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Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)
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Sequence of Stack Operations
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A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs
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Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k ) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6
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Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state
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Stack as a coin-operated machine (p. 83)
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Stack and Coins
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Every operation costs at most two coins!
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Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!
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ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)
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ci > ĉi are all possible!

Function that maps states of the data structure to some value
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ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1
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Stack: Analysis via Potential Method

Φi =

# objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n
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ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1
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ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}
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ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11



Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1
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ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}
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ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11



Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1
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ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
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Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12
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3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)
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Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0
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Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.
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Binary Counter: Analysis via Potential Function

Φi =

# ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n
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amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1
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Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit
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Next Lecture: Fibonacci Heap

Operation Binomial heap

Fibonacci heap

worst-case cost

amortized cost

MAKE-HEAP O(1)

O(1)

INSERT O(log n)

O(1)

MINIMUM O(log n)

O(1)

EXTRACT-MIN O(log n)

O(log n)

UNION O(log n)

O(1)

DECREASE-KEY O(log n)

O(1)

DELETE O(log n)

O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!
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5.2 Fibonacci Heaps
Frank Stajano Thomas Sauerwald

Lent 2016

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9



Priority Queues Overview

Operation Linked list Binary heap Binomial heap

Fibon. heap

MAKE-HEAP O(1) O(1) O(1)

O(1)

INSERT O(1) O(log n) O(log n)

O(1)

MINIMUM O(n) O(1) O(log n)

O(1)

EXTRACT-MIN O(n) O(log n) O(log n)

O(log n)

MERGE O(n) O(n) O(log n)

O(1)

DECREASE-KEY O(1) O(log n) O(log n)

O(1)

DELETE O(1) O(log n) O(log n)

O(log n)

5.2: Fibonacci Heaps T.S. 2
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.
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i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3



Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible
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Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps T.S. 5



Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps
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Merging two Binomial Heaps

3
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5

7
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+

1

4 9 11

12 17 13
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18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51
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Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?
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Magnifying a Four-Node Portion
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Outline

Structure
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Glimpse at the Analysis
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Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)
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Fibonacci Heap: EXTRACT-MIN

Delete min

X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X
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Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x
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39
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41
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5

5
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5
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19
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12
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Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12
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5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016

Amortized Analysis via Potential Method
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Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin  pays cut
Second Coin  increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5
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ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin  pays cut
Second Coin  increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin  pays cut
Second Coin  increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5
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5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts)  O(marks(H)) amortized O(1) ?

�(H) = trees(H)+2·marks(H)
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Glimpse at the Analysis
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Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)
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Fibonacci Heap: EXTRACT-MIN

Delete min

X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n
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Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential
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c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)
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Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential
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18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?
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Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8



Lower Bounding Degrees of Children
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From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?
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Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk
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Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥

N(k)

= F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k
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What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)
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Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!
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Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap Van Emde Boas Tree

amortized cost actual cost

INSERT O(1) O(log log u)

MINIMUM O(1) O(1)

EXTRACT-MIN O(log n) O(log log u)

MERGE/UNION O(1) -

DECREASE-KEY O(1) O(log log u)

DELETE O(log n) O(log log u)

SUCC - O(log log u)

PRED - O(log log u)

MAXIMUM - O(1)

all this requires key values to be in a universe of size u!
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5.3: Disjoint Sets
Frank Stajano Thomas Sauerwald

Lent 2016

Disjoint Sets (aka Union Find)

Handle makeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle findSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=makeSet(x)

h0

h1=findSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y
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First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!
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First Attempt: List Implementation (Analysis)

d = DisjointSet()

h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer  Weighted-Union Heuristic
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Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).
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Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation
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How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic
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Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g}

{b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height  Union by Rank

5.3: Disjoint Sets T.S. 9



Path Compression during FINDSET

f
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h
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b
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f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

b

b

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10



Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.
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Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup
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Union by Rank without Path Compression
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Union by Rank with Path Compression
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Union by Rank with Path Compression (100 additional FINDSET)
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Union by Rank with Path Compression (200 additional FINDSET)
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Union by Rank with Path Compression (300 additional FINDSET)
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Union by Rank with Path Compression (600 additional FINDSET)
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Union by Rank with Path Compression (900 additional FINDSET)
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Union by Rank with Path Compression (1200 additional FINDSET)
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Union by Rank with Path Compression (1500 additional FINDSET)
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Union by Rank with Path Compression (1800 additional FINDSET)
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Coupon Collecting Time: 300 · ln(300) ≈ 1711
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Union by Rank with Path Compression (1800 additional FINDSET)
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Overview

Union by Rank Union by Rank

& Path Compression

300 MAKESET & 300 UNION 2.12 1.75

100 extra FINDSET 2.12 1.53

200 extra FINDSET 2.12 1.35

300 extra FINDSET 2.12 1.22

600 extra FINDSET 2.12 1.08

900 extra FINDSET 2.12 1.02

1200 extra FINDSET 2.12 1.01

1500 extra FINDSET 2.12 1.00

1800 extra FINDSET 2.12 0.98
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6.1 & 6.2: Graph Searching
Frank Stajano Thomas Sauerwald

Lent 2016

Complete Execution of DFS
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Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching T.S. 2



Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia

Source: Wikipedia
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What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)
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Representations of Directed and Undirected Graphs590 Chapter 22 Elementary Graph Algorithms
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Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Most times we will use the adjacency-list representation!
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Graph Searching
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Graph searching means traversing a graph via the edges in order to
visit all vertices

useful for identifying connected components, computing the
diameter etc.

Two strategies: Breadth-First-Search and Depth-First-Search

Overview

Measure time complexity in terms of the size of V and E
(often write just V instead of |V |, and E instead of |E |)
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Breadth-First Search: Basic Ideas

s

Given an undirected/directed graph G = (V ,E) and source vertex s

BFS sends out a wave from s  compute distances/shortest paths

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

Black = Visited and all neighbors

Basic Idea
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Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9
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Black = Visited and all neighbors

Runtime ???

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |
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Execution of BFS (Figure 22.3)
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Execution of BFS (Figure 22.3)
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Depth-First Search: Basic Ideas

Given an undirected/directed graph G = (V ,E) and source vertex s

As soon as we discover a vertex, explore from it Solving Mazes

Two time stamps for every vertex: Discovery Time, Finishing Time

Basic Idea
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Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)
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Execution of DFS
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Paranthesis Theorem (Theorem 22.7)
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Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort
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Topological Sort
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Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem
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Solving Topological Sort

undershorts
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belt
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watch

shirt

tie
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Perform DFS’s so that all vertices are visited

Output vertices in decreasing order of their finishing time

Knuth’s Algorithm (1968)

Runtime O(V + E)
Don’t need to sort the ver-
tices – use DFS directly!
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Execution of Knuth’s Algorithm
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Correctness of Topological Sort using DFS
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If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,

⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.
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Summary of Graph Searching

vertices are processed by a queue

computes distances and shortest paths
 similar idea used later in Prim’s and Dijkstra’s algorithm

Runtime O(V + E)

Breadth-First-Search

vertices are processed by recursive calls (≈ stack)

discovery and finishing times

application: Topogical Sorting of DAGs

Runtime O(V + E)

Depth-First-Search
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6.3: Minimum Spanning Tree
Frank Stajano Thomas Sauerwald

Lent 2016
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Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!
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Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications
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Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

Definition

How to find a safe edge?
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Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem
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Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex ), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex ), then T ∪ e` \ ex is a
MST.

e`

ex
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Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step,

given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a
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d
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f

g
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Use Disjoint Sets to keep track
of connected components!
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Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness
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Correctness
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Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9



Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation
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Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:

Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V ), ExtractMin (15): O(V · log V ), DecreaseKey (16-20): O(E · log V )
⇒ Overall: O(V log V + E log V )

Time Complexity

Amortized CostAmortized Cost
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Summary (Kruskal and Prim)

Add safe edge to the current MST as long as possible

Theorem: An edge is safe if it is the lightest of a cut respecting A

Generic Idea

Gradually transforms a forest into a MST by merging trees

invokes disjoint set data structure

Runtime O(E log V )

Kruskal’s Algorithm

Gradually extends a tree into a MST by adding incident edges

invokes Fibonacci heaps (priority queue)

Runtime O(V log V + E)

Prim’s Algorithm
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Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea
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Can be implemented in time
O(E log V (log log V )3). [Thorup, 2000]
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Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))

Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002
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6.4: Single-Source Shortest Paths
Frank Stajano Thomas Sauerwald

Lent 2016

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)
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Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk ) is minimized.

s t
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Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications
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Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)

Bellman-Ford Algorithm

Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)

Shortest Paths via Matrix Multiplication

Johnson’s Algorithm
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Distances and Negative-Weight Cycles (Figure 24.1)
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Distances and Negative-Weight Cycles (Figure 24.1)
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Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)
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Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s  u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d

≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.
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Path-Relaxation Property

If p = (v0, v1, . . . , vk ) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk ), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger
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the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk ), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)
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The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity
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Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)
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Execution of Bellman-Ford (Figure 24.4)

Pass: 2
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Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)
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Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!
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The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.
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The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V| times
7: flag = 0
8: for e in G.edges()
9: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1
14: if flag = 0 return TRUE
15:
16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.
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6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

Illustration of the Ford-Fulkerson Method
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History of the Maximum Flow Problem [Harris, Ross (1955)]
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Maximum Flow is 163,000 tons per day!
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Flow Network

Abstraction for material (one commodity!) flowing through the edges

G = (V ,E) directed graph without parallel edges

distinguished nodes: source s and sink t

every edge e has a capacity c(e)

Flow Network
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Flow Network

Abstraction for material (one commodity!) flowing through the edges

G = (V ,E) directed graph without parallel edges

distinguished nodes: source s and sink t
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A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?

Greedy did not succeed!

6.6: Maximum flow T.S. 5



A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?

Greedy did not succeed!

6.6: Maximum flow T.S. 5



Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

6.6: Maximum flow T.S. 6



Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6
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Residual Graph with anti-parallel edges
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cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
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Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf ), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7



Example of a Residual Graph (Handout)
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By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8
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From Flows to Cuts

A cut (S,T ) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T ) is the sum of capacities of the edges
from S to T :

c(S,T ) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T )

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.
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From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T ).

Theorem (Max-Flow Min-Cut Theorem)
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Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)
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Illustration of the Ford-Fulkerson Method
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From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T ).

Theorem (Max-Flow Min-Cut Theorem)
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Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

1. For every u, v ∈ V , f (u, v) ≤ c(u, v),
2. For every u, v ∈ V , f (u, v) = −f (v , u),
3. For every u ∈ V \ {s, t},

∑
v∈V f (u, v) = 0.

Let f be any flow and (S, T ) be any cut:

|f | =
∑
v∈V

f (s, v)

(3)
=

∑
u∈S

∑
v∈V

f (u, v)

=
∑
u∈S

∑
v∈S

f (u, v) +
∑
u∈S

∑
v∈T

f (u, v)

(2)
=

∑
u∈S

∑
v∈T

f (u, v)

(1)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S, T ).

Since this holds for any pair of flow and cut, it follows that
max

f
|f | ≤ min

(S,T )
c(S, T )

Flow-Value-Lemma:
For any cut (S,T ),

|f | =
∑
u∈S

∑
v∈T

f (u, v).
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A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson
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Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)
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Slow Convergence of Ford-Fulkerson (Figure 26.7)
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Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!
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Summary and Outlook

works only for integral (rational) capacities

Runtime: O(E · |f ∗|) = O(E · V · C)

Ford-Fulkerson Method

Idea: Find an augmenting path with high capacity

Consider subgraph of Gf consisting of edges (u, v) with cf (u, v) > ∆

scaling parameter ∆, which is initially 2dlog2 Ce and 1 after termination

Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V )

Edmonds-Karp Algorithm
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Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V )
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A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs
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Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines
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Matchings in Bipartite Graphs via Maximum Flows
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Matchings in Bipartite Graphs via Maximum Flows
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Correspondence between Maximum Matchings and Max Flow

The cardinality of a maximum matching M in a bipartite graph G equals
the value of a maximum flow f in the corresponding flow network G̃.

Theorem (Corollary 26.11)
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From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃
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From Flow to Matching

Let f be a maximum flow in G̃ of value k

Integrality Theorem

⇒ f (u, v) ∈ {0, 1} and k integral

Let M ′ be all edges from L to R which carry a flow of one
a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
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6.5: All-Pairs Shortest Paths
Frank Stajano Thomas Sauerwald

Lent 2016

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v 2 V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:

1) Reweight every edge (u, v) by ew(u, v) = w(u, v) + u.� � v .�
2) Remove vertex s and its incident edges

3. For every vertex v 2 V , run Dijkstra on (G, E , ew)

Johnson’s Algorithm

3
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0
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�4 0
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Direct: 7, Detour: �1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V +E))
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All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson’s Algorithm
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Formalising the Problem

Given: directed graph G = (V ,E), V = {1, 2, . . . , n}, with edge
weights represented by a matrix W :

wi,j =





weight of edge (i, j) for an edge (i, j) ∈ E ,
∞ if there is no edge from i to j,
0 if i = j.

Goal: Obtain a matrix of shortest path weights L, that is

`i,j =

{
weight of a shortest path from i to j, if j is reachable from i
∞ otherwise.

All-Pairs Shortest Path Problem

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!
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A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!
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i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)
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L(2) =




0 3 8 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}
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Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)

Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W )i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)
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Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)
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Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!
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How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0

2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm
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Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))
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Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Let p = (v0, v1, . . . , vk ) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ
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Comparison of all Shortest-Path Algorithms

Algorithm
SSSP APSP negative

sparse dense sparse dense weights

Bellman-Ford V 2 V 3 V 3 V 4 X

Dijkstra V log V V 2 V 2 log V V 3 X

Matrix Mult. – – V 3 log V V 3 log V (X)

Johnson – – V 2 log V V 3 X

can handle negative weight edges,
but not negative weight cycles

6.5: All-Pairs Shortest Paths T.S. 13
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Frank Stajano Thomas Sauerwald

Lent 2016

Solving Line Intersection (without Trigonometry and Division!)

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 � p3)⇥ (p4 � p3) = (3, 1)⇥ (1, 3) = 8

(p2 � p3)⇥ (p4 � p3) = (�1, 3)⇥ (1, 3) = �6

Opposite signs ) p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ) p1p2 crosses
(infinite) line through p3 and p4

(p3 � p1)⇥ (p2 � p1) = (�3,�1)⇥ (�4, 2) = �10

(p4 � p1)⇥ (p2 � p1) = (�2, 2)⇥ (�4, 2) = 4

Opposite signs ) p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ) p3p4 crosses
(infinite) line through p1 and p2

p1p2 crosses p3p4

p3

p4

(p3 � p1)⇥ (p2 � p1) < 0

(p4 � p1)⇥ (p2 � p1) < 0

p1p2 does not cross p3p4
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Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms
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Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?
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Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5
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Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × · ) > 0

(p1 × · ) < 0
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Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × · ) > 0

(p1 × · ) < 0
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Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear
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Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3
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p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk )
1: return (pk − pi )× (pj − pi )

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3
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Convex Hull

Glimpse at (More) Advanced Algorithms
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem
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Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s
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Graham’s Scan

00

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)
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Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!
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Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned
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Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms
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Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN 
PROBLEM* 

G. DANTZIG, R. FULKERSON, AND S. JOHNSON 
The Rand Corporation, Santa Monica, California 

(Received August 9, 1954) 

It is shown that a certain tour of 49 cities, one in each of the 48 states and 
Washington, D. C., has the shortest road distance. 

THE TRAVELING-SALESMAN PROBLEM might be described as 
follows: Find the shortest route (tour) for a salesman starting from a 

given city, visiting each of a specified group of cities, and then returning to 
the original point of departure. More generally, given an n by n sym- 
metric matrix D= (d1i), where doi represents the 'distance' from I to J, 
arrange the points in a cyclic order in such a way that the sum of the d1j 
between consecutive points is minimal. Since there are only a finite 
number of possibilities (at most (n - 1)!) to consider, the problem is 
to devise a method of picking out the optimal arrangement which is 
reasonably efficient for fairly large values of n. Although algorithms have 
been devised for problems of similar nature, e.g., the optimal assignment 
problem,3"78 little is known about the traveling-salesman problem. We 
do not claim that this note alters the situation very much; what we shall do 
is outline a way of approaching the problem that sometimes, at least, en- 
ables one to find an optimal path and prove it so. In particular, it will be 
shown that a certain arrangement of 49 cities, one in each of the 48 states 
and Washington, D. C., is best, the djj used representing road distances as 
taken from an atlas. 

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It 
appears to have been discussed informally among mathematicians at mathematics 
meetings for many years. Surprisingly little in the way of results has appeared in 
the mathematical literature.10 It may be that the minimal-distance tour problem 
was stimulated by the so-called Hamiltonian game' which is concerned with finding 
the number of different tours possible over a specified network. The latter problem 
is cited by some as the origin of group theory and has some connections with the 
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be 
credited with stimulating interest in the traveling-salesman problem in many quar- 
ters. As early as 1937, he tried to obtain near optimal solutions in reference to 
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re- 
call that they heard about the problem first in a seminar talk by Hassler Whitney 
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall 
the problem). The relations between the traveling-salesman problem and the 
transportation problem of linear programming appear to have been first explored by 
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and 
H. Kuhn.4 5'6 

393 
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Travelling Salesman Problem: The 42 (49) Cities

394 DANTZIG, FULKERSON, AND JOHNSON 

In order to try the method on a large problem, the following set of 49 
cities, one in each state and the District of Columbia was selected: 

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala. 
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga. 
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla. 
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C. 
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C. 
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va. 
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C. 
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass. 
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me. 

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md. 

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del. 
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn. 
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J. 
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y. 
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn. 
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I. 

The reason for picking this particular set was that most of the road 
distances between them were easy to get from an atlas. The triangular 
table of distances between these cities (Table I) is part of the original one 
prepared by Bernice Brown of The Rand Corporation. It gives dj= 
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles 
between I and J. The d1i have been rounded to the nearest integer. 
Certainly such a linear transformation does not alter the ordering of the 
tour lengths, although, of course, rounding could cause a tour that was 
not optimal in terms of the original mileage to become optimal in terms of 
the adjusted units used in this paper. 

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42 
in this order is minimal for this subset of 42 cities. Moreover, since in 
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts) 
by the shortest road distance one goes through A, B, * * *, G, successively, 
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41, 
42 in that order is also optimal. 

PRELIMINARY NOTIONS 

Whenever the road from I to J (in that order) is traveled, the value 
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is 
entered. A (directed) tour through n cities can now be thought of as a 
permutation matrix of order n which represents an n-cycle (we assume 

* This particular transformation was chosen to make the d1j of the original table 
less than 256 which would permit compact storage of the distance table in binary 
representation; however, no use was made of this. 
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Road Distances
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The (Unique) Optimal Tour (699 Units ≈ 12,345 miles)
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Iteration 1: Objective 641
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Iteration 1: Objective 641, Eliminate Subtour 1, 2, 41, 42
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Iteration 2: Objective 676
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Iteration 2: Objective 676, Eliminate Subtour 3− 9
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Iteration 3: Objective 681
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Iteration 3: Objective 681, Eliminate Subtour 24, 25, 26, 27
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Iteration 4: Objective 682.5
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Iteration 4: Objective 682.5, Eliminate Small Cut by 13− 17
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Iteration 5: Objective 686
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Iteration 5: Objective 686, Eliminate Subtour 10, 11, 12
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Iteration 6: Objective 686
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Iteration 6: Objective 686, Eliminate Subtour 13− 23
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Iteration 7: Objective 688
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Iteration 7: Objective 688, Eliminate Subtour 11− 23
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Iteration 8: Objective 697
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Iteration 8: Objective 697, Branch on x(13, 12)
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Iteration 9, Branch a x(13, 12) = 1: Objective 699 (Valid Tour)
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Iteration 10, Branch b x(13, 12) = 0: Objective 701
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

Don’t forget to visit the online feedback page!

Please send comments on the slides to:
tms41@cam.ac.uk
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