2: Graph Searching TS. 6

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)

el . bt
6.1 & 6.2: Graph Searching TS. 6

Outline

Breadth-First Search

el b
6.1 & 6.2: Graph Searching

TS.

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

S
6.1 & 6.2: Graph Searching TS. 8

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths

S
6.1 & 6.2: Graph Searching TS. 8

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

\.

S
6.1 & 6.2: Graph Searching TS. 8

Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2

3

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10: v.colour = "white"
11: Q = Queue()

12:

13:

14:sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

5
ey 6.1 & 6.2: Graph Searching TS.

Breadth-First-Search: Pseudocode

: def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i

LR LI e vertices before going any deeper
11: Q = Queue()
12:

14: sd=0
15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

Sl 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())

5H

6:

7: f in G.verti : .. .
A ., = From any vertex, visit all adjacent
9: v.d = Infinity i i

G ey vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: e | = o

[White | = Unvisited

15: s.colour = "grey" = Visi i

1 G Grey = Visited, but not all neighbors
17: . .

18: ElEd = Visited and all neighbors

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

ey 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1:

2:

Bk

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g ‘(,.';red‘éigffj(): N = From any vertex, visit all adjacent
9: v.d = Infinity i i

G ey vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: e | = o

[White | = Unvisited

15: s.colour = "grey" = Visi i

1 G Grey = Visited, but not all neighbors
17: ol ;

18: ElEd = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20: u=Q.extract()
21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

ked
ey 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1:

2:

Bk

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g ‘(,.';red‘éigffj(): N = From any vertex, visit all adjacent
9: v.d = Infinity i i

G ey vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: e | = o

[White | = Unvisited

15: s.colour = "grey" = Visi i

1 G Grey = Visited, but not all neighbors
17: ol ;

18: ElEd = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20: u=Q.extract()
21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

ked
ey 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())

5H

6:

7: f in G.verti : .. .

g VV,';red;i'e::;‘L N = From any vertex, visit all adjacent

9: v.d = Infinity i i

LR LI e vertices before going any deeper

]; Q = Queue() = Vertex Colours:

1 White | = Unvisited

]gf gﬁﬂgeurft(:)"gfev" Grey = Visited, but not all neighbors
s 2Bt = Visited and all neighbors

19: while not Q.isEmpty(): - : nnn

20: u=Q.extract() Runtime 777

21: assert (u.colour == "grey") Y

22: forvin u.adjacent() . .

23: ifv.colour = "white" Assuming that all executions of the FOR-loop
24: .colour = "grey" § : A

%5 I for u takes O(|u.adj|) (adjacency list model!)
26: v.predecessor = u

27: Q.insert(v)

28: u.colour = "black"

() 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

: def bfs(G,s)
assert(s in G.vertices())
: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
i vertices before going any deeper
- Q= Queue() = Vertex Colours:
Cedso White | = Unvisited
: gﬁﬂgeurft(:)"gfey" Grey = Visited, but not all neighbors
ElEd = Visited and all neighbors
. while not Q.isEmpty(): . : NN
u = Q.extract() Runtime 777
assert (u.colour == "grey") /]
for v in u.adjacent() . g
if v.colour = "white” Assuming that all executions of the FOR-loop
.colour = "grey" g A A
I for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u A
Q.insert(v) .
u.colour = "black" [Zuev |U.adj| - 2|E|]
6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

: def bfs(G,s)
assert(s in G.vertices())
: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
i vertices before going any deeper
: Q= Queue() = Vertex Colours:
Cedso White | = Unvisited
: gﬁﬂgeurft(:)"gfey" Grey = Visited, but not all neighbors
ElEd = Visited and all neighbors
. while not Q.isEmpty(): . :
U = Q extract) Runtime O(V + E)
assert (u.colour == "grey") /]
for v in u.adjacent() . g
if v.colour = "white” Assuming that all executions of the FOR-loop
.col =" " . . .
I for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u A
Q.insert(v) .
u.colour = "black" [Zuev |U.adj| - 2|E|]
6.1 & 6.2: Graph Searching TS. 9

Execution of BFS (Figure 22.3)

Queue:

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: s

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X r

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X r

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X r

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X r

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W

‘ N
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

‘ N
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

‘ N
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W

‘ N
v w X y
6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W v ¢

w

6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W v

6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W

el
Sl 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

S 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

S 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

: ‘ Y
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

: ‘ Y
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

: ‘ Y
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
&/
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X
r S t
2
&/
4 w X
;;, 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X W X
r S t
2
&/
4 w X
;;, 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
&/
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
&/
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
&/
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
A 4
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
A 4
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
A 4
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
A 4
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f
r S t u
2
A 4
v w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X u

-~
n
~
<

N
O

ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X u

-~
n
~
<

N
O

ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X u

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X f X u vy

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

ey 6.1 & 6.2: Graph Searching

TS.

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v
r S t u
3
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » X ¥ X ¥ v

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X ™ X f X ¥ X

ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » Xt X ¥ X
r S t u
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X » Xt X ¥ X
r S t u
% w X y
ked
ey 6.1 & 6.2: Graph Searching TS. 10

Execution of BFS (Figure 22.3)

Queue: X X W X

X

X ® X

(5 6.1 & 6.2: Graph Searching

T.S.

Outline

Depth-First Search

el b
6.1 & 6.2: Graph Searching

TS.

Depth-First Search: Basic Ideas

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

Sl
6.1 & 6.2: Graph Searching TS. 12

Depth-First Search: Basic Ideas

_] ’J_L

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes

e Bl
E:E 6.1 & 6.2: Graph Searching TS. 12

Depth-First Search: Basic Ideas

_] ’J_L

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time

e Bl
E:E 6.1 & 6.2: Graph Searching TS. 12

Depth-First-Search: Pseudocode

0:
1:
2
3
4
5:
6:
7
8
9
0

N

PN AR WN O

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

dfsRecurse(G,s)

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black”
s.f =time()

6.1 & 6.2: Graph Searching TS.

Depth-First-Search: Pseudocode

def dfs(G,s):

0:

1:

2

3

4: assert(s in G.vertices())

gi = We always go deeper before visiting
7: forvin G.vertices(): other neighbors

8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—a

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f =time()

PN AR WN O

Sl 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

def dfs(G,s):

0:
1:
2
3
4: assert(s in G.vertices())

gf = We always go deeper before visiting
7. for v in G.vertices(): other nelghbors

8

9

0

v.predecessor = None = Discovery and Finish times, .d and .f
v.colour = "white"

dfsRecurse(G,s)

N

def dfsRecurse(G;s):
s.colour = "grey"
s.d =time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black”
s.f =time()

PN AR WN O

5
Sl 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G;,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ Upredszesers Mg = Discovery and Finish times, .d and .f
© v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
0: def dfsRecurse(G,s): Grey = Visited, but not all neighbors
1: s.colour = "grey"
2: sd=time() Bl = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()

Sl 6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G;,s):
1:

2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
8: vpredecessor = None = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?g desf g;ﬁ;ercilr%?g:S): Grey = Visited, but not all neighbors
2 s.d=time() =Eled = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
58 v.predecessor = s
6 dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()

Sl
6.1 & 6.2: Graph Searching TS. 13

Depth-First-Search: Pseudocode

0: def dfs(G;,s):
1:

2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
d vjprleesn = o = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?f desfggfglercff%?g;s)i Grey = Visited, but not all neighbors
2: sd=time() B]Ey = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white" * Runtime O(V + E)
5: v.predecessor = s
6 dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()

Sl
6.1 & 6.2: Graph Searching TS. 13

Execution of DFS

S w
X z
r
S
Sl 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
S
Sl 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
S
Sl 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S w
X z
r
S
Sl 6.1 & 6.2: Graph Searching TS. 14

Execution of DFS

S
Sl 6.1 & 6.2: Graph Searching

Execution of DFS

S
Sl 6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

6.1 & 6.2: Graph Searching

Execution of DFS

ked
5 6.1 & 6.2: Graph Searching

Execution of DFS

5 6.1 & 6.2: Graph Searching

Execution of DFS

5 6.1 & 6.2: Graph Searching

Execution of DFS

5 6.1 & 6.2: Graph Searching

Execution of DFS

5 6.1 & 6.2: Graph Searching

Execution of DFS

5 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

X

Execution of DFS

) 6.1 & 6.2: Graph Searching

X

Execution of DFS

) 6.1 & 6.2: Graph Searching

X

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

»

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Execution of DFS

w

) 6.1 & 6.2: Graph Searching

Execution of DFS

) 6.1 & 6.2: Graph Searching

Paranthesis Theorem (Theorem 22.7)

910111213141516

8

7
(s (v(y (xx) (r(uu)ry)v)s)(w(zz)w)

15

TS.

6.1 & 6.2: Graph Searching

Outline

Topological Sort

el b
6.1 & 6.2: Graph Searching

TS.

Topological Sort

Sl
Sl 6.1 & 6.2: Graph Searching

Topological Sort

?\

pants shoes

shirt

Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices

Sl
6.1 & 6.2: Graph Searching TS. 17

Topological Sort

?\
pants shoes
Y

gl

= Goal: Output a linear ordering of all vertices

belt
Problem
‘ = Given: a directed acyclic graph (DAG)

[socks] [undershortsHpantSshoesj [watch]
6.1 & 6.2: Graph Searching TS. 17

Topological Sort

?

\
pants
T

= Goal: Output a linear ordering of all vertices

belt
Problem
‘ = Given: a directed acyclic graph (DAG)

[socks] [undershorts)—{paﬂtsshoes] [watch]

5
Sl 6.1 & 6.2: Graph Searching TS. 17

Topological Sort

?

\
pants
T

= Goal: Output a linear ordering of all vertices

belt
Problem
‘ = Given: a directed acyclic graph (DAG)

[socks] [undershorts)—{paﬂtsshoes] [watc

5
Sl 6.1 & 6.2: Graph Searching TS. 17

Solving Topological Sort

[watch]

pants shoes
shirt

belt

acket

Vot /
i

Knuth’s Algorithm (1968)
= Perform DFS’s so that all vertices are visited
= Output vertices in decreasing order of their finishing time

- Bl
E:E 6.1 & 6.2: Graph Searching TS. 18

Solving Topological Sort

[watch]

pants shoes
shirt

belt

Vot /
i

acket

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Output vertices in decreasing order of their finishing time

2

[Runtime O(V/+ E)]

S
6.1 & 6.2: Graph Searching TS. 18

Solving Topological Sort

[watch]

pants shoes

L

belt

jacket

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Output vertices in decreasing order of their finishing time
AN

2

[Runtime O(V + E)] tices — use DFS directly!

74
[Don’t need to sort the ver-]

S
6.1 & 6.2: Graph Searching TS. 18

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z S

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z S

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z S v

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

290000

) 6.1 & 6.2: Graph Searching T.S.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching TS. 19

Execution of Knuth’s Algorithm

) 6.1 & 6.2: Graph Searching TS. 19

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

() 6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.

)

Proof:

Sl
6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
S

= Consider any edge (u, v) € E(G) being explored, @

@©—0

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

s
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f -
:»"3 :
u %

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey,

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!). teeny

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!).

2. If v is black, M

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle ;
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. M

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. Ifv is black, then v.f < u.f. 4
3. If v is white, @—’Q

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. ¢
3. If v is white, we call DFS(v) and v.f < u.f.

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. ¢
3. If v is white, we call DFS(v) and v.f < u.f.

6.1 & 6.2: Graph Searching TS. 20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= uis grey and we have to show that v.f < u.f

1. Ifv is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

6.1 & 6.2: Graph Searching TS.

20

Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

b bl
6.1 & 6.2: Graph Searching TS.

21

Summary of Graph Searching

——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

» Runtime O(V + E)

Sl
6.1 & 6.2: Graph Searching TS.

21

6.3: Minimum Spanning Tree

Frank Stajano Thomas Sauerwald

Lent 2016

57 UNIVERSITY OF
{¥ CAMBRIDGE

Minimum Spanning Tree Problem

——— Minimum Spanning Tree Problem —

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights

b bl
6.3: Minimum Spanning Tree

TS.

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

g 6.3: Minimum Spanning Tree

TS.

Minimum Spanning Tree Problem

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights

= Goal: Find a subgraph C E of
minimum totalflweight that links
all vertices /\

——— Minimum Spanning Tree Problem —

J

I L
[Must be necessarily a tree!]

e e
E:E 6.3: Minimum Spanning Tree

TS.

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

Applications

= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.

el bt
6.3: Minimum Spanning Tree T.S. 2

Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

w N B O

ked
ey 6.3: Minimum Spanning Tree TS.

Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

w N B O

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

ked
ey 6.3: Minimum Spanning Tree TS. 3

Generic Algorithm

0: def minimum spanningTree (G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
— Definition N\

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?

Sl
6.3: Minimum Spanning Tree TS. 3

Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

'-.En 6.3: Minimum Spanning Tree

TS.

Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

e e
E:E 6.3: Minimum Spanning Tree

TS.

Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

'-.E» 6.3: Minimum Spanning Tree

TS.

Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

'-.E» 6.3: Minimum Spanning Tree

TS.

Finding safe edges

Definitions

= a cut is a partition of V into at least
two disjoint sets

= a cut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

el bt
6.3: Minimum Spanning Tree T.S. 4

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:

b b
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A

, N
-~
RN TN
/ \ \ ’/
/ \ -
//\
! \
I l ~
! 1 // \\
I/ ’ ®
| 1 [\
\ o
\ / ' /
\ / A /
\) ~

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut

-~ e
7 \ [
/ \
/
/ \
! \
! |
| | -
| / .
| | °
\ o
\ I '
\ / N
\ . N
\ ’ =

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut

AN €y
= If g € T, then we are done /)

!

1 \\

! |

| | -

1 7

7 .

\ "

\ / / \

\ / AY

\ . ~_
N 7/

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:

= Let T be a MST containing A

= Let e/, be the lightest edge across the cut e ey

= If g € T, then we are done ;0

“lfe ¢ T,
| .-
R g
\ / /Il \\

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut . ey
= |[f e, € T, then we are done / j
= If e, ¢ T, then adding e, to T introduces cycle ! |

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:

= Let T be a MST containing A

= Let e/, be the lightest edge across the cut e ey

= [f e, € T, then we jclre done . / / \

= If e, ¢ T, then adding e, to T introduces cycle ! |

|

| | Phd
L .
\ / ,' \

S
6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex

S
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex

S
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e; \ éx:

Sl
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e; \ éx:

—~ €y
<
4 \

4 \

/

| / .
! \
|l |

1 -

l /\&/
1 I -

Sl
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree TU e; \ ex:
= This tree must be a spanning tree

~ €y
<
4 \

4 \

/

| / \
! \
|l |

| P

| /\&/
1 I -

Sl
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e; \ éx:

= This tree must be a spanning tree
= If w(er) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)

—~ €y
<
4 \

4 \

/

| / .
! \
|l |

1 -

l /\&/
1 I -

x5
6.3: Minimum Spanning Tree TS.

Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
= Let T be a MST containing A
= Let e/, be the lightest edge across the cut
= |[f e, € T, then we are done
= If e, ¢ T, then adding e, to T introduces cycle
= This cycle crosses the cut through e, and
another edge ex

= Consider now the tree T U e; \ éx:

= This tree must be a spanning tree

= If w(er) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)

= If w(eg) = w(ex),then TUe; \ exisa
MST. O

—~ €y
<
4 \

4 \

/

| / .
! \
|l |

1 -

l /\&/
1 I -

Sl
6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty

. 6.3: Minimum Spanning Tree T.S.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step,

e e
E:E 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

e e
E:E 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

'..a,. 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty

= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

'..a,. 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty

= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

'..a,. 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty

= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

;.a,. 6.3: Minimum Spanning Tree TS.

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

'-.E» 6.3: Minimum Spanning Tree

TS. 6

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

g 6.3: Minimum Spanning Tree

TS. 6

Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty
= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

]

g 6.3: Minimum Spanning Tree

TS. 6

Execution of Kruskal’s Algorithm

6.3: Minimum Spannin, g Tree TS.

Execution of Kruskal’s Algorithm

el bt
6.3: Minimum Spannin, g Tree

TS.

Execution of Kruskal’s Algorithm

. e
6.3: Minimum Spannin, g Tree

TS.

Execution of Kruskal’s Algorithm

. e
6.3: Minimum Spannin, g Tree

TS.

Execution of Kruskal’s Algorithm

'1'«
6.3: Minimum Spannin, g Tree

TS.

Execution of Kruskal’s Algorithm

'1'«
6.3: Minimum Spannin, g Tree

TS.

Execution of Kruskal’s Algorithm

5l
6.3: Minimum Spannin g Tree

TS.

Execution of Kruskal’s Algorithm

5l
6.3: Minimum Spannin g Tree

TS.

Execution of Kruskal’s Algorithm

TS.

Execution of Kruskal’s Algorithm

TS.

Execution of Kruskal’s Algorithm

e
6.3: Minimum Spanning Tree

TS.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Execution of Kruskal’s Algorithm

]
6.3: Minimum Spanning Tree

Ts.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

) 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

) 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges ()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

S
6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges ()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= |nitialisation (I. 4-9): O(V + Elog E)

S
6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

def kruskal (G)
Apply Kruskal’s algorithm to graph G
Return set of edges that form a MST

Set () # Set of edges of MST; initially empty.
DisjointSet ()

for v in G.vertices():

D.makeSet (v)

E = G.edges ()

E.sort (key=weight, direction=ascending)

VWooOoJoUlbdWNEO
o

10:

11: for edge in E:

&g startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= |nitialisation (I. 4-9): O(V + Elog E)

el kel
6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

def kruskal (G)
Apply Kruskal’s algorithm to graph G
Return set of edges that form a MST

Set () # Set of edges of MST; initially empty.
DisjointSet ()

for v in G.vertices():

D.makeSet (v)

E = G.edges ()

E.sort (key=weight, direction=ascending)

VWooOoJoUlbdWNEO
o

10:

11: for edge in E:

&g startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= |nitialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))

el kel
6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = O(Elog V)

() 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = (’)(E|C£V)

(I edges are already sorted, runtime becomes O(E - a(n))!

) 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness

) 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)

() 6.3: Minimum Spanning Tree TS.

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)

= L. 14 ensures that we extend A by an edge that goes across the cut

() 6.3: Minimum Spanning Tree TS. 8

Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

3:

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)
= L. 14 ensures that we extend A by an edge that goes across the cut

= This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

() 6.3: Minimum Spanning Tree TS. 8

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex

. 6.3: Minimum Spanning Tree T.S.

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. e
E:E 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..E,, 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..E,. 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..E,, 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..a,. 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..E,. 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

'..a,. 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

..E 5 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

..E 5 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

,,E % 6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

1

[Implementation will be based on vertices!]

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

. 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge &c:nnecting to A

[Use a Priority Queue!]

el bt
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

o
Sl 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

o
Sl 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

o
Sl 6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

b bl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!

1

Sl
6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

= At each step:
1. extract vertex from Q with smallest key <> safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!

We computed same MST as Kruskal,
but in a completely different order!

}

Sl
6.3: Minimum Spanning Tree T.S. 9

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)

18: if Q.hasItem(v) and w < v.key:

19: v.predecessor = u

20: Q.decreaseKey (item=v, newKey=w)
6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

©

10:
11:
179
13:
14:
Al
16:
17:
18:
19:
20:

~——— Time Complexity

©®d U s WNKHO

&
h

for

prim(G, r)

Apply Prim’s Algorithm to graph G and root r
Return result implicitly by modifying G:

MST induced by the .predecessor fields

MinPriorityQueue ()
v in G.vertices():
v.predecessor = None
if v == r:

v.key = 0
else:

v.key = Infinity
Q.insert (v)

while not Q.isEmpty () :

u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

= Fibonacci Heaps:

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

©

10:
11:
179
13:
14:
Al
16:
17:
18:
19:
20:

~——— Time Complexity

©®d U s WNKHO

&
h

for

prim(G, r)

Apply Prim’s Algorithm to graph G and root r
Return result implicitly by modifying G:

MST induced by the .predecessor fields

MinPriorityQueue ()
v in G.vertices():
v.predecessor = None
if v == r:

v.key = 0
else:

v.key = Infinity
Q.insert (v)

while not Q.isEmpty () :

u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

= Fibonacci Heaps:
Init (1. 6-13): O(V),

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

15: u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (1. 6-13): O(V),

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

15: u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V),

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ilp Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

gy

14: while not Q.isEmpty():

ALy u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)

18: if Q.hasItem(v) and w < v.key:

1'9L: v.predecessor = u

20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V),

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ilp Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

gy

14: while not Q.isEmpty():

ALy u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)

18: if Q.hasItem(v) and w < v.key:

1'9L: v.predecessor = u

20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:

Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20):

O(E-1)

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - 1)

Amortized Cost Amortized Cost

ey 6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:

Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20):

= Overall: O(Vlog V + E)

O(E-1)

6.3: Minimum Spanning Tree TS.

Details of Prim’s Algorithm

0: def prim(G, r)

ile

2:

3:

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

7: v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

353

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V - log V), DecreaseKey (16-20): O(E - 1)
= Overall: O(Vlog V + E)

= Binary/Binomial Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - log V)
= Overall: O(Vlog V + Elog V)

\.

S
6.3: Minimum Spanning Tree T.S. 10

Summary (Kruskal and Prim)

Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

S
E:E 6.3: Minimum Spanning Tree TS.

Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(E log V)

S
6.3: Minimum Spanning Tree T.S. 11

Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(E log V)

\.

~— Prim’s Algorithm

= Gradually extends a tree into a MST by adding incident edges
= invokes Fibonacci heaps (priority queue)
= Runtime O(Vlog V + E)

Sl
6.3: Minimum Spanning Tree T.S. 11

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree TS.

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree TS.

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

11)(@ 8

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree TS.

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree TS.

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea

= Let A be initially the set of all edges
= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

el bt
6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

ANN

[Can be implemented in time]

O(Elog V(loglog V)?). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Current State-of-the-Art

Does a linear-time MST algorithm exist?

'..E,, 6.3: Minimum Spanning Tree TS.

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

. 6.3: Minimum Spanning Tree T.S. 13

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

——— Chazelle, JACM'2000

= deterministic MST algorithm with runtime O(E - «(n))

'..E,, 6.3: Minimum Spanning Tree TS. 13

Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

——— Chazelle, JACM'2000
= deterministic MST algorithm with runtime O(E - «(n))

Pettie, Ramachandran, JACM’'2002

= deterministic MST algorithm with asymptotically optimal runtime
= however, the runtime itself is not known...

'..E,. 6.3: Minimum Spanning Tree TS.

6.4: Single-Source Shortest Paths

Frank Stajano Thomas Sauerwald

Lent 2016

[A:F UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

6.4: Single-Source Shortest Paths

TS.

Shortest Path Problem

Shortest Path Problem
= Given: directed graph
G = (V, E) with edge weights,
pair of vertices s, t € V

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

6.4: Single-Source Shortest Paths

TS.

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight fromsto tin G
N\

w(p) = K, w(vk_1, vi) is minimized.

[p = (vw = sWwn,..., = t)such that}

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight fromsto tin G
N\

w(p) = K, w(vk_1, vi) is minimized.

[p = (vw = sWwn,..., = t)such that}

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

What if G is unweighted?

el ke
6.4: Single-Source Shortest Paths TS.

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

What if G is unweighted?

7 I

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s, t € V

= Goal: Find a path of minimum
weight from sto tin G

Applications
| = Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange]

6.4: Single-Source Shortest Paths T.S. 3

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

el b
6.4: Single-Source Shortest Paths

TS.

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)
= Shortest Paths via Matrix Multiplication
= Johnson’s Algorithm

6.4: Single-Source Shortest Paths

TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

S
E;E 6.4: Single-Source Shortest Paths TS.

Distances and Negative-Weight Cycles (Figure 24.1)

Negative-Weight Cycle
(not reachable from s)

(reachable from s)

[Negative-Weight Cycle }

ey 6.4: Single-Source Shortest Paths T.S. 5

Outline

Bellman-Ford Algorithm

el . bt
6.4: Single-Source Shortest Paths

TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.4 is the length of the shortest path (distance) from sto v
= v.d is the length of the shortest path discovered so far

gy 6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.4 is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

b b
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.4 is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) —————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

Sl
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) —————
Given estimates u.d and v.d, can we find a
better path from v using the edge (u, v)?

v.d > u.d+w(u,v)

Sl
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~—— Relaxing an edge (U, V) =————" u 2 v
Given estimates u.d and v.d, can we find a PRy \
better path from v using the edge (u, v)? , . Y

? {/ s - /
v.d > u.d+ w(u,v) @“’ N J

Sl
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) —————
Given estimates u.d and v.d, can we find a

better path from v using the edge (u, v)? ! N
? / S B
v.d > u.d+ w(u,v) '@“’

Sl
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V

v.¢ is the length of the shortest path (distance) from sto v

v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.6=0,v.d=ocoforv #s J

= Attheend: v.d=v.dforallve V

~——— Relaxing an edge (u, V) —————

Given estimates u.d and v.d, can we find a P
better path from v using the edge (u, v)? ! A
7 s
v.d > u.d+ w(u,v) @

Sl
6.4: Single-Source Shortest Paths TS.

Relaxing Edges

Definition

Fix the source vertex s € V
= v.d is the length of the shortest path (distance) from s to v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =5.0=0,v.d=ccforv #s J

= Attheend: v.d=v.d forallve V

~——— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a PRy @

better path from v using the edge (u, v)? // Y
? ‘s
v.d > u.d+ w(u,v) ‘@
ANN

After relaxing (u, v), regardless of whether we found a shortcut:
v.d <u.d+ w(u,v)

Sl 6.4: Single-Source Shortest Paths T.S. 7

Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d

el bt
6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+w(u,v)

el bt
6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+w(u,v)

@ =u.d+w(u,v)

el bt
6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+w(u,v)

el bt
6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

. Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u, v) € E, we have v.§ < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.¢ for all v € V, and once v.d achieves the
value v.4, it never changes.

Convergence Property (Lemma 24.14)

» If s ~ u — v is a shortest path from s to v, and if u.d = u.6 prior to
relaxing edge (u, v), then v.d = v.¢ at all times afterward.

v.d <u.d+w(u,v)

V.0 Since v.d > v.§, we have v.d = v.6.

el bt
6.4: Single-Source Shortest Paths T.S. 8

O

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

b b
6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.

el
E:E 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

el
E:E 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)

If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).

Vo Vi Vo Vi1 Vi

) Q
Vo.0 Vi.0 W) —=-=-=-=-- #
N

S
E:E 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)
If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.

= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).
Convergence Property = v;.d = v;.6 (now and at all later steps) O

Vo Vi Vo Vi1 Vi

Vo'é @ V2'6 ______ #

S
E:E 6.4: Single-Source Shortest Paths TS. 9

Path-Relaxation Property

[“Propagation”: By relaxing proper edges, set of vertices with v.§ = v.d gets Iarger]

Path-Relaxation PropeW(Lemma 24.15)
If p=(vo,v1,..., V) is a shortest path from s = v to vk, and we relax
the edges of p in the order (vo, v1), (v1, v2), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 <i < k:
After the ith edge of p is relaxed, we have v;.d = v;.0.
= For i = 0, by the initialization s.d = s.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — /): Assume v;_y.d = v;_1.§ and relax (vi_1, V).
Convergence Property = v;.d = v;.§ (now and at all later steps) O

Vo

V4 Vo :
o @ @ ______

S
6.4: Single-Source Shortest Paths T.S. 9

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

() 6.4: Single-Source Shortest Paths T.S.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

() 6.4: Single-Source Shortest Paths TS. 10

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert (s in G.vertices())
1l: for v in G.vertices()

2 v.predecessor = None
3 v.d = Infinity

4: s.d=0

5E

6: repeat |V|-1 times

7 for e in G.edges()

8
9

i@ e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

if e.start.d + e.weight.d < e.end.d:

Time Complexity
= A single call of line 9-11 costs O(1)

0 6.4: Single-Source Shortest Paths T.S.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert (s in G.vertices())
1l: for v in G.vertices()

2 v.predecessor = None
3 v.d = Infinity

4: s.d=0

5E

6: repeat |V|-1 times

7 for e in G.edges()

8
9

if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity
= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass

() 6.4: Single-Source Shortest Paths TS. 10

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
0: assert (s in G.vertices())
1l: for v in G.vertices()

2 v.predecessor = None
3 v.d = Infinity

4: s.d=0

5E

6: repeat |V|-1 times
7 for e in G.edges()

8

9: if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
&g return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V —1)+1 = V passes = O(V - E) time

ked
55 6.4: Single-Source Shortest Paths TS. 10

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(,2),(X,t),(y;X),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

(s:1).(sy)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

(s:1).(sy)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,X),(z,S

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,X),(z,S

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x), ,(1,2),(x,1),(y,X),(y,2),(z,X),(z,S

):(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x), ,(1,2),(x,1),(y,X),(y,2),(z,X),(z,S

):(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y), ,(6,1),(y:%),(y,2),(z,%),(z,8

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y), ,(6,1),(y:%),(y,2),(z,%),(z,8

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2), J(¥:X),(¥,2),(z,x),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2), J(¥:X),(¥,2),(z,x),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,%),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), (z,x),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), (z,x),(z,s

):(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y;X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(X,1),(y;X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x),(y,2),(z,X),

(8:1),(s,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x),(y,2),(z,X),

(8:1),(s,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(y,2),(z,X),(z,S),

NERY)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(y,2),(z,X),(z,S),

NERY)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: L(LY), (6,2),(x,1),(y,X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x), ,(1,2),(x,1),(y,x),(y,2),(z,X),(z

8),(s:1).(s.y)

0 6.4: Single-Source Shortest Paths T.S.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y), ,(%,1),(y:X),(,2),(2,%),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2), (¥:X),(¥,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1), ,(%,2),(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,x), J(z,x),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),

(2,8

):(s:1).(s.y)

6 6.4: Single-Source Shortest Paths

TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(x,1),(y,x),(y,2),(z,X),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y;X),(¥,2),(z,X),(z,S),

(8,y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S),(S,1),

ked
ey 6.4: Single-Source Shortest Paths TS.

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (1,x),(t,y),(,2),(X,t),(y;X),(y,2),(z,X),(z

8),(s:1).(s.y)

ked
ey 6.4: Single-Source Shortest Paths TS.

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

e bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s

e bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v

b bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1

b bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

b bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE

b bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges

b bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

e bl
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.0

e b
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.6 <u.d+ w(u,v)

e b
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.d <ud+w(u,v)=ud+wu,v)

e b
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.d <ud+w(u,v)=ud+wu,v) O

e b
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.j for all vertices
v € V (that are reachable) and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
" Letp= (v =s,w,..., v = v) be a shortest path from sto v
= pis simple, hence k < |V| — 1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
* Let (u, v) € E be any edge. After |V| — 1 passes:

v.d=v.d <ud+w(u,v)=ud+wu,v) O
™~

[Triangle inequality (holds even if w(u, v) < 0!)]

e b
6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

b bl
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s

Sl
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

b b
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
i=1 i=1 i=1

b b
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
i=1 i i
= 0< Z (Vie1, i)

e bl
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
P - F
= 0< Z (Vie1, i)

[This cancellation is only vaI|d if all .d-values are finite!]

e bl
6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
= Letc = (o, v1,..., Vk = V) be a negative-weight cycle reachable from s
= If Bellman-Ford returns TRUE, then for every 1 </ < k,

vi.d < Viet.d + w(Vi—1, Vi)

k k k
= ZV;de ZV,‘,pd-FZW(V,‘,hV,')
i=1 i i
= 0< Z (Vie1, i)

/1
[This cancellation is only valid if all .d-values are finite!]

= This contradicts the assumption that ¢ is a negative-weight cycle! O

e bl
6.4: Single-Source Shortest Paths T.S. 13

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

33

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

5 6.4: Single-Source Shortest Paths T.S.

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

33

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
53 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Sl
6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)
0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V|-1 times

7: for e in G.edges|()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
53 return FALSE

16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J

5
Sl 6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

33

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J

55 6.4: Single-Source Shortest Paths TS. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, S)

0: assert (s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d=0

5:

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
SPSE flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

N
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.J

0 6.4: Single-Source Shortest Paths TS. 14

Graph G= (V. E,c):

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

Outline

Introduction

6.6: Maximum flow

TS.

History of the Maximum Flow Problem [Harris, Ross (1955)]

Fig. 5— Soviet and
satellite rail
network

Moscow

T e e Seniery T Reganal Soumdaies oT The USSR ey e ncladed os o mettar o vl mformation)
@ operating divisions. Those lacatad in Russia ore believed fo be accurately locoted. Some Russian divisions (2,3, ané 13) ore
Iocatad i wo reians and are s (ndicared. Ohistens shown 1nthe setelites ore ndicorea. sccording fo 1a surmersbes) Magment,
Since inalligance repots are unavailobl. T7ain caposiios In Ruseia v for 1000-ne1 - ton Hrtes or thelr squvatent. Tron copociies
in Polanu are for 666 nat fons (or the squvalent] rain sapacites In o ammer setellires are for 40 aet fons (or she aquivalent)
cxcept in Sast Germany. In East Germany, 10in capacities are Those of emering ines. The numbers showt in boxes are rotar
ntardivisionat cosseities.

6.6: Maximum flow TS.

History of the Maximum Flow Problem [Harris, Ross (1955)]

LENINGRAD
Fig. 5— Soviet and
satellite rail
network

Moscow

Infernational boundary

ting divisions. Those locat

d in two regions and ore s

since intelligence reports are unavailable. Train capacities in Russic ore for 10 t-ton troins or their equivalent. Troin capacities

in Polanu are for 666 net tons (or the equivalent). Train capacities in oll other satellites are for 400 net fons (or the equivalent)
ast Germany. In East Germany, train capacities are those of entering lines. The numbers shown in boxes are total

fonal cadacities.

6.6: Maximum flow TS.

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink t

= every edge e has a capacity c(e)

6.6: Maximum flow TS. 4

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges
= distinguished nodes: source s and sink t

= every edge e has a capacity c(e)
7

[Capacity function ¢ : V x V — R*]

6.6: Maximum flow TS. 4

Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
= G = (V, E) directed graph without parallel edges
= distinguished nodes: source s and sink t

= every edge e has a capacity c(e)
7 AN

[Capacity function ¢ : V x V — R*] [c(u,v) =0« (u,v) ¢ E]

o [
Sl 6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V)

6.6: Maximum flow

TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)

0/4 0/15
® (s ®
s % 0/15

.-.,I., 6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)

0/4 0/15
® (s ®
s % 0/15

.-.,B'., 6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0

0/4 0/15
® (s ®
s % 0/15

.;,I., 6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:

= Forevery u,v e V, f(u,v) < c(u, V) e -
n
= Forevery u,v e V, f(u,v) = —f(v, u) M

= Foreveryue V\ {s,t},> ., f(u,v)=0

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

0/4 0/15
® (s ®
s % 0/15

.;,I., 6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0
The value of a flow is defined as |f| = > ., f(s, V) -~

(Suevf(s) = Zoev fv1)

veV

0/4 0/15
® (s ® ®
s % 0/15

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

@ ©

0/4 0/15
OO OO
o N6 oss ~
()) M=5+10+10=25]

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

© ®

0/4 0/15
® ©) ® ®
oa % 0/15
A

@ 7 [|f|:5+10+1o:25]

6.6: Maximum flow TS. 4

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

0/ 0115
® ® ®
0/4 0115
® @
6.6: Maximum flow TS.

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, V)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},> ., f(u,v)=0

The value of a flow is defined as |f| =3 ., f(s, V)

® ® ® ®
0/ 015 ~

() @[|f|:8+10+1o:28]
TS.

4

6.6: Maximum flow

Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u,v)
= Forevery u,v e V, f(u,v) = —f(v,u)
= Foreveryue V\ {s,t},>,c,fu,v)=0
The value of a flow is defined as |f| =3 ., f(s, V)

How to find a Maximum Flow?

0/4 0115
® ® ®
0/4 0115

.v,,a;, 6.6: Maximum flow TS.

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

0/4

Q>\Q

Q
O 0/2

@ 0/10 3 0/9
N

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

Sl
< B 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

|fl =16

AN

(Is this optimal?)

Sl
- 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c¢(u, v)
= Augment flow along p

|fl =19

N

(Greedy did not succeed! j

6.6: Maximum flow TS. 5

Outline

Ford-Fulkerson

6.6: Maximum flow

TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

;.E,, 6.6: Maximum flow TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Graph G:

6/17

'-.In 6.6: Maximum flow

TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

0 otherwise.

c(u,v)—f(u,v) if(u,v)eE,
cr(u, v) = ¢ f(v,u) if (v,u) € E,

Graph G:

@ 6/17 O

;.E,, 6.6: Maximum flow TS.

Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) e E,
0 otherwise.

Graph G:
@ 6/17 C

v

Residual G¢:
11

. ®

;.E,. 6.6: Maximum flow TS.

Residual Graph

——— Original Edge

Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) e E,
0 otherwise.

Residual Graph

= Gr = (V,Ef, cr), Er :={(u,v): ¢(u,v) > 0}

Graph G:
@ 6/17 C

v

Residual G¢:
11

. ®

'..I,, 6.6: Maximum flow TS.

Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
2/4

;.E,, 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity
For every pair (u,v) € V x V,

ct(u,v) =c(u,v) — f(u,v).

Graph G:

6/17

2/4

;.E,, 6.6: Maximum flow TS.

Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
ct(u,v) =c(u,v) — f(u,v). ;
v
Residual G¢:
??

;.E,. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
ct(u,v) =c(u,v) — f(u,v). :
v
Residual G¢:
17-(6-2)

;.E,. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

. Graph G:
Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{ 4
For every pair (u,v) € V x V, :
ct(u,v) =c(u,v) — f(u,v). :
v
Residual G¢:
13

;.E,. 6.6: Maximum flow TS. 7

Residual Graph with anti-parallel edges

——— Original Edge

Edge e = (u,v) € E (& possibly € = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity

For every pair (u,v) € V x V,

ct(u,v) =c(u,v) — f(u,v).

Residual Graph
= Gf = (V, E/, Cf), Ei = {(U, V): Cf(U, V) > O}

Graph G:

6/17

2/4

v
Residual G¢:
13

'..I,, 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

Flow network G

Residual Graph G¢

1/14

e - b
SR, 6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

1/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

o0

Flow network G

6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

o0

Flow network G

6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

o0

Flow network G

6.6: Maximum flow TS.

Example of a Residual Graph (Handout)

0/14

Flow network G

6.6: Maximum flow TS. 7

Example of a Residual Graph (Handout)

0/14

Flow network G

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

5 6.6: Maximum flow TS. 7

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

isg initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push a%much extra flow as possible through it

Augmenting path: Path
from source to sink in Gt

el
o ey 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

ANN

If f' is a flow in Gf and f a flow
in G, then f + ' is a flow in G

el
o ey 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

isg initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Questions:
» How to find an augmenting path?
« Does this method terminate?
« If it terminates, how good is the solution?

5 [
Sl 6.6: Maximum flow TS. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

i3 initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

(Using BFS or DFS, we can find an
: L augmenting path in O(V + E) time.
Questions:

/d
» How to find an augmenting path?
= Does this method terminate?
« If it terminates, how good is the solution?

el
o ey 6.6: Maximum flow TS. 8

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

g 5y 6.6: Maximum flow TS.

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

If| =19

(Is this a max-flow?)

ked
g 5y 6.6: Maximum flow TS. 9

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

[fl=19

(Is this a max-flow?)

AW 5)_10/10
910 2/ g9

Residual Graph G; = (V, E, ¢/):

ked
g 5y 6.6: Maximum flow TS. 9

Illustration of the Ford-Fulkerson Method

Graph G = (V,E,c):

If| =19

(Is this a max-flow?)

g 5y 6.6: Maximum flow TS. 9

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

'u!'.. 6.6: Maximum flow

TS.

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S

andteT.

Graph G= (V,E,c):

6.6: Maximum flow

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S

andteT.

Graph G= (V,E,c):

6.6: Maximum flow

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(ST)= > cuv)y= > cuv)

uesS,veT (u,v)EE(S,T)

Graph G= (V,E,c):

()
J\G
O,

c({s,3}.{2,4,5,1}) =

.-.,B'., 6.6: Maximum flow TS. 11

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(ST)= > cuv)y= > cuv)

uesS,veT (u,v)EE(S,T)

Graph G= (V,E,c):

c({s,3},{2,4,5,t}) =10+ 9 =19

.-.,I., 6.6: Maximum flow TS. 11

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:
«(ST)= > cuv)y= > cuv)
ueS,veT (u,v)€E(S,T)

= A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Graph G= (V,E,c):

c({s,3},{2,4,5,t}) =10+ 9 =19

.;,I., 6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

10-0+9=19

Sl 6.6: Maximum flow TS. "

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

'S

3 5
910 2/ 99\ 10/10

6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

v K4
6/6 o
4

.

9/10 9/9, : 10/10 C

6.6: Maximum flow TS. 11

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

v K4
6/6 o
4

9/10 9/9, : 10/10 C

94+7-6+9=19

Sl 6.6: Maximum flow TS. "

Outline

Analysis of Ford-Fulkerson

»'..a;. 6.6: Maximum flow

TS.

Analysis of Ford-Fulkerson

: def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

5 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

: def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

5 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Ve

J

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integeral

ked
(5 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v c(u, v) iterations and returns the maximum flow.

S
Sl 6.6: Maximum flow TS. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v c(u, v) iterations and returns the maximum flow.

O\

[(proof omitted here, see CLRS3)]

5 [
Sl 6.6: Maximum flow TS. 13

Graph G= (V. E,c):

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

»'..a;. 6.6: Maximum flow

TS.

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S

andteT.

Graph G= (V,E,c):

6.6: Maximum flow

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S

andteT.

Graph G= (V,E,c):

6.6: Maximum flow

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(ST)= > cuv)y= > cuv)

uesS,veT (u,v)EE(S,T)

Graph G= (V,E,c):

()
J\G
O,

c({s,3}.{2,4,5,1}) =

.-.,B'., 6.6: Maximum flow TS. 12

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(ST)= > cuv)y= > cuv)

uesS,veT (u,v)EE(S,T)

Graph G= (V,E,c):

c({s,3},{2,4,5,t}) =10+ 9 =19

.-.,I., 6.6: Maximum flow TS. 12

From Flows to Cuts

Cut

= Acut (S, T)is apartitionof Vinto Sand T = V\ Ssuchthats e S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:
«(ST)= > cuv)y= > cuv)
ueS,veT (u,v)€E(S,T)

= A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Graph G= (V,E,c):

c({s,3},{2,4,5,t}) =10+ 9 =19

,;,E;, 6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

10-0+9=19

Sl 6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

'S

3 5
910 2/ 99\ 10/10

6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

v K4
6/6 o
4

.

9/10 9/9, : 10/10 C

6.6: Maximum flow TS. 12

From Flows to Cuts

Theorem (Max-Flow Min-Cut Theorem)
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S,TCV

Graph G= (V,E,c): [fl=19

v K4
6/6 o
4

9/10 9/9, : 10/10 C

94+7-6+9=19

Sl 6.6: Maximum flow TS. 12

Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

1. Forevery u,v e V, f(u,v) < c(u,v),
2. Foreveryu,v eV, f(u,v) = —f(v,u),
3. Foreveryue V\ {s,t},>,cyf(u,v)=0.

= Let f be any flow and (S, T) be any cut:

fl=>_f(s,v)

vev
@SS fwv)
ueSveV
Flow-Value-Lemma: =X > fluv)+> > fuv)
ueSveSs ueSveT

For any cut (S, T),

@ f(u, v)
|f|:ZZf(u,v). %:S\Z:T

ueSveT (1)

<> > e v)

ueSveT
=c(S,T).
= Since this holds for any pair of flow and cut, it follows that
max |f| < min ¢(S, T) O
f (8,T)

i
Sl 6.6: Maximum flow TS. 12

Outline

Analysis of Ford-Fulkerson

'u!'.. 6.6: Maximum flow

TS.

Analysis of Ford-Fulkerson

: def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

S
0 6.6: Maximum flow TS. 14

Analysis of Ford-Fulkerson

: def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

S
Sl 6.6: Maximum flow TS. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Ve

J

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integral

ey 6.6: Maximum flow TS. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v c(u, v) iterations and returns the maximum flow.

il
Sl 6.6: Maximum flow TS. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxy,v c(u, v) iterations and returns the maximum flow.

O\

[(proof omitted here, see CLRS3)]

S
Sl 6.6: Maximum flow TS. 14

Slow Convergence of Ford-Fulkerson (Figure 26.7)

6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

5 [
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Ao

R 1900
1
7, 000
Gy

5 [
o6 6.6: Maximum flow TS. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

W\ 0
AN (00, A

1/1 1

0 Q
71, %0y AQQ 7 %0p

Al

7000

Ao

5 [
o 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

N 9
N 90
11
0) QQ
7
%09 AN°

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

O 9,
A0 & S
1/1
% Q0 7
7 0
o) A %
G

5 [
o 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

¥ %
NS "00p S
O on (O
7, QQ 7
7 0
%0g A %
G

5 [
o 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

W\ 7/ 7
N 900

® on O

7

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

¥ %
N 700
O on (O
7 ¥
7
90 AIN®

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

2\"00() @ 7/7000
© o _(©

7 Q

/ Q

7000 @ 2\°
G

6.6: Maximum flow TS. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

2\"00() @ 7/7000
© o _(©

7 Q

/ Q

7000 @ 2\°
G

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

2\"00() @ 7/7000
© o _(©

7 Q

/ Q

7000 @ 2\°
G

6.6: Maximum flow TS. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

& |

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

& |

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

& |

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

%\\QQQ @ <’)/7000
© o _(©

< o0
%00 @ 5\
G

5 [
o 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

%\\QQQ @ 9/7000
© o _(©

< o0
%00 @ 5\
G

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

%\\QQQ @ <’)/7000
© o _(©

< o0
%00 @ 5\
G

6.6: Maximum flow TS. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

& | o

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

& | o

Sl
o6 6.6: Maximum flow TS.

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Q 3
(\N 7,
o\ 909

® on O

3 % QQ
7 Q
%0g s\

G

(Number of iterations is C := maxy, c(u, v)!)

6.6: Maximum flow TS. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Q 3
(\N 7,
o\ 909

® on O

3 % QQ
7 Q
%0g s\

(Number of iterations is C := maxy, c(u, v)!)

7

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow TS. 15

Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

® ©) ® ®

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |[f| =0

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| = 1

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

Iteration: 2, |f| = 1

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 3, |f| =1+ ¢

e
P00

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 3, |f| =1+ ¢

e

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 3, |[f|=1+4+2-¢

c
== 50

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

i
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

®

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

Sl
Sl 6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

4 N
In summary:
1 0

« After iteration 1: «>—, 5, <> |f| =

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

4 N
In summary:
0

« After iteration 1: <2, -1, > |f| =1

_ 42 _ 43
« After iteration 5: 2, 1, %% [fl =14 2¢ + 2¢2

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

7~
In summary:
« After iteration 1: <2, -1, > |f| =1
2 8
» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
4 _ 5
= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\

6.6: Maximum flow

TS.

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

7~
In summary:
« After iteration 1: <2, -1, > |f| =1
_ 42 _ 43
» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
_ 44 _ 45
= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\
~

More generally,

6.6: Maximum flow

TS.

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

7~
In summary:
« After iteration 1: <2, -1, > |f| =1
42 8
» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
_ 44 _ 45
= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\
~

More generally,

. X . . 1_¢2/ 1 ¢_¢2i+1
= Forevery i =0,1,... after iteration 1 +4-i: —, —, ~—

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

7
In summary:
« After iteration 1: <2, -1, > |f| =1
. - C1—4% 1 p—¢° >
= After iteration 5: +—, —, Nl =14+2¢+2¢
_ 44 _ 45

= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\L
’

More generally,
. X . . 1_¢2/ 1 ¢_¢2i+1
= Forevery i =0,1,... after iteration 1 +4-i: —, —, ~—

= Ford-Fulkerson does not terminate!

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

7~
In summary:
« After iteration 1: <2, -1, > |f| =1
42 8
» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
_ 44 _ 45
= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\
~

More generally,
. . . CA—g? 4 gt
= Forevery i =0,1,... after iteration 1 +4-i: —, —, ~—
= Ford-Fulkerson does not terminate!

s fl=1+237 ¢ ~4.23607 <5

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

= O

~
In summary:
« After iteration 1: <2, -1, > |f| =1
_ 42 _ .3
» After iteration 5: =2, 1, =2 |f| = 1+ 2¢ + 242
_ 44 _ 45
= After iteration 9: 2, —5, L |f| = 1+ 26 + 2¢2 + 2¢° + 2¢°
\
,

More generally,
= For every i =0,1,... after iteration 1 +4 - i 1_—¢-§/, %, ¢<_—¢2i+1
= Ford-Fulkerson does not terminate!
s fl=1+237 ¢ ~4.23607 <5
= It does not even converge to a maximum flow!

6.6: Maximum flow TS. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

f flow value N

7__

iterations

\ 15913172125293337414549)

6.6: Maximum flow TS. 16

Summary and Outlook

Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |f*|) = O(E - V- C)

6.6: Maximum flow TS.

Summary and Outlook

~—— Ford-Fulkerson Method

= works only for integral (rational) capacities
= Runtime: O(E - |f*|) = O(E - V- C)

~—— Capacity-Scaling Algorithm

.;,E',, 6.6: Maximum flow TS.

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |f*|) = O(E - V- C)

~—— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢¢(u, v) > A
= scaling parameter A, which is initially 2% ¢ and 1 after termination
= Runtime: O(E? - log C)

.;,i'., 6.6: Maximum flow TS. 17

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |f*|) = O(E - V- C)

~—— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢¢(u, v) > A
= scaling parameter A, which is initially 2% ¢ and 1 after termination
= Runtime: O(E? - log C)

\.

~——— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in Gy
= Runtime: O(E? - V)

.;,i'., 6.6: Maximum flow TS. 17

Outline

Matchings in Bipartite Graphs

'u!'.. 6.6: Maximum flow

TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A maiching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

',,!;. 6.6: Maximum flow TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

r,,l,. 6.6: Maximum flow TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

r,,l,. 6.6: Maximum flow TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

6.6: Maximum flow TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

L

R

Jobs (Machines l
19

6.6: Maximum flow TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

L

R

6.6: Maximum flow TS.

Jobs (Machines l
19

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

6.6: Maximum flow TS.

L R
Jobs (Machines l
19

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

6.6: Maximum flow TS.

L R
Jobs (Machines l
19

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G equals]

the value of a maximum flow f in the corresponding flow network G.

Graph G

e 6.6: Maximum flow TS. 21

From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

il
0 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

il
0 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

Graph G Graph G

e 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

Graph G Graph G

e 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

Graph G Graph G

e 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

Graph G Graph G

e 6.6: Maximum flow TS.

22

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

[max cardinality matching < value of maxflow)

Graph G Graph G

S, 6.6: Maximum flow TS.

22

From Flow to Matching

= Let f be a maximum flow in G of value k

5 [
ol 6.6: Maximum flow

TS.

23

From Flow to Matching

= Let f be a maximum flow in G of value k

L R

S
o6 6.6: Maximum flow TS.

23

From Flow to Matching

= Let f be a maximum flow in G of value k

L R

i
o 5 6.6: Maximum flow TS.

23

From Flow to Matching

= Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral

WY

\\‘\

L R

5 [
o 6.6: Maximum flow TS.

23

From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral
= Let M’ be all edges from L to R which carry a flow of one

AN

WY

\\‘\

L R L

g 5y 6.6: Maximum flow TS.

23

From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral
= Let M’ be all edges from L to R which carry a flow of one

L R L

g 5y 6.6: Maximum flow TS.

23

From Flow to Matching

= Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation

L R L R

S
o6 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

L R L R

i
o6 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

L R L R

i
o6 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit

L R L R

S
o6 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c)Cut (LU {s},RU{t})

L R L

6.6: Maximum flow TS.

23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = netflow is k

L R L

6.6: Maximum flow TS.

23

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0,1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RuU{t}) = netflow is k = M’ has k edges

L R L R

S
Sl 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation = every node in L sends at most one unit
b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RuU{t}) = netflow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k

L R L R

S
Sl 6.6: Maximum flow TS. 23

From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation = every node in L sends at most one unit
b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RuU{t}) = netflow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k
[N

[value of maxflow < max cardinality matching]

L R L R

el
g 5y 6.6: Maximum flow TS. 23

6.5: All-Pairs Shortest Paths

Frank Stajano Thomas Sauerwald

Lent 2016

UNIVERSITY OF
» CAMBRIDGE

Outline

All-Pairs Shortest Path

.v,,a % 6.5: All-Pairs Shortest Paths

TS.

Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (i,j) for anedge (i,j) € E,
Wj = § 00 if there is no edge from i to j,
0 iti=j.

6.5: All-Pairs Shortest Paths TS.

Formalising the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (i,j) for anedge (i,j) € E,
Wj = § 00 if there is no edge from i to j,
0 iti=j.

= Goal: Obtain a matrix of shortest path weights L, that is

0= weight of a shortest path from jto j, if jis reachable from i
" o otherwise.

6.5: All-Pairs Shortest Paths TS. 3

Formalising the Problem

——— All-Pairs Shortest Path Problem \
= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (i,j) for anedge (i,j) € E,
Wj = § 00 if there is no edge from i to j,
0 iti=j.

= Goal: Obtain a matrix of shortest path weights L, that is

oo otherwise.

L N\)

A\

’ {weight of a shortest path from i to j, if j is reachable from i
ij =

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

nfiin
E:E 6.5: All-Pairs Shortest Paths TS. 3

Outline

APSP via Matrix Multiplication

.-,,B % 6.5: All-Pairs Shortest Paths

TS.

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

u.,i;, 6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let /™ be min. weight of any path from i to j with at most m edges
I5J

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let E,(.Z’) be min. weight of any path from i to j with at most m edges
= Then K,(.j/.) =wj,s0Ll =W

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let K,(.Z’) be min. weight of any path from i to j with at most m edges
= Then Kf.j/.) =wj,s0Ll =W

= How can we obtain L® from L(1?

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let K,(.Z’) be min. weight of any path from i to j with at most m edges
= Then Kf.j/.) =wj,s0Ll =W

= How can we obtain L® from L(1?

(® = min (e,‘.]j’, 1r<nkign£f-,‘k’ + Wk,/')

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let £{" be min. weight of any path from / to j with at most m edges
» Then (') = w;;, so L = W

= How can we obtain L® from L(1?

(® = min (45]}, 1r<nkign£f-,‘k’ + wm)

) —
) =

J"i” 6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let £{" be min. weight of any path from / to j with at most m edges
» Then (') = w;;, so L = W

= How can we obtain L® from L(1?

(® = min (45]}, 1r<nkign£f-,‘k’ + wm)

A4 = min(770, min 477 4w,)

)

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let E,(.Z’) be min. weight of any path from i to j with at most m edges
= Then E,(.j/.) =wj,s0Ll =W

= How can we obtain L® from L(1?

2 _ (1) in (1))
¢j = min (4",/' > D S Wk*’) [Recall that w;,; — 0!]

A = min(770, min 477 4w,)

)

6.5: All-Pairs Shortest Paths TS. 5

A Recursive Approach

i ko

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let E,(.Z’) be min. weight of any path from i to j with at most m edges
= Then E,(.j/.) =wj,s0Ll =W

= How can we obtain L® from L(1?

2 _ (1) in (1))
¢j = min (4",/' > D S Wk*’) [Recall that w;,; — 0!]

0 —1 . —1 . =1
A7 = min(e7™" gin 427"+ was) = gin (457 +)

6.5: All-Pairs Shortest Paths TS. 5

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo -4
o~ 0 00 1 7
M=W=] ©c 4 0 oo
2 oo -5 0 oo
oo oo 00 6 0

6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0
00
00

2
00

28 prow
8 Ho8 o
»o8 =3

oy wo

O W

~1

o O 01 =

6.5: All-Pairs Shortest Paths

TS.

11
-2

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

[zﬂ:min{o+oo,3+1,8+oo,oo+o, —4+6}]

0 3 8 | 0o | —4 0 3 8 2 _4
oo 0 oo |1 7 3 0 -4 A1 7
M=W=] cc 4 0 |oo]| o B=1 4 0 5 11
2 oo 5|0 o 2 -1 -5 0 -2
0o 0o 00 6 0 8 00 1 6 0

5 [
6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

[zﬂ:min{o+oo,3+1,8+oo,oo+o, 74+6}]

|
oL ®

0 3 8 [| 4 0 3 3 4

o~ 0 00 1 7 3 0 1 7

M=w=| © 4 0 |oo| o B=| « 4 5 11
2 o~ 5|0 00 2 -1 -5 0 -2

0o 0o o0 6 0 8 oo 1 6 0

5 [
6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8 + 00,00 + 0, 74+5}]

0 3 8 oo -4 0 3 8 |2 -4
c© 0 00 1 7 3 0 —4 1 7
DW=—W=] co 4 0 oo oo @@= « 4 0 5 11
2 oo -5 0 o) 2 -1 -5 0 -2
c© oo oo 6 0 8 oo 1 6 0
0 3 -3 2 -4
3 0 -4 1 —1
=7 4 o 5 11
2 -1 -5 0 -2
8 5 1 6 0

nffin
E:E 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8 + 00,00 + 0, 74+5}]

0 3 8 oo -4 0 3 8 |2 -4
c© 0 oo 1 7 3 0 -4 1 7
DW=—W=] co 4 0 oo oo @@= « 4 0 5 11
2 oo -5 0 o) 2 -1 -5 0 -2
c© oo oo 6 0 8 oo 1 6 0
0 3 -3 2 -4 o 1 -3 2 -4
3 0 —4 1 -1 3 0 -4 1 -1
=7 4 o 5 11 W=17 4 o 5 [2
2 -1 -5 0 -2 2 -1 -5 0 -2
8 5 1 6 0 8 5 1 6 0

nffin
E:E 6.5: All-Pairs Shortest Paths TS. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo | —4
o~ 0 00 1 7
co 4 0 oo | oo
2 oo -5 0| x
© oo oo 6 0
0 3 -3 2 -4
3 0 -4 1 -1

7 4 0o 5 11

2 -1 -5 0 -2
8 5 1 6 0

oY wo

o N WwWo

3 8 2 -4
0 -4 1 7
4 0 5 11
-1 -5 0 -2
oo 1 6 0
1 -3 2 -4
0 -4 1 -1
4 0 5 ?
1 -5 2
5 1 0

[eg“; =min{7 — 4,4+ 7,0 + 00,5 + 0o, 11 +0}]

6.5: All-Pairs Shortest Paths

6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo | —4
o~ 0 00 1 7
co 4 0 oo | oo
2 oo -5 0| x
© oo oo 6 0
0 3 -3 2 -4
3 0 -4 1 -1

7 4 0o 5 11

2 -1 -5 0 -2
8 5 1 6 0

oY wo

o N WwWo

3 8 2 -4
0 -4 1 7
4 0 5 11
-1 -5 0 -2
oo 1 6 0
1 -3 2 -4
0 -4 1 -1
4 0 5 |8
1 -5 2
5 1 0

[eg“; =min{7 — 4,4+ 7,0 + 00,5 + 00, 11 +0}]

6.5: All-Pairs Shortest Paths

6

Computing L(™

(m) __ f (m—1))
47 = min (457 +)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)

;.E,, 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

(m) __ f (m—1))
47 = min (457 +)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

;.E,, 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

o [0 —) — [— = | since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
&M = min (efk + Wk/)

I 1<k<n

;.E,, 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

o [0 —) — [— = | since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
&M = min (efk + Wk/)

I 1<k<n

(L(m71) . W)i,j _ Z (ZE?*U X Wk,j)

1<k<n

;.E,, 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ (
47 = min, (457" + we)

S (R owey)
1<k<n

= The correspondence is as follows:

min@Z

(L w),,

;.E,. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ (
47 = min, (457" + we)

S (R owey)
1<k<n

= The correspondence is as follows:

(L w),,

-..I,. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ (
47 = min, (457" + we)

S (R owey)
1<k<n

= The correspondence is as follows:

(L w),,

-_.I,. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ (
47 = min, (457" + we)

S (R owey)
1<k<n

= The correspondence is as follows:

(L w),,

min
+

o0

0

e

te e

-_.I,. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ (
47 = min, (457" + we)

S (R owey)
1<k<n

= The correspondence is as follows:

(L w),,

min
+

o0

0

~ e

te e

-_.I,. 6.5: All-Pairs Shortest Paths TS. 7

Computing L(™

47 = gin, (437" + we)

2 [0 = W = () — = [since every shortest path uses at most
n—1=|V|— 1 edges (assuming absence of negative-weight cycles)

= Computing L(™:
(m)
m (m— L'™ can be
tij = 12!2!1(£ '+ Wk’) {computed in O(n3)}
(L(mf1) W)= Z (4%*1) X Wk,/)

= The correspondence is as follows:

min & Z
+ & X
©x < 0
0 & 1

6.5: All-Pairs Shortest Paths TS.

Computing L("~) efficiently

&™ = min (K(-'Z_” + Wk,j)

= For, say, n = 738, we subsequently compute

L(1)’ L(2)7 L(S)’ L(4), o L7370 — |

',.a oy 6.5: All-Pairs Shortest Paths TS.

Computing L("~) efficiently

A™ = min (E,(fz_1) + w;q)

L 1<k<n

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /

L(1)7 L(2)7 L(S), L(4), o

7 L3

6.5: All-Pairs Shortest Paths

TS. 8

Computing L("~) efficiently

(m) __ ; (m—1))
47 = min (4370 + wi)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)’ L(4), o L7370

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)7 L(2), I_(4)7 o L(512), L(1024) _

.r,,'.;,, 6.5: All-Pairs Shortest Paths TS. 8

Computing L("~) efficiently

¢ = min
, 1<k<n

(¢

—1
,('Z)+ Wk,f)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)7 L(4), o L(737)

=L

= Since we don’t need the intermediate matrices, a more efficient way is

L L@@

I

L(512)7 [(1024) _

T~

[Takes O(logn - n®).]

6.5: All-Pairs Shortest Paths

Computing L("~) efficiently

(m) __ (m—1) .
47 = min (4370 + wi)

[Takes O(n - n®) = O(n*)]

= For, say, n = 738, we subsequently compute /
LO @@ @ 0 —

= Since we don’t need the intermediate matrices, a more efficient way is
L(”, L(z)’ L(4), N L(512) [(1024) _ L

rd

[We need L) = 1®.1® = |®.1 1 (see Ex. 25.1-4 J [Takes O(logn - n®).]

6.5: All-Pairs Shortest Paths TS. 8

Outline

Johnson’s Algorithm

'u!'.. 6.5: All-Pairs Shortest Paths

TS.

Johnson’s Algorithm

Overview

5 [
6.5: All-Pairs Shortest Paths

TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

5 [
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and |V| passes of Dijkstra

5 [
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and |V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

5 [
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and |V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.
= all edge weights are non-negative

5 [
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and |V| passes of Dijkstra

= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

5 [
6.5: All-Pairs Shortest Paths TS.

Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and |V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[Adding a constant to every edge doesn’t work!]

nfiin
E:E 6.5: All-Pairs Shortest Paths TS. 10

Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and |V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[Adding a constant to every edge doesn’t work!]

ked
g oy 6.5: All-Pairs Shortest Paths TS. 10

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

S
s 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

*ih 6.5: All-Pairs Shortest Paths

TS.

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

*ih 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

*ih 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort

*ih 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort
= Otherwise:
1) Reweight every edge (u, v) by w(u,v) = w(u,v) + u.6 — v.§
2) Remove vertex s and its incident edges

*ih 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort
= Otherwise:
1) Reweight every edge (u, v) by w(u,v) = w(u,v) + u.6 — v.§
2) Remove vertex s and its incident edges

o [
5;,-., 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u,v) = w(u,v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

o [
5;,-., 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u,v) = w(u,v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

5;,5‘., 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

.;,E'., 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm <
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

Direct: 7,nDetour: —1
(

o [

.;,i'., 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm <
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

Direct: 7,nDetour: —1
(

o [

.;,i'., 6.5: All-Pairs Shortest Paths TS. 1

How Johnson’s Algorithm works

~——— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

Direct: 7,nDetour: —1
(

»-..E oy 6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~——— Johnson’s Algorithm <
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0

2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

[Direct: 7,nDetour: —1] [Direct: 10, Detour: 2]

4- e
6.5: All-Pairs Shortest Paths TS. 11

How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort
= Otherwise:

1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.6 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)

[Runtime: O(V-E+V-(Vlog V—i—E))]

6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

*ih 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1.

*ih 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 1.
Let u.d and v.4 be the distances from the fake source s

.-.,B %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

Proof of 1.
Let u.d and v.4 be the distances from the fake source s

ud+w(u,v)>veo (triangle inequality)

~;..E‘-. 6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~—— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

Proof of 1.
Let u.d and v.4 be the distances from the fake source s

ud+w(u,v)>veo (triangle inequality)
= w(u,v)+ u.d+w(u,v) > w(u,v)+ud—v.s+Vv.é

.;,E;, 6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~—— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

Proof of 1.
Let u.d and v.4 be the distances from the fake source s
ud+w(u,v)>veo (triangle inequality)
= w(u,v)+ u.d+w(u,v) > w(u,v)+ud—v.s+Vv.é
= w(u,v) >0

.;,E;, 6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.

s.,a %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

Proof of 2.
Let p = (w, v, ..., Vk) be any path

.-.,B %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
Let p = (w, v, ..., Vk) be any path

= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).

.-.,B %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
Let p = (w, v, ..., Vk) be any path

= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).

= In the reweighted graph, the weight is

Z W(Vi—N Vf)

i=1

.-.,B %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.
Let p = (w, v, ..., Vk) be any path

= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).

= In the reweighted graph, the weight is

k

S o w(vicr,vi) =Y (W(Vie1, Vi) + Vie1.0 — v.5)

i=1 i=1

.-.,B %y 6.5: All-Pairs Shortest Paths TS.

Correctness of Johnson’s Algorithm

w(u,v) = w(u,v)+ u.d — v.§

——— Theorem
For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

\.

Proof of 2.
Let p = (w, v, ..., Vk) be any path
= In the original graph, the weight is ZL w(vi—1, Vi) = w(p).
= In the reweighted graph, the weight is
k
S o w(vie,vi) = (W(Vie1, Vi) + Vie1.0 — vi.8) = w(p) + vo.0 — s O

i=1 i=1

.-,,B % 6.5: All-Pairs Shortest Paths TS. 12

Comparison of all Shortest-Path Algorithms

] SSSP APSP negative
Algorithm
sparse | dense | sparse dense weights
Bellman-Ford V2 Ve Ve v4 v
Dijkstra ViogV | V? V2log V V3 X
Matrix Mult. - - VilogV | V3log V (V)
Johnson - - V2log V Ve / v

VA

but not negative weight cycles

[can handle negative weight edges, }

5
0 6.5: All-Pairs Shortest Paths

TS.

A
4
3
2
1
> X
(0,0) 1 2 3 4 5
(s = p1) x (P2 — pr) = (—=3,-1) x (-4,2) = —10
(Ps = p1) x (P2 — p1) = (-2,2) x (—4,2) =4

7: Geometric Algorithms

Frank Stajano Thomas Sauerwald

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction and Line Intersection

el b
7: Geometric Algorithms

TS.

Introduction

Computational Geometry

= Branch that studies algorithms for
geometric problems

el b
7: Geometric Algorithms

TS.

Introduction

Computational Geometry
= Branch that studies algorithms for
geometric problems
= typically, input is a set of points, line
segments etc.

b bl
7: Geometric Algorithms TS.

Introduction

Computational Geometry

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line Ps
segments etc.

Pa

P

A

[Do these lines intersect?]

S
Sl 7: Geometric Algorithms TS. 3

Introduction

—— Computational Geometry ——————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line
segments etc.

\ J

~——— Applications N\
= computer graphics
= computer vision

= textile layout

VLSI design

Pa

P

A

[Do these lines intersect?]

S
0 7: Geometric Algorithms

TS.

Cross Product (Area)

y

Ap=(19
pi = (2a 1)
>» X
(0,0)
7: Geometric Algorithms TS.

Cross Product (Area)

N,

Vgl
S

Il
—
[N
w
~
4,

S
Sl 7: Geometric Algorithms TS.

Cross Product (Area)

0 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

o X1 Xo
p1 X po = det (y1 yz)

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X4
2

p1 X p2 = det (;Z) = X1)2 — Xo)i

Sl 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1
2

p1><p2:det(;z) =XYoo — XYy =2-3—1-1

0 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1
2

p1><p2:det(;z) =Xi)yo—Xoy; =2:-3—1-1=5

0 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1
2

p1><p2:det(;z) =Xi)yo—Xoy; =2:-3—1-1=5

P2 X P4

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1
)4
P2 X P1 = Y1Xo — Yo X1

p1><p2:det(;z) =Xi)yo—Xoy; =2:-3—1-1=5

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1 Xo
= — =2-3-1-1=5
i y2) X1Y2 — X2)1

p1><p2:det(

P2 X P1 = y1Xo — YaX1 = —(P1 X P2)

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(2a1)

> .4

X1 Xo
= — =2-3-1-1=5
i y2) X1Y2 — X2)1

p1><p2:det(

P2 X p1 = y1Xo — YoX1 = —(p1 X pP2) = =5

ey 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area?]

P :(271)

> .4

(0,0)

Alternatively, one could take the dot-product (but not used here):
p1 - p2 = [|p1]] - [Pl - cos(¢).

o X1 Xo
p1 X po = det (}/1 v

P2 X p1 = y1Xo — YoX1 = —(p1 X pP2) = =5

) :X1y27X2y1:2'371~1:5

() 7: Geometric Algorithms T.S. 4

Cross Product in 3D

> N

P2 ,D1-|-p2

7: Geometric Algorithms TS. 5

Cross Product in 3D

z
A
p1 x p2 = (0,0, Xx1)2 — Xz}/1)A
y
P p1+ p2

el bt
7: Geometric Algorithms

Cross Product in 3D

z
A
p1 X p2 = (0,0, x1y2 — x2y1))

”

7: Geometric Algorithms TS. 5

Cross Product in 3D

z
A
p1 X p2 = (0,0, x1y2 — x2y1))

”

7: Geometric Algorithms TS. 5

Cross Product in 3D

p1 X p2 = (0,0, x1y2 — Xay1)

el bt
7: Geometric Algorithms

TS. 5

Cross Product in 3D

p1 X p2 = (0,0, x1y2 — Xay1)

. e
E:E 7: Geometric Algorithms TS. 5

Using Cross product to determine Turns

p2:(173)

P = (271)

(0,0)
ps=(1,-1)

7: Geometric Algorithms TS.

Using Cross product to determine Turns

p2:(173)

P = (271)

(0,0)
ps=(1,-1)

7: Geometric Algorithms TS.

Using Cross product to determine Turns

A
pz = (1,3)
<[pi x po > 0: left (counterclockwise) turn]
P = (27 1)
>» X
(0,0)
p3 - (1) _1)

0 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns

A
pz = (1,3)
<[pi x po > 0: left (counterclockwise) turn]
P = (27 1)
\ Ny x
(0.0) [\ ’
p3 - (1) _1)

0 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns

A
pz = (1,3)
<[pi x po > 0: left (counterclockwise) turn]
P = (27 1)
) [o .
0.0) , \ p1 X ps < 0: right (clockwise) turn
p3 - (1) _1)

Sl 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns

A
pe = (1.9)

<[pi x po > 0: left (counterclockwise) turn]

PP = (2,1)

(,\\” [
s X. \ p1 x ps < 0: right (clockwise) turn]
Pz = (1) _1)

Sl 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns

A
pz = (1,3)
<[p1 x p2 > 0: left (counterclockwise) turn]
B =(2,1)
= / I p1 x ps < 0O: right (clockwise) turn]
_.-(00) X
- ps=(1,-1)
Sign of cross product determines turn! l

7: Geometric Algorithms TS. 6

Using Cross product to determine Turns

A
pz = (1,3)
{ p1 x p2 > 0: left (counterclockwise) turn]
B =(2,1)
/ 0: right (clockwise) t
‘&05 / {k p1 x ps < 0O: right (clockwise) turn
ps = (1,-1)

| Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinear]

7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (origin shifted)

p1 = (47 2)

p0:(271)

e > x

(0,0) P =(3,0)

7: Geometric Algorithms TS.

Using Cross product to determine Turns (origin shifted)

p1 = (47 2)

p0:(271)

e > x

(0,0) P =(3,0)

7: Geometric Algorithms TS.

Using Cross product to determine Turns (origin shifted)

A
<[(p1 — po) x (P2 — po) > 0: left turn]
P = (47 2)
Po = (27 1)
. >» X
(0,0) ps = (3,0)

0 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (origin shifted)

A p: = (3,4) [2,1) x (1,3) = 5 J
<[(P1 — po) X (;(;/2 — po) > 0: left turn]
pi = (4,2)
Po=(2,1)
(0,0) ps = (3.0) >

0 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (origin shifted)

A p: = (3,4) [2,1) x (1,3) = 5 J
<[(P1 — po) X (;(;/2 — po) > 0: left turn]
pi = (4,2)
po=(2,1))
(0,0) ps = (3.0) >

0 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (origin shifted)

y
A ps = (3,4) [21) x (1,3) = 5]
<[(P1 — po) % (;2 — po) > 0: left turn]
p1:(472)
po=(2,1)) <[(p1 — po) x (ps — po) < O: right turn J
. >» X
(0,0) ps = (3,0)

Sl 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (origin shifted)

y
A pe = (3,4) [2.1) x (1,3) = 5]
<[(P1 — po) % (;2 — po) > 0: left turn]
p1 = (4,2) [2,1)x(1,-1)=-3]
po=(2,1)) <[(p1 — po) X (pl:—po) < 0: right turn J
. >» X
(0,0) ps = (3,0)

o s 7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

A P = (3.4) ([enxay-s |
<[(P1 — po) X (;(;/2 — po) > 0: left turn]
P 42) [(2,1) x (1,-1) = -3]
po=(2,1) i <[(1 — po) x (pl;/—po) < 0: right turn J
I (0,0) ps = (3,0) >

) 7: Geometric Algorithms T.S. 7

Solving Line Intersection

7: Geometric Algorithms

TS.

Solving Line Intersection

J
A
Pa
4--
3+
2--
1 4
Ps
t t t t > X
0o 1 2 3 ~
7: Geometric Algorithms TS.

Solving Line Intersection

)

A

. P2 Pa

3.-

27 P+

1__

Ps3
t t t t t —>»X
0ol 1 2 3 4 5 7
TS.

S
SR 7: Geometric Algorithms

Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (b1 — Ps) % (ps — ps)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa — ps) = (3,1) x (1,3)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa—ps) =(3,1) x (1,3)=8

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
4__
3.-
2--
1__
t t t t t —>»
(0,0) 1 2 3 4 5
T (P1 = Ps) x (pa—ps) =(3,1) x (1,3)=8

(P2 — p3) x (ps — p3)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

X

4__

3+

2.-

1+

O (I B T T I e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (=1,3) x (1,3)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

X

4__

3+

2.-

1+

O (I B T T I e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (—1,3) x (1,3) = -6

S
E;E 7: Geometric Algorithms TS. 8

Solving Line Intersection

X

4__

3+

2.-

1+

O B I T R T e
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 = ps) x (P — p3) = (—1,3) x (1,3) = -6

S
E;E 7: Geometric Algorithms TS. 8

Solving Line Intersection

A
4-_
3+
2-_
1+
. : : : : —>»X
(0,0) 1 2 3 4 5
T (pr —p3) x (ps — ps) = (3,1) x (1,3) =8
(P2 — p3) x (ps — ps) = (—1,3) x (1,3) = -6

Opposite signs = p1p2 crosses
(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8

Solving Line Intersection

)

A

. P2 P4

3.-

27 P+

1-_

P3

t t t t t —>»X
ool /32 3 4 5 7

Opposite signs = p1p2 crosses
(infinite) line through ps and p4

B

Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
4__
3--
2--
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (ps — p1) X (P2 — p1)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

J
A
4__
3+
2.-
1+
. : : : : —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, 1) x (-4,2)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
4__
3.-
2.-
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 — p1) = (=3, -1) x (-4,2) = =10

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8

Solving Line Intersection

)
A
4__
3.-
2.-
1__
t t t t t —>
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 — p1) = (=3, -1) x (-4,2) = =10

(Pa — p1) x (P2 — p1)
g

[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8

Solving Line Intersection

A
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10
(ps = P1) (P2 = p1) = (~2,2) x (~4.2)

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8

Solving Line Intersection

A
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10
(P = p1) (P2 = p1) = (~2,2) x (~4,2) =4

=
[Opposite signs = p1 P2 crosses}

(infinite) line through ps and p4

el kel
Sl 7: Geometric Algorithms TS. 8

Solving Line Intersection

X
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10

(Ps —pr) % (P2 — 1) = (~2.2) x (~4.2) = 4

Opposite signs = p1p2 crosses Opposite signs = pPsps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

ked
) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

X
4__
3--
2--
1__
0o 112 8 4 5>
1 (e p) x (2= pi) = (=8, -1) x (~4.2) = 10

(s — 1) x (P2 — pr) = (~2,2) x (—4,2) = 4
= ~-

[Opposite signs = p1 P2 crosses} [Opposite signs = PaPs crosses}

(infinite) line through ps and ps4 (infinite) line through pi and p,

ked
) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

y
A
P2 P4
4._
3--
27 P+
1 4
Ps3
g ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

|5
) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

y
A
P2 P4
4-_
3--
21 P1
1-_
Ps
P1P2 N Papa #
p1P2 N Pspa 7
= ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

|5
) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

A

4__

P2 P4

P

* P1P2 N\ P3Pa 2 P12 N Paps # 0
* P1P2 1\ PaPa 2 P1P2 N Paps # 0

== ~-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

A

4__

P2 P4

Ps

* P12 N Pspa 2 PiP2 N Papa # 0

* P12 N Papa 2 P12 N PapPa # O

= Since p1p2 N Psps consists of (at most) one point
= P1P2 N Paps # 0

== ~N-

Opposite signs = p1p> crosses Opposite signs = psps crosses
(infinite) line through ps and ps4 (infinite) line through pi and p,

) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

y
A
P2 P4

4__

3--

27 P+

1__

P3
t t t t t —>»X
(0,0) 1 2 3 4 5
[[P1P2 CrOSSES P34]

== ~o
[Opposite signs = p1p2 crosses} [Opposite signs = P3P crosses}

(infinite) line through ps and ps4 (infinite) line through pi and p,

%
) 7: Geometric Algorithms T.S. 8

Solving Line Intersection

P

S
SR 7: Geometric Algorithms

TS.

Solving Line Intersection

)
A
P2

4.-

3--

2+ P4 e P

A

P3
N A'Y

'(00) T2 3 4 5 2F

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
P2
4._
3._
21 Pa e P
Nl /-
Ps3
' ' A
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
P2
4._
i \
21 Ps g -+ -|- - =8 Pi
| /-
Ps
' ' N,
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
P2
4._
i \
21 Ps g -+ -|- - =8 Pi
| /-
Ps
' ' N,
0o 1 2 3 4 5 -
T (s = p1) x (P2 —p1) <0

(Pa —p1) x (P2 —p1) <0

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

)
A
P2
4._
i \
2 Ps g -+ -|- - =8 Pi
| /-
Ps3
' ' ' ' ' ' A
0o 1 2 3 4 5 -
T (ps = p1) x (P2 —p1) <0

(Pa —p1) x (P2 —p1) <0

[p1P2 does not cross pspq]

ey 7: Geometric Algorithms TS.

Solving Line Intersection

y

(0,0)

0: DIRECTION(p;, pj, Pk)
1: return (px — pi) X (B — i)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

y Pa
P2

(0,0)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

5
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3)

ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gk Wi = O

ey 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p/,pk)
1. return (px — p;) x (B — P;)

. SEGMENTS-INTERSECT(p; . ps, 3. p2)

o = DIRECTION(ps, pi, 1)

d> = DIRECTION(ps, ps, p2)

ds = DIRECTION(p1., p2, p3)

dy = DIRECTION(p1, p2, P4)

If dy-do < 0andds-dy < 0return TRUE

9 g1k WiV = O

S
Sl 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (Pa — p3)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)
dy = DIREGTION(ps, pa, p1)
d> = DIRECTION(ps, ps, p2)
d; = DIRECTION(py1, p2, p3)
d; = DIRECTION(p1. 2., ps) — -
If dy - do < 0and ds - ds < O return TRUE{ In total 4 satisfying cond|t|ons!]

9 g1k WiV = O

ey 7: Geometric Algorithms TS. 9

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3)

ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)

ey 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)
P4

: SEGMENTS-INTERSECT (p1, p2, p3, P4)

di = DIRECTION(ps, pa, p1)

d> = DIRECTION(ps, ps, p2)

d; = DIRECTION(py1, p2, p3) P1
ds = DIRECTION(p1, P2, ps)

If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)

ey 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)

DIRECTION(ps, ps, p1) = (P1 — Ps) X (pa — ps)

0: DIRECTION(p,,p,,pk)
1. return (px — p;) X (P — Pi)

P4 p.
: SEGMENTS-INTERSECT (1, 02, Ps. Pa)
dy = DIREGTION(ps, pa, p1) P
d> = DIRECTION(ps, ps, p2)
ds = DIRECTION(p, p2, P3) P

ds = DIRECTION(p1, P2, ps)
If dy-do < 0andds-dy < 0return TRUE

9 gIh W= O

_

(Lines could touch or be colinear)

) 7: Geometric Algorithms TS. 9

Outline

Convex Hull

7: Geometric Algorithms

TS.

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

g 7: Geometric Algorithms TS. 11

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

e ke
E:E 7: Geometric Algorithms TS. 11

Convex Hull

o)
o
o L4 °
° °
° °
1 °
O .
°
°
© o)

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

g 7: Geometric Algorithms TS. 11

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

e ke
E:E 7: Geometric Algorithms TS. 11

Convex Hull

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

el bt
7: Geometric Algorithms TS. 11

Convex Hull

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

[Smallest perimeter fence enclosing the points]

e bl
7: Geometric Algorithms TS. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

el bt
7: Geometric Algorithms TS. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N

el bt
7: Geometric Algorithms TS. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N
= Input: set of points Q in the Euclidean space

el bt
7: Geometric Algorithms TS. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

Definition
The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

——— Convex Hull Problem N
= Input: set of points Q in the Euclidean space

= Output: return points of the convex hull in counterclockwise order

e bl
7: Geometric Algorithms TS. 11

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

L

e e
E:E 7: Geometric Algorithms T.S. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

~
/’ \\
4 ~
. ~
~
/, A
N
sé¢ .
\
\ \
\
N }t
N
~ 7
~ ’
~
7’
~o .
~ -
~
~<. .-

el b
7: Geometric Algorithms T.S. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

L

e e
E:E 7: Geometric Algorithms T.S. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

g 7: Geometric Algorithms TS. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

7: Geometric Algorithms TS. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

7: Geometric Algorithms TS. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

7: Geometric Algorithms TS. 12

Application of Convex Hull

Robot Motion Planning

Find shortest path from s to f which avoids a polygonal obstacle.

A\N
[can be solved by computing the Convex hull!]

7: Geometric Algorithms TS. 12

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

b bl
7: Geometric Algorithms TS.

Graham’s Scan

0)

Basic Idea

= Start with the point with smallest y-coordinate

b bl
7: Geometric Algorithms TS.

Graham’s Scan

0)

Basic Idea

= Start with the point with smallest y-coordinate
= Sort all points increasingly according to their polar angle

b bl
7: Geometric Algorithms TS. 13

Graham’s Scan

0)

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

b bl
7: Geometric Algorithms TS.

Graham’s Scan

0]

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine

7: Geometric Algorithms

TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine

7: Geometric Algorithms

TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
= If it does not introduce non-left turn, then fine

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull
= If it does not introduce non-left turn, then fine v*

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine v/
= QOtherwise,

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

b bl
7: Geometric Algorithms TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

b bl
7: Geometric Algorithms TS.

Graham’s Scan

) [Efficient Sorting by comparing (not computing!) polar angles]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
7: Geometric Algorithms TS. 13

Graham’s Scan

®
y
O @] 0
—€)—>x

) [Efficient Sorting by comparing (not computing!) polar angles]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
7: Geometric Algorithms TS. 13

Graham’s Scan

) [Efficient Sorting by comparing (not computing!) polar angles]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
7: Geometric Algorithms TS. 13

Graham’s Scan

(Use Cross Product! j

) [Efficient Sorting by comparing (not computingT) polar angles]
Basic Idea

= Start with the point with smallest y—coordinate\

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= If it does not introduce non-left turn, then fine v*
= Otherwise, keep on removing recent points until point can be added

Sl
7: Geometric Algorithms TS. 13

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)

Let pg be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0
PUSH(po,S)
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S

7: Geometric Algorithms TS. 13

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)

Let py be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0
PUSH(po,S)
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S

7: Geometric Algorithms TS. 13

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)

Let py be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0 DN
PUSH(py,S) [Takes O(nlog n) time]
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S

7: Geometric Algorithms TS. 13

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)

Let pp be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false
S=0 DN
PUSH(py,S) [Takes O(nlog n) time]
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S)
End While
PUSH(p;,S)
End For
Return S

7: Geometric Algorithms TS. 13

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

GRAHAM-SCAN(Q)
: Let pp be the point with minimum y-coordinate
Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false ™
S=0
PUSH(py,S) [Takes O(nlog n) time]
PUSH(p1,S)
PUSH(p>,S)
Fori=3ton
While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn
POP(S) A
Eﬁdsw(rgiljes) Takes O(n) time, since every point is
End For part of a PUSH or POP at most once.
Return S

1

7: Geometric Algorithms

TS.

Graham’s Scan

0:
1:
2
3:
4:
5
6
7
8

9:
10:
11:
12:
13:
14:

®

Overall Runtime: O(nlog n)
©

1

GRAHAM-SCAN(Q)
: Let pp be the point with minimum y-coordinate

Let (p1, p2, - - -, Pn) be the other points sorted by polar angle w.r.t. py
If n < 2 return false ™
S=0
PUSH(py,S) [Takes O(nlog n) time]
PUSH(p1,S)
PUSH(p2,S)
Fori=3ton

While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn

POP(S) AN

EBdSVHV(gJ?S) Takes O(n) time, since every point is
End For part of a PUSH or POP at most once.
Return S

7: Geometric Algorithms TS. 13

Execution of Graham’s Scan

O
O
O
O
O
O O
O
O

7: Geometric Algorithms

TS.

Execution of Graham’s Scan

)
O
© O,
O
O
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=20
)
O
© O,
O
O
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=1 E
)
o O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=2 L]+]=]
)
o O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

el
0 7: Geometric Algorithms

[o]+ T2]s]
O
o8
©
TS.

Execution of Graham’s Scan

=4 L]+ I=1=]
)
G-
O ()
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

=4 DI ENEYES
)
G-
O ()
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

f=4 L]+]=]
)
O T R RO
O O,
0 ®
O
O
Q
O, O
O,
O
a0,
i
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

f=4 L]+ =
)
O T S O
O O,
0 ®
O
O
Q
O, O
O,
O
e N\
a0,
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

=4 Lo+ T]
)
o O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=5 Lo+ T]
O e
O
O)
© O,
O
O
Q
® O
O,
O
() N\
a0,
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=5 BIENES
O e
° -
O)
© O,
O
O
Q
® O
O,
O
() N\
a0,
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=5 o] 5]
O
o O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=6 [e]+ = 1]
)
0 =0,
® -
Ok O,
O
O
Q
® O
O,
O
() N\
a0,
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=7 [elt [sTe 7]
)
\
O
O \)
\\
\
O] O,
O \
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=8 [elt [sTe 7]
)
O
O @
- © O,
O
O
Q
® O
O,
O
(2
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=8 Lo+ [sTe
)
O
O @
- © O,
O
O
Q
® O
O,
O
(2
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=8 [e]+ = 1]
0
O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=8 DI KR ES
0
O
© O,
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

f=8 L]+ = 1]
e —- -
____________ (=) DD
* Q
o ®
O
O
Q
O, O
O,
O
a0,
i
7: Geometric Algorithms TS. 1

Execution of Graham’s Scan
i=9 L]+ Ts]a]e]
5 ©
1
O !)
1
1
o ®)
e
()
@
® (™
@
O,
O
T.S. 14

el
0 7: Geometric Algorithms

Execution of Graham’s Scan

.
\
\
\
3
\
\
N
N
OR
N
N
() \

o]t 5] e] e o]
O e
Q

el
0 7: Geometric Algorithms

TS.

Execution of Graham’s Scan

i=1 [+ [sTe el
&)
O
O)
© O,
O
O R
\\ e
\
\
\
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=1 [el1[sTe]ePod
&)
O
O)
© O,
O
O R
\\ e
\
\
\
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=1 [ell1 [sTe]
&)
O
O @
N
N
N
N © O,
N
N
N \
X
O B
\ Q
N
N
N
N
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=1 Lo+ [sTe e
&)
O
O @
N
N
k.
S © O,
N
N
N \
X
O B
\ Q
N
N
N
N
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=1 ODRHDm
&)
O
O)
© O,
9
O
Q
® O
O,
O
(2
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i—12 CEEER
&)
O
(2)
i
!
/
, O O,
I/
/ 9
!
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

-1z CEEEE
&)
O
(2)
i
!
/
, O O,
I/
/ 9
!
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

-1z CEEEE
()
’
s
o S o
, 7
%
, 7
,/ © O,
’
’
O
O
Q
® O
O,
O
(2
e
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=13 [offsle]e]ws]
&)
O
O)
!
|
l ©)
|
®
(D¢ !
‘ Q
!
!
®
O,
O
(2
el
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=14 Lollx |5 |8 Jlr2]1a] 4]
&)
O
O)
© O,
O
(2)
= Q
\\
\\
\\
e <
\\\
R O,
\\
()
(2
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i =15 Lollx |5 |8 Jlr2]1a] 4]
&)
O
O)
© O,
O
(2
Q
O
() -
\\\\ @
\\\\ @
~
(2
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i =15 Lollx][5 |8 Jlr2]1s]d]
&)
O
O)
© O,
O
(2
Q
O
() -
\\\\ @
\\\\ @
~
(2
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i =15 Lollx][5 |8 Jr2]xs]l1s)
&)
O
O)
© O,
O
(2
\\ e
N
\\\ G
N
(D -
\\\ @
O
N
(2
7: Geometric Algorithms TS. 14

Execution of Graham’s Scan

i=15v [of1]s]s]2]]s]
&)
O
O)
© O,
O
(2
Q
® O
O,
O
(2
7: Geometric Algorithms TS. 14

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

e ke
E:E 7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point

7: Geometric Algorithms

TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

o.°o.
e o

°

L °

°
°

°

_—

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

el bt
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm

1. Let po be the lowest point
2. Next point the one with smallest angle w.r.t. po

e bl
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm

1. Let po be the lowest point
2. Next point the one with smallest angle w.r.t. py
3. Continue until highest point p

e bl
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm

1. Let po be the lowest point

2. Next point the one with smallest angle w.r.t. po
3. Continue until highest point p

4. Next point the one with smallest angle w.r.t. px

e bl
7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm
1. Let po be the lowest point

2. Next point the one with smallest angle w.r.t. po
3. Continue until highest point p

4. Next point the one with smallest angle w.r.t. px
=

(Here, we rotate the coordinate system by 180!]

S
7: Geometric Algorithms TS. 15

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm
1.

o~ owbp

Let po be the lowest point

Next point the one with smallest angle w.r.t. po
Continue until highest point py

Next point the one with smallest angle w.r.t. px
Continue until py is reached

7: Geometric Algorithms TS.

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm
1. Let po be the lowest point

Next point the one with smallest angle w.r.t. po

Continue until highest point py
Next point the one with smallest angle w.r.t. px
Continue until py is reached

. N J
AN

{ Runtime: O(n- h), where h}

o~ owbp

is no. points on convex hull.

S
7: Geometric Algorithms TS. 15

Jarvis’ March (Gift wrapping)

Intuition

= Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

~——— Algorithm
1. Let po be the lowest point

Next point the one with smallest angle w.r.t. po

Continue until highest point py
Next point the one with smallest angle w.r.t. px

o~ owbp

Continue until py is reached

. N J
AN

[Runtime: O(n - h), where h%{ Output sensitive algorithm! J

is no. points on convex hull.

S
7: Geometric Algorithms TS. 15

Execution of Jarvis’ March

([]
[J [J
([]
[
([]
[]
([]
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

([]
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

y
A
([]
([]
[J [J
([]
[
([]
[]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—_— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—_—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—_—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—_— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—_—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
—> X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([J
[J [J
([]
[
([]
[]
([]
— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
([]
[J [J
([]
[
([]
[]
([]
— X
ked
0 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

A
([]
[J [J
([]
[
([]
[]
([]
— X

S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

. 77777
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

[d
-—> X
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

|
|
|
|
|
° P
[J [J
([]
[
([]
[]
([]
S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[d
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

\4

Execution of Jarvis’ March

[]
[J [J
([]
[
([]
[]
([]

S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

[J [J
([]
[
([]
[]
([]
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
y
% ;. 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
® [J
([]
[
([]
[]
([]
\/
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <
[J
([]
[
([]
[]
([]
\/
o Y5
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X €

y

o 5 7: Geometric Algorithms

TS.

Execution of Jarvis’ March

X < L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
([]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
(]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

X <€ L
([]
[
(]
([]
S
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

]
X €<———F L 4
([]
[
[J
([]
e bl
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

]
[[J
([]
[
X €<——%
[]
([]
\4
e bl
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

]
[[J
([]
[
[]
[]
([]

el kel
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

]
[[J
([]
[
[]
o,
[J

el bt
Sl 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

]
[[J
([]
[
[]
o,
o

el bt
Sl 7: Geometric Algorithms TS. 16

Computing Convex Hull:

Summary

S
SR 7: Geometric Algorithms

TS.

Computing Convex Hull:

Summary

Graham’s Scan

S
SR 7: Geometric Algorithms

TS.

Computing Convex Hull: Summary

Graham’s Scan

= natural backiracking algorithm

S
SR 7: Geometric Algorithms

TS.

Computing Convex Hull: Summary

Graham’s Scan

= natural backiracking algorithm
= cross-product avoids computing polar angles

e bl
7: Geometric Algorithms TS.

Computing Convex Hull: Summary

Graham’s Scan

= natural backiracking algorithm
= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

e bl
7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

~— Jarvis’ March

e bl
7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

—— Jarvis’ March
= proceeds like wrapping a gift

e bl
7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March
= proceeds like wrapping a gift
= Runtime O(nh) ~» output-sensitive

e bl
7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\

= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN

[Improves Graham'’s scan only if h = O(log n)

S
7: Geometric Algorithms TS. 17

Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\

= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN J

[Improves Graham'’s scan only if h = O(log n)

\

[There exists an algorithm with O(nlog h) runtime!]

S
7: Geometric Algorithms TS. 17

Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\
= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN

[Improves Graham'’s scan only if h = O(log n)

\

[There exists an algorithm with O(nlog h) runtime!]

Lessons Learned

S
Sl 7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\
= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN

[Improves Graham'’s scan only if h = O(log n)

\

[There exists an algorithm with O(nlog h) runtime!]

Lessons Learned

= cross product very powerful tool
(avoids trigonometry and divison!)

S
Sl 7: Geometric Algorithms TS.

Computing Convex Hull: Summary

——— Graham’s Scan N\
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

— Jarvis’ March N\
= proceeds like wrapping a gift

= Runtime O(nh) ~» output-sensitive
AN

[Improves Graham'’s scan only if h = O(log n)

\

[There exists an algorithm with O(nlog h) runtime!]

Lessons Learned

= cross product very powerful tool
(avoids trigonometry and divison!)

= take care of degenerate cases

S
Sl 7: Geometric Algorithms TS.

Outline

Glimpse at (More) Advanced Algorithms

el b
7: Geometric Algorithms

TS.

Linear Programming and Simplex

maximize
subject to

» Goto End

el bt
.

3X1 + X2 + 2X3
Xq + X2 + 3X3 S 30
2X4 + 2X + 5x3 < 24
4x4 + Xo + 2x3 < 36
X1, X2, X3 > 0
7: Geometric Algorithms TS. 19

Linear Programming and Simplex

X3
X2
(0,12,0)
e (8,4,0)
(8.25,0,1.5) @
X1

maximize 3x; + Xo + 2x3
subject to
X1 + x + 3x < 30
2X4 + 2X + 5x3 < 24
4 + X + 2x3 < 36
X1, X2, X3 > 0

e bl
7: Geometric Algorithms TS. 19

Linear Programming and Simplex

X3
X2
0,12,0
(0.12.0)
e (8,4,0)
(8.25,0,1.5) ® 28
27.75
X4
9,0,0
(9.0,0)
maximize 3x; + Xo + 2x3
subject to
Xq + X2 + 3X3 < 30
2X4 + 2X + 5x3 < 24
4 + X + 2x3 < 36
X1, X2, X3 > 0

e bl
7: Geometric Algorithms TS. 19

Linear Programming and Simplex

X3
X2
0,12,0
(0.12.0)
e (8,4,0)
(8.25,0,1.5) ® 28
27.75
X4
9,0,0
(9.0,0)
maximize 3x; + Xo + 2x3
subject to
Xq + X2 + 3X3 < 30
2X4 + 2X + 5x3 < 24
4 + X + 2x3 < 36
X1, X2, X3 > 0

e bl
7: Geometric Algorithms TS. 19

Linear Programming and Simplex

X3

maximize 3x; + Xo + 2x3
subject to
X1 + x + 3x < 30
2X4 + 2X + 5x3 < 24
4 + X + 2x3 < 36
X1, X2, X3 > 0

e bl
7: Geometric Algorithms TS. 19

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, axp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;;
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

7: Geometric Algorithms TS.

20

Travelling Salesman Problem: The 42 (49) Cities

© 00 =T D U LN

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
. Los Angeles, Calif.
. Phoenix, Ariz.

. Santa Fe, N. M.

. Denver, Colo.

. Cheyenne, Wyo.
24.
. Des Moines, Towa
26. Kansas City, Mo.

. Topeka, Kans.

. Oklahoma City, Okla.
. Dallas, Tex.

. Little Rock, Ark.

. Memphis, Tenn.

. Jackson, Miss.

33.

Carson City, Nev.

Omaha, Neb.

New Orleans, La.

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.

7: Geometric Algorithms

TS.

21

Road Distances

43 77 73 4 H
24| 85 89 44 48 gg 41 33 28 29 22 23 35 69105102 73 56 88 99 BT 54 32 29
34 27 19 21 14 29 30 77114111 84 b4 96107 87 6o 0 37 8
26| 87 89 44 46 46 3o 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39 12 11
27| 91 g3 48 50 48 34 32 33 36 30 34 4§ 77115110 83 63 97 91 72 44 32 36 9 15 3

2] 8 TABLE I

i gg f RoAp D1sTANCES BETWEEN CITIES IN ApJUsTED UNits

H ISR The figures in the table are mileages between the two specified numbered cities, less 11,
6| 61 62 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 6o 16 17 18 6

8| 359 15 20 26 17 10

9| 62 66 2 25 31 25 15

10| 81 81 40 44 o 41 35 24 20

2105 10h 62 B3 by 47 36 4 Si 38 36 sp Buignig 8 66 o8 79 59 31 36 32 28 33 21 20

29117113 69 71 66 51 53 56 b1 §7 59 71 96130126 98 75 98 85 62 38 37 53 39 42 29 jo 12

30| o1 92 50 5T 46 30 34 38 43 49 6o 71103131 136109 9O 115 99 81 $3 61 62 36 34 24 28 20 2

31| 83 85 42 43 38 22 26 32 36 SI 63 75106142 140112 93126108 88 6o 64 66 39 36 27 31 28 28 8

32| 89 o1 55 55 SO 34 39 44 49 63 76 87120155150123100123109 86 62 71 78 52 49 39 44 35 24 15 12

33| 95 97 b3 63 36 42 39 56 60 75 86 97126160155 128 104128113 go 67 76 82 62 59 49 53 40 29 25 23 I

34| 74 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 124101 75 79 81 $4 50 42 46 43 39 23 14 14 20

35| b7 69 42 41 31 25 32 41 46 63 83 90130164 160133114 136134111 85 84 86 59 32 47 ST 53 49 32 24 24 3 9

36| 74 76 61 60 42 44 51 60 66 83102110147 185 179 155 133 159 146122 98105107 79 71 66 70 70 60 48 40 36 33 25 18

37| 57 39 46 41 25 30 36 47 52 71 93 98136 172172148126 lgﬁ 147124 121 97 99 71 65 59 63 67 62 46 38 37 43 23 13 17

38| 45 46 41 34 20 34 38 48 53 73 96 99137176 178 151 131 163159 135108 102103 73 67 bs 69 75 72 54 46 49 54 34 24 29 12

39| 35 37 35 26 18 34 36 46 51 70 93 97134171 176 151 129 161 163139 118 102 101 7T 65 65 70 82 78 58 0 6 62 41 32 38 2 ¢

40| 29 33 30 21 18 35 33 40 45 65 87 91 117166171 134125157156 139113 95 97 67 60 62 b7 79 82 62 53 59 66 45 38 45 27 15 6

41| 3 11 41 37 47 §7 §5 58 63 837105109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101108 88 B0 86 92 I 64 7T 54 41 32 25

42| 5 12 55 31 55 by b1 br 6b 84111113150 186 192 166 147 180 188 167 140124 119 9o 87 90 94107174 77 86 92 98 Bo 74 77 60 48 38 32 6
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

7: Geometric Algorithms TS.

22

The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

F1a. 16. The optimal tour of 49 cities.

ey 7: Geometric Algorithms TS. 23

Iteration 1: Objective 641

14
lﬁ
i, 13
0.50
16
’
. e
18, 23
40
1 2

7: Geometric Algorithms TS. 24

Iteration 1: Objective 641, Eliminate Subtour 1,2 41,42

S
7: Geometric Algorithms TS. 24

Iteration 2: Objective 676

0.50 1
16 10

[030] !
1
18 Y 23

/
\-\

7: Geometric Algorithms TS. 25

Iteration 2: Objective 676, Eliminate Subtour 3 — 9

14
lﬁ
g 13

xS
Sl 7: Geometric Algorithms TS.

25

Iteration 3: Objective 681

14
lﬁ
i, 13
0.50
16
’
1
18, T 23
1 2

28 31

T

3

S

5
[050]

7: Geometric Algorithms

TS.

26

Iteration 3: Objective 681, Eliminate Subtour 24,25, 26,27

u
o
?)
23 o t
8

0l 34

750 B
¥
33

1 2
) n T ¢ F o
L 20 /ﬂ/ o] i
» u, 35
2

xS
7: Geometric Algorithms TS. 26

Iteration 4: Objective 682.5

14
lﬁ
o 13

0.50
16
’
1
18,
1

7: Geometric Algorithms

TS.

27

Iteration 4: Objective 682.5, Eliminate Small Cut by 13 — 17

xS
Sl 7: Geometric Algorithms TS.

27

Iteration 5: Objective 686

7: Geometric Algorithms

TS.

28

Iteration 5: Objective 686, Eliminate Subtour 10,11,12

xS
7: Geometric Algorithms TS. 28

Iteration 6: Objective 686

7: Geometric Algorithms TS. 29

Iteration 6: Objective 686, Eliminate Subtour 13 — 23

——p

12

2 42

U

i
L
', .

2 31

/./%?é s i
Y

7: Geometric Algorithms

TS. 29

Iteration 7: Objective 688

14

12

i

17
B 5 23

7: Geometric Algorithms

TS.

30

Iteration 7: Objective 688, Eliminate Subtour 11 — 23

o
Y g— i
* 7 40,
' T o
0

e bl
7: Geometric Algorithms TS. 30

Iteration 8: Objective 697

14
lﬁ
o 13
/ 050 12
050 \ 2 42
. i
[o:50] g
L
18
1]

TS. 31

7: Geometric Algorithms

Iteration 8: Objective 697, Branch on x(13,12)

05

- .
en|
o
3
l 50 U 50 4

—{os0}—°

7: Geometric Algorithms TS. 31

Iteration 9, Branch a x(13,12) = 1: Objective 699 (Valid Tour)

: f
18 23 24 25 m
H
1 2
© 2

S
7: Geometric Algorithms TS. 32

Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.9
with Simplex, Mixed Integer & Barrier Optimizers

5725-A@6 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-¥55 5655-Y21

Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help® for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX=> read tsp.lp

Problem 'tsp.lp’' read.

Read time = @.8@ sec. (@.86 ticks)

CPLEX= primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = @.8@ sec. (@.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective 151@.eeeeee
Iteration: 98 Objective = 923.000000
Iteration: 155 Objective 711.e00000

Primal simplex - Optimal: Objective = 6.990000R000e+02
Solution time = @.e@ sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

crLEx= I

e bl
7: Geometric Algorithms TS.

CPLEX> display solution variables —

Variable Name Solutien Value
x_2_1 1.000000
x_42_1 1.000000
x_32 1.000000
x_4_3 1.000000
x_5_4 1.000000
x_6_5 1.000000
x_7_6 1.000000
x_8_7 1.000000
x 9.8 1.000000
x_10_9 1.000000
x_11_1@ 1.000000
x_12_11 1.000000
x_13_12 1.000000
x_14_13 1.000000
x_15_14 1.000000
x_16_15 1.000000
x_17_16 1.000000
x_18_17 1.000000
x_19_18 1.000000
x_20_19 1.000000
x_21_20 1.000000
x_22_21 1.000000
x_23_22 1.000000
x_24_23 1.000000
x_25_24 1.000000
x_26_25 1.000000
x_27_26 1.000000
x_28_27 1.000000
x_29_28 1.000000
x_30_29 1.000000
x_31_30 1.000000
x_32_31 1.000000
x_33_32 1.000000
x_34_33 1.000000
x_35_34 1.000000
x_36_35 1.000000
x_37_36 1.000000
x_38_37 1.000000
x_39_38 1.000000
x_40_39 1.000000
x_41_40 1.000000
x_42_41 1.000000

A1l other variables in the range 1-861 are 0.

7: Geometric Algorithms

Iteration 10, Branch b x(13,12) = 0: Objective 701

el
ke &

S, — o,

v “
0 9
. ,
f % !
18, ! 23 24 :
, M
P9 T w
TA

S
7: Geometric Algorithms TS. 35

The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

= Don't forget to visit the online feedback page!

= Please send comments on the slides to:
tms4l@cam.ac.uk

7: Geometric Algorithms TS.

36

