
5.1: Amortized Analysis
Frank Stajano Thomas Sauerwald

Lent 2016

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43

4141

33

7070

32

54 66 82 51

min

5

0

s
4

5

∞

5

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43 4141 33 7070 32

54 66 82 51

min

5

0

s
4

5

∞

5

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Use of Amortized Analysis

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

58 30 10

43 4141 33 7070 32

54 66 82 51

min

5

0

s
4

5

∞

55

9

∞
∞

3

1

5
1

3 1

2

3

0

41

2

1

3

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

next week

≈ two weeks

5.1: Amortized Analysis T.S. 2

Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)

pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S

total cost of 1
POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)

pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S

total cost of 1
MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)

pops the k top objects (S non-empty)
⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2

(correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Motivating Example: Stack

PUSH(S,x)
pushes object x onto stack S
total cost of 1

POP(S)
pops the top of (a non-empty) stack S
total cost of 1

MULTIPOP(S,k)
pops the k top objects (S non-empty)

⇒ total cost of min{|S|, k}

Stack Operations

0: MULTIPOP(S,k)
1: while not S.empty() and k > 0
2: POP(S)
3: k = k - 1

What is the largest possible cost of a sequence of
n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

largest cost of an operation: n
cost is at most n · n = n2 (correct, but not tight!)

T

PUSH(S,X)

T

X

T

X

POP(S)

T

T

X

U

MULTIPOP(S,4)

5.1: Amortized Analysis T.S. 3

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

Sequence of Stack Operations

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

5.1: Amortized Analysis T.S. 4

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small

concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small

concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

A new Analysis Tool: Amortized Analysis

analyse a sequence of operations

show that average cost of an operation is small
concrete techniques

Aggregate Analysis
Potential Method

Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

This is not average case analysis!

Determine an upper bound T (n) for the total cost of
any sequence of n operations

amortized cost of each operation is the average T (n)

n

Aggregate Analysis

Even though operations may be of different types/costs

5.1: Amortized Analysis T.S. 5

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤

TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n)

≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n)

≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n)

≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Stack: Aggregate Analysis

Simple Worst-Case Bound:

largest cost of an operation: n

cost is at most n · n = n2 (correct, but not tight!)

T

B

D

MULTIPOP(3)

Every item that is POPPED
had to be PUSHED earlier!

T

PUSH(B)

T

B

T (n) ≤ TPOP(n) + TPUSH(n) ≤ 2 · TPUSH(n) ≤ 2 · n.

MULTIPOP(k) contributes min{k , |S|} to TPOP(n)

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2

5.1: Amortized Analysis T.S. 6

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Second Technique: Potential Method

allow different amortized costs

 store (fictitious) credit in the data structure
to cover up for expensive operations

Potential Method

Potential of a data structure can be
also thought of as

amount of potential energy stored

distance from an ideal state

5.1: Amortized Analysis T.S. 7

Stack as a coin-operated machine (p. 83)

5.1: Amortized Analysis T.S. 8

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Stack and Coins

PUSH(T)

T

PUSH(B)

T

B

PUSH(X)

T

B

X

POP

T

B

PUSH(D)

T

B

D

MULTIPOP(3)

Every operation costs at most two coins!

i

credit

0 1 2 3 4 5 6

1

2

3

5.1: Amortized Analysis T.S. 9

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =

n∑
i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =

n∑
i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn − Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Potential Method in Detail

ci is the actual cost of operation i

ĉi is the amortized cost of operation i

Φi is the potential stored after operation i (Φ0 = 0)

ci < ĉi , ci = ĉi or
ci > ĉi are all possible!

Function that maps states of the data structure to some value

ĉi = ci + (Φi − Φi−1)

PUSH(): ci = 1

POP: ci = 1

PUSH(): Φi − Φi−1 = 1

POP: Φi − Φi−1 = −1

n∑
i=1

ĉi =
n∑

i=1

(ci + Φi − Φi−1) =
n∑

i=1

ci + Φn

− Φ0

If Φn ≥ 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

5.1: Amortized Analysis T.S. 10

Stack: Analysis via Potential Method

Φi =

objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1

i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) =

1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 =

−1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1

i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) =

1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}

Φi − Φi−1 =

−min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 =

−min{k , |S|}
ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1

i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}

ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) =

min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Stack: Analysis via Potential Method

Φi = # objects in the stack after i th operation (= # coins)

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

PUSH

ci = 1

Φi − Φi−1 = −1

ĉi = ci + (Φi − Φi−1) = 1− 1 = 0

POP

Stack is non-empty!

ci = min{k , |S|}
Φi − Φi−1 = −min{k , |S|}
ĉi = ci + (Φi −Φi−1) = min{k , |S|} −min{k , |S|} = 0

MULTIPOP(k)

PUSH

Φi

i − 1 i

POP

Φi

i − 1 i

MULTIPOP(3)

Φi

i − 1 i

Amortized Cost ≤ 2⇒ T (n) ≤ 2n

n/2 PUSH, n/2 POP⇒ T (n) ≤ n

5.1: Amortized Analysis T.S. 11

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1

only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one

total cost:

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ??

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k

(correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost: ≤ k

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k (correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Second Example: Binary Counter

Array A[k − 1], A[k − 2], . . . , A[0] of k bits

Use array for counting from 0 to 2k − 1
only operation: INC

increases the counter by one
total cost:��HH≤ k
number of flips (smallest index of a zero)

Binary Counter

0: INC(A)
1: i = 0
2: while i < k and A[i]==1
3: A[i] = 0
4: i = i + 1
5: A[i] = 1

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

largest cost of an operation: k
cost is at most n · k (correct, but not tight!)

1

A[3]

0

A[2]

1

A[1]

1

A[0]

11

INC

1

A[3]

1

A[2]

0

A[1]

0

A[0]

12

5.1: Amortized Analysis T.S. 12

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

16 0 0 0 1 0 0 0 0 31

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter

Counter
A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]

Total

Value Cost

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 1

2 0 0 0 0 0 0 1 0 3

3 0 0 0 0 0 0 1 1 4

4 0 0 0 0 0 1 0 0 7

5 0 0 0 0 0 1 0 1 8

6 0 0 0 0 0 1 1 0 10

7 0 0 0 0 0 1 1 1 11

8 0 0 0 0 1 0 0 0 15

9 0 0 0 0 1 0 0 1 16

10 0 0 0 0 1 0 1 0 18

11 0 0 0 0 1 0 1 1 19

12 0 0 0 0 1 1 0 0 22

13 0 0 0 0 1 1 0 1 23

14 0 0 0 0 1 1 1 0 25

15 0 0 0 0 1 1 1 1 26

16 0 0 0 1 0 0 0 0 31

5.1: Amortized Analysis T.S. 13

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments

In a sequence of n increments from 0, bit A[i] is flipped b n
2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤

k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋

≤
k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)

≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Incrementing a Binary Counter: Aggregate Analysis

Counter
A[3] A[2] A[1] A[0]

Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

Bit A[i] is only flipped every 2i increments
In a sequence of n increments from 0, bit A[i] is flipped b n

2i c times

T (n) ≤
k−1∑
i=0

⌊
n
2i

⌋
≤

k−1∑
i=0

n
2i

= n ·
(

1 +
1
2

+
1
4

+ · · ·+ 1
2k−1

)
≤ 2 · n.

Aggregate Analysis: The amortized cost per operation is T (n)

n ≤ 2.

5.1: Amortized Analysis T.S. 14

Binary Counter: Analysis via Potential Function

Φi =

ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 =

1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1

i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi =

ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) =

1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 =

−x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1

i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) =

1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1

= 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Binary Counter: Analysis via Potential Function

Φi = # ones in the binary representation of i

Φ0 = 0 X Φi ≥ 0 X

actual cost: ci = 1

potential change: Φi − Φi−1 = 1

amortized cost: ĉi = ci + (Φi −Φi−1) = 1 + 1 = 2

Increment without Carry-Over

ci = x + 1, (x lowest index of a zero)

Φi − Φi−1 = −x + 1

ĉi = ci + (Φi − Φi−1) = 1 + x − x + 1 = 2

Increment with Carry-Over

1 1 0 0

INC

1 1 0 1

Φi

i − 1 i

0 1 1 1

INC

1 0 0 0

Φi

i − 1 i

Amortized Cost = 2⇒ T (n) ≤ 2n

5.1: Amortized Analysis T.S. 15

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Summary

Amortized Analysis
Average costs over a sequence of n operations

overcharge cheap operations and undercharge expensive operations

no probability/average case analysis involved!

Determine an absolute upper bound T (n)

every operation has amortized cost T (n)

n

Aggregate Analysis

E.g. by bounding the number of expensive operations

use savings from cheap operations to
compensate for expensive ones

operations may have different amortized cost

Potential Method

Full power of this method will become clear later!

T (n)

T (n)

i

credit

5.1: Amortized Analysis T.S. 16

Next Lecture: Fibonacci Heap

Operation Binomial heap

Fibonacci heap

worst-case cost

amortized cost

MAKE-HEAP O(1)

O(1)

INSERT O(log n)

O(1)

MINIMUM O(log n)

O(1)

EXTRACT-MIN O(log n)

O(log n)

UNION O(log n)

O(1)

DECREASE-KEY O(log n)

O(1)

DELETE O(log n)

O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!

5.1: Amortized Analysis T.S. 17

Next Lecture: Fibonacci Heap

Operation Binomial heap Fibonacci heap

worst-case cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

UNION O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

Crucial for many applications including
shortest paths and minimum spanning trees!

5.1: Amortized Analysis T.S. 17

5.2 Fibonacci Heaps
Frank Stajano Thomas Sauerwald

Lent 2016

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Priority Queues Overview

Operation Linked list Binary heap Binomial heap

Fibon. heap

MAKE-HEAP O(1) O(1) O(1)

O(1)

INSERT O(1) O(log n) O(log n)

O(1)

MINIMUM O(n) O(1) O(log n)

O(1)

EXTRACT-MIN O(n) O(log n) O(log n)

O(log n)

MERGE O(n) O(n) O(log n)

O(1)

DECREASE-KEY O(1) O(log n) O(log n)

O(1)

DELETE O(1) O(log n) O(log n)

O(log n)

5.2: Fibonacci Heaps T.S. 2

Priority Queues Overview

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

MERGE O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

5.2: Fibonacci Heaps T.S. 2

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap Fibonacci heap

actual cost amortized cost

MAKE-HEAP O(1) O(1)

INSERT O(log n) O(1)

MINIMUM O(log n) O(1)

EXTRACT-MIN O(log n) O(log n)

MERGE O(log n) O(1)

DECREASE-KEY O(log n) O(1)

DELETE O(log n) O(log n)

n is the number of items in the heap when the operation is performed.

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

c1 = c2 = · · · = ck = O(log n)

⇒ ∑k
i=1 ci = O(k log n)

Fibonacci Heap: k/2
DECREASE-KEY + k/2 INSERT

ĉ1 = ĉ2 = · · · = ĉk = O(1)

⇒ ∑k
i=1 ci ≤

∑k
i=1 ĉi = O(k)

5.2: Fibonacci Heaps T.S. 3

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Actual vs. Amortized Cost

k
0

O(1)

2 · O(1)

14 · O(1)

1 2 14

Potentia
l

∑k
i=1 ĉi

∑k
i=1 ci

Potential ≥ 0, but should be
also as small as possible

5.2: Fibonacci Heaps T.S. 4

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps T.S. 5

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1) B(2) B(3) B(k)

B(k − 1)

B(k − 1)

Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
Operations:

MERGE: Merge two binomial heaps using Binary Addition Procedure
INSERT: Add B(0) and perform a MERGE
EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
DECREASE-KEY: The same as in a binary heap

Binomial Heaps

5.2: Fibonacci Heaps T.S. 6

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

3

6 8

10

5

7

15

+

1

4 9 11

12 17 13

16

14

18

2

2

15

5

7 14

18

3

6 8

10

5

7 14

18

1

4 9 11

12 17 13

16

3

6 8

10

5

7 14

18

0 0 1 1 1 = 7
0 1 0 1 1 = 11
1 1 1 1

1 0 0 1 0 = 18

5.2: Fibonacci Heaps T.S. 7

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51

5.2: Fibonacci Heaps T.S. 8

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
consists of binomial trees, and every order appears at most once
immediately tidy up after INSERT or MERGE

5

38 51

63

7

50 26 22

37 30 48

54

Fibonacci Heap:
forest of MIN-HEAPs
lazily defer tidying up; do it on-the-fly when search for the MIN

37 22 5

50 38 26 19 7

66 48

30

51

5.2: Fibonacci Heaps T.S. 8

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43 41

41

33 70

70

32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

Structure of Fibonacci Heaps

Forest of MIN-HEAPs

Nodes can be marked (roots are always unmarked)

Tree roots are stored in a circular, doubly-linked list

Min-Pointer pointing to the smallest element

Fibonacci Heap

58 30 10

43

41

41 33

70

70 32

54 66 82 51

min

How do we implement a Fibonacci Heap?

5.2: Fibonacci Heaps T.S. 9

A single Node

payload

0

marked

3

degreeb f

p

c

Previous Sibling Next Sibling

Parent

One of the Children

5.2: Fibonacci Heaps T.S. 10

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Magnifying a Four-Node Portion

30 0 3

43 0 0 41 1 2 33 0 1

1058

54 82

58 30 10

43 41 33 70 32

54 66 82 51

5.2: Fibonacci Heaps T.S. 11

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps T.S. 12

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

Delete min

X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min

X
Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree

(# children) X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X

Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min

Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs: O(trees(H) + d(n))

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

2020

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

2020

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)

Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

4120

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not

, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.

Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20

2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise,

cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15

3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

99

35

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5

4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26

46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19

5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Try)

Decrease the key of x (given by a pointer)
Check if heap-order is violated

If not, then done.
Otherwise, cut tree rooted at x and meld into root list (update min).

DECREASE-KEY of node x

7

24

17 23

26 46 30

9935

18

21

52

39

38

41

20

20

15

15

15

99

5

5

min

5

min

19

19

19

12

12

12

Wide and
shallow tree

Degree = 3,
Nodes = 4

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

1. DECREASE-KEY 24 20
2. DECREASE-KEY 46 15
3. DECREASE-KEY 35 5
4. DECREASE-KEY 26 19
5. DECREASE-KEY 30 12

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X

2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26 46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15

X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X

2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5

X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26 46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26 24

min

minActual Cost: O(# cuts)

1. DECREASE-KEY 46 15 X
2. DECREASE-KEY 35 5 X

5.2: Fibonacci Heaps T.S. 16

5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts)  O(marks(H)) amortized O(1) ?

�(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 2

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1)

X

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1)

?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 4

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x

= O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

ĉi = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin pays cut
Second Coin increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2016

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts)  O(marks(H)) amortized O(1) ?

�(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 2

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list

and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

Create a singleton tree

Add to root list and update min-pointer (if necessary)

INSERT

17 24 23 7 3

30 26 46

35

18 52 41

39 44

min

21

21

21

Actual Costs: O(1)

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

Delete min

X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min

X
Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X

Meld childen into root list and unmark them

X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them

X
Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X

Consolidate so that no roots have the same degree

(# children) X

Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree

(# children) X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2

degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=0

1 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7 23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

2317

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52 41

4439

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children)

X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X

Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum

X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min

Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs:

O(trees(H)

+ d(n)

)

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

Delete min X
Meld childen into root list and unmark them X
Consolidate so that no roots have the same degree (# children) X
Update minimum X

EXTRACT-MIN

7

23 17

30

24

26 46

35

3

18 52 41

39 44

min

18 52

41

44

39

degree=2 degree=01 2 0 0 1 0 1

degree
0 1 2 3

17

23

17

23

24

26 46

35

41

44

min
Actual Costs: O(trees(H) + d(n))

Every root becomes child of
another root at most once!

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X

2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46 30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list

and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:

Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15

X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X

2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

99

35

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)

If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked,

unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5

26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24 17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

9924

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5

X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

min

Actual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5 X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

minActual Cost:

O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5 X

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

Decrease the key of x (given by a pointer)

(Here we consider only cases where heap-order is violated)

⇒ Cut tree rooted at x , unmark x , meld into root list and:
Check if parent node is marked

If unmarked, mark it (unless it is a root)
If marked, unmark and meld it into root list and recurse (Cascading Cut)

DECREASE-KEY of node x

7

24

17 23

26

98

46

30

9935

18

21

52

39

38

41

15

15

15

99

24

5

5

5 26

98

24

min

minActual Cost: O(# cuts)

1. DECREASE-KEY 46 ; 15 X
2. DECREASE-KEY 35 ; 5 X

5.2: Fibonacci Heaps T.S. 15

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 2

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1)

X

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1)

?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X
EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 4

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x

= O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ? marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ? marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤

d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤

d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H)

= O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6

Outline

Recap of INSERT, EXTRACT-MIN and DECREASE-KEY

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 7

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

Skip Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 8

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yky1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yky1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2

y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2

y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3

y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3

y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4

yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4

yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment
and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment
and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1

= 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2

= 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3

= 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5

= 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10

From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11

From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11

From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X
Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X
Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X
Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥

N(k)

= F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥

N(k)

= F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥

N(k) = F (k + 2)

≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥

N(k) = F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost O(d(n))

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒ logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN: amortized cost���
��XXXXXO(d(n)) O(log n)

DECREASE-KEY: amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒ logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13

What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

What if we don’t have marked nodes?

INSERT: actual O(1) amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

6= O(log n)

DECREASE-KEY: actual O(1) amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

What if we don’t have marked nodes?

INSERT: actual O(1) amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1) amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform EXTRACT-MIN in o(log n)?

If this was possible, then there would be a sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Recent Studies

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP’15)

5.2: Fibonacci Heaps (Analysis) T.S. 16

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap Van Emde Boas Tree

amortized cost actual cost

INSERT O(1) O(log log u)

MINIMUM O(1) O(1)

EXTRACT-MIN O(log n) O(log log u)

MERGE/UNION O(1) -

DECREASE-KEY O(1) O(log log u)

DELETE O(log n) O(log log u)

SUCC - O(log log u)

PRED - O(log log u)

MAXIMUM - O(1)

all this requires key values to be in a universe of size u!

5.2: Fibonacci Heaps (Analysis) T.S. 17

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap Van Emde Boas Tree

amortized cost actual cost

INSERT O(1) O(log log u)

MINIMUM O(1) O(1)

EXTRACT-MIN O(log n) O(log log u)

MERGE/UNION O(1) -

DECREASE-KEY O(1) O(log log u)

DELETE O(log n) O(log log u)

SUCC - O(log log u)

PRED - O(log log u)

MAXIMUM - O(1)

all this requires key values to be in a universe of size u!

5.2: Fibonacci Heaps (Analysis) T.S. 17

5.3: Disjoint Sets
Frank Stajano Thomas Sauerwald

Lent 2016

Disjoint Sets (aka Union Find)

Handle makeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle findSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=makeSet(x)

h0

h1=findSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Outline

Disjoint Sets

5.3: Disjoint Sets T.S. 2

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

xh0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3

= h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2 h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Handle MakeSet(Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

Handle FindSet(Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Handle Union(Handle h, Handle g)
Precondition: h 6= g
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets Data Structure

x

h0=MakeSet(x)

h0

h1=FindSet(y)

h1

h4=Union(h0,h3)

h5=Union(h1,h2)

h2

h3 = h4

h5

y

5.3: Disjoint Sets T.S. 3

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2) Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation

Add extra pointer to the last
element in each list

⇒ UNION takes constant time

UNION-Operation

Add backward pointer to the list
head from everywhere

⇒ FINDSET takes constant time

FINDSET-Operation

h1

x1 x2 x3

h2

y1 y2

Union(h1, h2)

Need to find
last element!

FindSet(z3)

h4

z1 z2 z3 z4

Need to update all
backward pointers!

5.3: Disjoint Sets T.S. 4

First Attempt: List Implementation (Analysis)

d = DisjointSet()

h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)

h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)

h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0

h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)

h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1

h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)

h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0

h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)

h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:

∑n
i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

First Attempt: List Implementation (Analysis)

d = DisjointSet()
h0 = d .MakeSet(x0)

h1 = d .MakeSet(x1)
h0 = d .Union(h1, h0)
h2 = d .MakeSet(x2)
h0 = d .Union(h2, h0)
h3 = d .MakeSet(x3)
h0 = d .Union(h3, h0)

x0

h0

x1

h1h0h2

x2

h0h3

x3

h0

Cost for n UNION operations:
∑n

i=1 i = Θ(n2)

better to append shorter list to longer Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 5

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Weighted-Union Heuristic

Keep track of the length of each list

Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost Θ(n).

5.3: Disjoint Sets T.S. 6

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?

Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

Analysis of Weighted-Union Heuristic

h0

x

h1

h2

x

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKESET operations, takes O(m + n · log n) time.

Theorem 21.1

Can we improve on this further?Proof:

n MAKE-SET operations⇒ at most n − 1 UNION operations

Consider element x and the number of updates of its backward pointer

After each update of x , its set increases by a factor of at least 2

⇒ Backward pointer of x is updated at most log2 n times

Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

5.3: Disjoint Sets T.S. 7

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

How to Improve?

h0

h1

Basic Idea: Update Backward
Pointers only during FIND-SET

MAKESET: O(1)

FINDSET: O(n)

UNION: O(1)

Doubly-Linked List

MAKESET: O(1)

FINDSET: O(1)

UNION: O(log n) (amortized)

Weighted-Union Heuristic

5.3: Disjoint Sets T.S. 8

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g}

{b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2

3

f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Disjoint Sets via Forests

c

h e

b

{b, c, e, h}

rank = 2 rank = 3rank = 2 3
f

d

g

{d , f , g} {b, c, d , e, f , g, h}

f

c d

h e

b

g

Rank may be just an upper bound on the height!

Set is represented by a rooted tree with root being the representative

Every node has pointer .p to its parent (for root x , x .p = x)

UNION: Merge the two trees

Forest Structure

Append tree of smaller height Union by Rank

5.3: Disjoint Sets T.S. 9

Path Compression during FINDSET

f

dc

ge

hb

h

b

b

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c

f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h

c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

b

b

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b

h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Path Compression during FINDSET

f

dc

ge

hb

h

bb

h

c

f

b h c f

FindSet(b):

Maintaining the exact height
would be costly, hence rank

is only an upper bound!

0: FindSet(x)
1: if x 6= x .p
2: x .p =FindSet(x .p)
3: return x .p

5.3: Disjoint Sets T.S. 10

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Combining Union by Rank and Path Compression

Any sequence of m MAKESET, UNION, FINDSET operations, n of which
are MAKESET operations, can be performed in O(m · α(n)) time.

Theorem 21.14

In practice, α(n) is a small constant

Data Structure is essentially optimal! (for more details see CLRS)

α(n) =



0 for 0 ≤ n ≤ 2,
1 for n = 3,
2 for 4 ≤ n ≤ 7,
3 for 8 ≤ n ≤ 2047,
4 for 2048 ≤ n ≤ 1080

More than the
number of atoms
in the universe!

log∗(n), the iterated logarithm, satifies
α(n) ≤ log∗(n), but still log∗(1080) = 5.

5.3: Disjoint Sets T.S. 11

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Simulating the Effects of Union by Rank and Path Compression

1. Initialise singletons 1, 2, . . . , 300

2. For every 1 ≤ i ≤ 300, pick a random 1 ≤ r ≤ 300, r 6= i and
perform UNION(FINDSET(i), FINDSET(r))

3. Perform j ∈ {0, 100, 200, 300, 600, 900, 1200, 1500, 1800} many
additional FINDSET(r), where 1 ≤ r ≤ 300 is random

Experimental Setup

5.3: Disjoint Sets T.S. 12

Union by Rank without Path Compression

2
2
2
2
2
2
2
1
0
1
3
2
1
1
2
2
2

2
1

1
0

1
1

3
2

2
2

1
3

0
1

1
3

2
2

2
1221223112323322213122223313123133222213232221223312112213332322132222212232333

3
3

0
2

2
2

3
2

3
3

2
2

1
3

3
3

3
1

2
2
3
3
3
2
2
3
3
3
3
3
1
2
2
3
2
2
1
3
2
2
3
2
3
1
2
2
1
2
2
2
3
3
2
2
2
2
2
2
3
2
3
3
3
2
2
3
2
1
3
3

23
131223222 2 2 2 2 3 3 3 2 2 1 3 2 3 2 2 2 3 2 3 2 2 3 3 3 3 2 2 2 1 3 2 3 3 2 3 3 2 3 2 2 2 2 2 1 3 1 2 3 2 3 3 2 2 2 1 2 3 1 1 2122231232

3
2
2
2
3
2
2
1
3
3
1
2
2
1
2
1
3
1
3
1
2
1
1
3
1
3
2
3
2
3
2
3
3
3
3

0

0

0

0

Average Height: 2.12

5.3: Disjoint Sets T.S. 13

Union by Rank with Path Compression

2
2
2
1
1
1
2
1
0
1
2
2
1
1
1
2
1

2
1

1
0

1
1

2
1

2
2

1
2

0
1

1
3

2
2

2
1121113111122322112122222213122133222213222221223211112212332222132122212222233

1
1

0
1

1
2

2
2

3
3

2
2

1
1

2
3

1
1

2
2
2
3
2
2
2
2
2
3
2
2
1
2
1
3
2
2
1
1
2
1
3
2
2
1
2
2
1
2
2
2
1
1
1
2
1
2
1
2
2
2
2
2
3
2
2
2
2
1
1
1

1
2131223122 2 2 2 1 3 2 3 2 2 1 3 2 3 2 1 1 2 2 1 1 2 3 3 3 2 2 2 1 1 2 2 2 2 1 3 2 2 1 2 2 2 2 2 1 2 1 2 3 2 3 1 2 2 1 1 2 1 1 1 2122221222

3
2
2
2
2
2
2
1
2
2
1
2
2
1
2
1
2
1
3
1
2
1
1
1
1
3
2
2
2
1
2
1
1
2
1

0

0

0

0

Average Height: 1.75

5.3: Disjoint Sets T.S. 14

Union by Rank with Path Compression (100 additional FINDSET)

1
2
1
1
1
1
1
1
0
1
2
2
1
1
1
1
1

2
1

1
0

1
1

2
1

1
2

1
2

0
1

1
1

2
2

2
1111113111112212112112122212112132222213212121223211111111332212122112212222233

1
1

0
1

1
2

1
2

3
3

1
2

1
1

1
1

1
1

2
2
1
2
2
2
2
2
2
2
1
2
1
1
1
3
2
2
1
1
2
1
3
2
1
1
2
2
1
2
2
2
1
1
1
2
1
1
1
2
2
2
2
2
3
2
1
2
2
1
1
1

1
2131212122 1 2 2 1 2 1 3 1 2 1 3 2 3 2 1 1 1 2 1 1 1 1 3 3 2 1 1 1 1 2 2 1 2 1 3 2 2 1 1 2 1 2 2 1 2 1 2 2 1 1 1 1 1 1 1 2 1 1 1 2112121122

1
2
1
2
2
2
2
1
2
2
1
1
2
1
2
1
2
1
2
1
2
1
1
1
1
3
2
2
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.53

5.3: Disjoint Sets T.S. 15

Union by Rank with Path Compression (200 additional FINDSET)

1
2
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

2
1

1
0

1
1

2
1

1
1

1
1

0
1

1
1

1
2

1
1111113111111212112111112212112122121112112121213211111111312212112111212212223

1
1

0
1

1
1

1
2

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
2
2
2
1
2
1
2
1
1
1
3
2
1
1
1
2
1
2
2
1
1
2
2
1
2
2
2
1
1
1
2
1
1
1
2
2
2
2
2
1
2
1
2
1
1
1
1

1
2131112122 1 2 2 1 2 1 3 1 2 1 3 2 2 2 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 2 2 1 1 1 3 1 1 1 1 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2112121122

1
2
1
2
1
2
1
1
2
2
1
1
2
1
1
1
2
1
2
1
2
1
1
1
1
1
1
1
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.35

5.3: Disjoint Sets T.S. 16

Union by Rank with Path Compression (300 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

2
1

1
1

1
1

0
1

1
1

1
1

1
1111111111111112112111112211112122121111111111112111111111211212112111212212221

1
1

0
1

1
1

1
2

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
1
2
2
1
2
1
2
1
1
1
3
2
1
1
1
2
1
2
2
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
2
2
2
2
2
1
2
1
1
1
1
1
1

1
2121112112 1 2 2 1 1 1 3 1 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111121121

1
2
1
2
1
1
1
1
2
2
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
2
1
2
1
1
1
1

0

0

0

0

Average Height: 1.22

5.3: Disjoint Sets T.S. 17

Union by Rank with Path Compression (600 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1111111111111111111111111211111111111111111111111111111111111211112111212112121

1
1

0
1

1
1

1
1

1
2

1
1

1
1

1
1

1
1

2
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
2
1
1
1
1
1
1

1
2121111111 1 1 2 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1

0

0

0

0

Average Height: 1.08

5.3: Disjoint Sets T.S. 18

Union by Rank with Path Compression (900 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111211112111112111111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.02

5.3: Disjoint Sets T.S. 19

Union by Rank with Path Compression (1200 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
112111111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.01

5.3: Disjoint Sets T.S. 20

Union by Rank with Path Compression (1500 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2111111111 2 1 1 1 1 1 1 1 1 1 1 1 1 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 1.00

5.3: Disjoint Sets T.S. 21

Union by Rank with Path Compression (1800 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1111111111 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 0.98

Coupon Collecting Time: 300 · ln(300) ≈ 1711

5.3: Disjoint Sets T.S. 22

Union by Rank with Path Compression (1800 additional FINDSET)

1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1

1
1

1
0

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
111

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1111111111 1111111111

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0

0

0

0

Average Height: 0.98

Coupon Collecting Time: 300 · ln(300) ≈ 1711

5.3: Disjoint Sets T.S. 22

Overview

Union by Rank Union by Rank

& Path Compression

300 MAKESET & 300 UNION 2.12 1.75

100 extra FINDSET 2.12 1.53

200 extra FINDSET 2.12 1.35

300 extra FINDSET 2.12 1.22

600 extra FINDSET 2.12 1.08

900 extra FINDSET 2.12 1.02

1200 extra FINDSET 2.12 1.01

1500 extra FINDSET 2.12 1.00

1800 extra FINDSET 2.12 0.98

5.3: Disjoint Sets T.S. 23

6.1 & 6.2: Graph Searching
Frank Stajano Thomas Sauerwald

Lent 2016

Complete Execution of DFS

s v y

r u

x

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 12

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching T.S. 2

Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia

Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

Origin of Graph Theory

Leonhard Euler (1707-1783)Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

Is there a tour which visits every
island exactly once?

 1B course: Complexity Theory

A

B

C

D

A

B

C

D

Source: Wikipedia Source: Wikipedia

6.1 & 6.2: Graph Searching T.S. 3

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)

Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)

Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

What is a Graph?

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of edges (arcs)

Directed Graph

A graph G = (V ,E) consists of:

V : the set of vertices

E : the set of (undirected) edges

Undirected Graph

A sequence of edges between two
vertices forms a path

If each pair of vertices has a path
linking them, then G is connected

Paths and Connectivity

1 2

3 4

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (2, 3), (3, 1), (3, 4)}

Path p = (1, 2, 3, 4)Path p = (1, 2, 3, 1), which is a cycle

1 2

3 4

V = {1, 2, 3, 4}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}

G is not connected

G is connected

Later: edge-weighted graphs G = (V , E , w)

6.1 & 6.2: Graph Searching T.S. 4

Representations of Directed and Undirected Graphs590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Most times we will use the adjacency-list representation!

6.1 & 6.2: Graph Searching T.S. 5

Representations of Directed and Undirected Graphs590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Most times we will use the adjacency-list representation!

6.1 & 6.2: Graph Searching T.S. 5

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching T.S. 0

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching T.S. 0

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching T.S. 0

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching T.S. 0

Overview

Amortized Analysis

Fibonacci Heaps

Disjoint Sets

Graphs, DFS/BFS, Topological Sort

Minimum Spanning Trees

Single-Source/All-Pairs Shortest Paths

Maximum Flow, Bipartite Matchings

Geometric Algorithms

Priority Queues

Sorting

Dynamic Programming

Greedy

6.1 & 6.2: Graph Searching T.S. 0

Graph Searching

1

2

3

4

5

6

7

8

9

10

Graph searching means traversing a graph via the edges in order to
visit all vertices

useful for identifying connected components, computing the
diameter etc.

Two strategies: Breadth-First-Search and Depth-First-Search

Overview

Measure time complexity in terms of the size of V and E
(often write just V instead of |V |, and E instead of |E |)

6.1 & 6.2: Graph Searching T.S. 6

Graph Searching

1

2

3

4

5

6

7

8

9

10

Graph searching means traversing a graph via the edges in order to
visit all vertices

useful for identifying connected components, computing the
diameter etc.

Two strategies: Breadth-First-Search and Depth-First-Search

Overview

Measure time complexity in terms of the size of V and E
(often write just V instead of |V |, and E instead of |E |)

6.1 & 6.2: Graph Searching T.S. 6

Graph Searching

1

2

3

4

5

6

7

8

9

10

Graph searching means traversing a graph via the edges in order to
visit all vertices

useful for identifying connected components, computing the
diameter etc.

Two strategies: Breadth-First-Search and Depth-First-Search

Overview

Measure time complexity in terms of the size of V and E
(often write just V instead of |V |, and E instead of |E |)

6.1 & 6.2: Graph Searching T.S. 6

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching T.S. 7

Breadth-First Search: Basic Ideas

s

Given an undirected/directed graph G = (V ,E) and source vertex s

BFS sends out a wave from s compute distances/shortest paths

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

Black = Visited and all neighbors

Basic Idea

6.1 & 6.2: Graph Searching T.S. 8

Breadth-First Search: Basic Ideas

s

Given an undirected/directed graph G = (V ,E) and source vertex s

BFS sends out a wave from s compute distances/shortest paths

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

Black = Visited and all neighbors

Basic Idea

6.1 & 6.2: Graph Searching T.S. 8

Breadth-First Search: Basic Ideas

s

Given an undirected/directed graph G = (V ,E) and source vertex s

BFS sends out a wave from s compute distances/shortest paths

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

Black = Visited and all neighbors

Basic Idea

6.1 & 6.2: Graph Searching T.S. 8

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime ???

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime ???

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime ???

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)

∑
u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime ???

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)∑

u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Breadth-First-Search: Pseudocode

0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor = u
27: Q.insert(v)
28: u.colour = "black"

From any vertex, visit all adjacent
vertices before going any deeper

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

Assuming that all executions of the FOR-loop
for u takes O(|u.adj|) (adjacency list model!)∑

u∈V |u.adj| = 2|E |

6.1 & 6.2: Graph Searching T.S. 9

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s
∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s�As r�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s
∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As r�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As r

�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As r

�Ar w�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As r

�Ar

w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As r

�Ar

w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw v�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v
2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw

v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar w

�Zw

v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av t x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av

t

x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av

t

x�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w
1

w

2

t

2

x
1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av

t x

�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw v

�Av

t x

�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w
2

v

2

v
2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av t x

�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v

2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av t x

�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v

2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av t x

�Ct u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct

u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct

u�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t

x�Ct u

�Ax y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x
1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x
2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax

y�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct u�Ax y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax y�Au

�Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax

y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax

y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax

y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Execution of BFS (Figure 22.3)

Queue:

∞

r

0

s

∞

t
∞

u

∞

v

∞

w

∞

x

∞

y

s

�As

r

�Ar

w

�Zw

v

�Av

t x

�Ct

u

�Ax

y

�Au �Ay

0

s

0

s

1

r

1

w

1

r

1

r

1

w

1

w

2

t

2

x

1

w

2

v
2

v

2

v

2

t

3

u

2

t

2

x

2

x

3

y

3

u

3

u

3

y

3

y

6.1 & 6.2: Graph Searching T.S. 10

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching T.S. 11

Depth-First Search: Basic Ideas

Given an undirected/directed graph G = (V ,E) and source vertex s

As soon as we discover a vertex, explore from it Solving Mazes

Two time stamps for every vertex: Discovery Time, Finishing Time

Basic Idea

6.1 & 6.2: Graph Searching T.S. 12

Depth-First Search: Basic Ideas

Given an undirected/directed graph G = (V ,E) and source vertex s

As soon as we discover a vertex, explore from it Solving Mazes

Two time stamps for every vertex: Discovery Time, Finishing Time

Basic Idea

6.1 & 6.2: Graph Searching T.S. 12

Depth-First Search: Basic Ideas

Given an undirected/directed graph G = (V ,E) and source vertex s

As soon as we discover a vertex, explore from it Solving Mazes

Two time stamps for every vertex: Discovery Time, Finishing Time

Basic Idea

6.1 & 6.2: Graph Searching T.S. 12

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"

10: dfsRecurse(G,s)

0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() # .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() # .f = finish time

We always go deeper before visiting
other neighbors

Discovery and Finish times, .d and .f

Vertex Colours:

White = Unvisited

Grey = Visited, but not all neighbors

Black = Visited and all neighbors

Runtime O(V + E)

6.1 & 6.2: Graph Searching T.S. 13

Execution of DFS

s v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v

y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v

y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r u

x

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r u

x

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r u

x

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r u

x

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r

ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r

ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r u

x
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r u

x
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r

ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r

ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y

r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v

y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v

y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s

v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux

w

z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Execution of DFS

s v y r ux
w z

s v w

x y z

ru

1/

s

2/

v

3/

y

4/

x

4/5

x

6/

r

7/

u

7/8

u

6/9

r

3/10

y

2/11

v

1/12

s

13/

w

14/

z

14/15

z

13/16

w

6.1 & 6.2: Graph Searching T.S. 14

Paranthesis Theorem (Theorem 22.7)

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s

v

y

x r

u

w

z

(s (v (y (x x) (r (u u) r) y) v) s) (w (z z) w)

6.1 & 6.2: Graph Searching T.S. 15

Outline

Introduction to Graphs and Graph Searching

Breadth-First Search

Depth-First Search

Topological Sort

6.1 & 6.2: Graph Searching T.S. 16

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

socks undershorts pants shoes watch shirt belt tie jacket

Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem

6.1 & 6.2: Graph Searching T.S. 17

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

socks undershorts pants shoes watch shirt belt tie jacket

Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem

6.1 & 6.2: Graph Searching T.S. 17

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

socks undershorts pants shoes watch shirt belt tie jacket

Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem

6.1 & 6.2: Graph Searching T.S. 17

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

socks undershorts pants shoes watch shirt belt tie jacket

Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem

6.1 & 6.2: Graph Searching T.S. 17

Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

socks undershorts pants shoes watch shirt belt tie jacket

Given: a directed acyclic graph (DAG)

Goal: Output a linear ordering of all vertices

Problem

6.1 & 6.2: Graph Searching T.S. 17

Solving Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

Perform DFS’s so that all vertices are visited

Output vertices in decreasing order of their finishing time

Knuth’s Algorithm (1968)

Runtime O(V + E)
Don’t need to sort the ver-
tices – use DFS directly!

6.1 & 6.2: Graph Searching T.S. 18

Solving Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

Perform DFS’s so that all vertices are visited

Output vertices in decreasing order of their finishing time

Knuth’s Algorithm (1968)

Runtime O(V + E)

Don’t need to sort the ver-
tices – use DFS directly!

6.1 & 6.2: Graph Searching T.S. 18

Solving Topological Sort

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

Perform DFS’s so that all vertices are visited

Output vertices in decreasing order of their finishing time

Knuth’s Algorithm (1968)

Runtime O(V + E)
Don’t need to sort the ver-
tices – use DFS directly!

6.1 & 6.2: Graph Searching T.S. 18

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Execution of Knuth’s Algorithm

4/5

x

6/9

r

7/8

u

3/10

y

2/11

v

14/15

z

13/16

w

1/12

s

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

6.1 & 6.2: Graph Searching T.S. 19

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,

⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,

⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,

⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey,

then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black,

then v .f < u.f .
3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

v

v

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .

3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

v

v

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .
3. If v is white,

we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

v

v

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .
3. If v is white, we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .
3. If v is white, we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .
3. If v is white, we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Correctness of Topological Sort using DFS

13/16

w

14/15

z

1/12

s

2/11

v

3/10

y

6/9

r

7/8

u

4/5

x

If the input graph is a DAG, then the algorithm computes a linear order.
Theorem 22.12

Proof:

Consider any edge (u, v) ∈ E(G) being explored,
⇒ u is grey and we have to show that v .f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v .f < u.f .
3. If v is white, we call DFS(v) and v .f < u.f .

⇒ In all cases v .f < u.f , so v appears after u.

1/

s

7/

u

v

?/

v

4/

v

3/4

vv

9/?

v

9/?

v

6.1 & 6.2: Graph Searching T.S. 20

Summary of Graph Searching

vertices are processed by a queue

computes distances and shortest paths
 similar idea used later in Prim’s and Dijkstra’s algorithm

Runtime O(V + E)

Breadth-First-Search

vertices are processed by recursive calls (≈ stack)

discovery and finishing times

application: Topogical Sorting of DAGs

Runtime O(V + E)

Depth-First-Search

6.1 & 6.2: Graph Searching T.S. 21

Summary of Graph Searching

vertices are processed by a queue

computes distances and shortest paths
 similar idea used later in Prim’s and Dijkstra’s algorithm

Runtime O(V + E)

Breadth-First-Search

vertices are processed by recursive calls (≈ stack)

discovery and finishing times

application: Topogical Sorting of DAGs

Runtime O(V + E)

Depth-First-Search

6.1 & 6.2: Graph Searching T.S. 21

6.3: Minimum Spanning Tree
Frank Stajano Thomas Sauerwald

Lent 2016

Complete Run of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 8

Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!

6
4

11

3

9 8

4

6

5
3

9

2 7

8

Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications

6.3: Minimum Spanning Tree T.S. 2

Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!

6
4

11

3

9 8

4

6

5
3

9

2 7

8

Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications

6.3: Minimum Spanning Tree T.S. 2

Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!

6
4

11

3

9 8

4

6

5
3

9

2 7

8

Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications

6.3: Minimum Spanning Tree T.S. 2

Minimum Spanning Tree Problem

Given: undirected, connected
graph G = (V ,E ,w) with
non-negative edge weights

Goal: Find a subgraph ⊆ E of
minimum total weight that links
all vertices

Minimum Spanning Tree Problem

Must be necessarily a tree!

6
4

11

3

9 8

4

6

5
3

9

2 7

8

Street Networks, Wiring Electronic Components, Laying Pipes

Weights may represent distances, costs, travel times, capacities,
resistance etc.

Applications

6.3: Minimum Spanning Tree T.S. 2

Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

Definition

How to find a safe edge?

6.3: Minimum Spanning Tree T.S. 3

Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

Definition

How to find a safe edge?

6.3: Minimum Spanning Tree T.S. 3

Generic Algorithm

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

Definition

How to find a safe edge?

6.3: Minimum Spanning Tree T.S. 3

Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

6.3: Minimum Spanning Tree T.S. 4

Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

6.3: Minimum Spanning Tree T.S. 4

Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

6.3: Minimum Spanning Tree T.S. 4

Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

6.3: Minimum Spanning Tree T.S. 4

Finding safe edges

a cut is a partition of V into at least
two disjoint sets

a cut respects A ⊆ E if no edge of
A goes across the cut

Definitions

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

6.3: Minimum Spanning Tree T.S. 4

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T ,

then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :

This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :
This tree must be a spanning tree

If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :
This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)

If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Proof of Theorem

Let A ⊆ E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Theorem

Proof:

Let T be a MST containing A

Let e` be the lightest edge across the cut

If e` ∈ T , then we are done

If e` 6∈ T , then adding e` to T introduces cycle

This cycle crosses the cut through e` and
another edge ex

Consider now the tree T ∪ e` \ ex :
This tree must be a spanning tree
If w(e`) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
If w(e`) = w(ex), then T ∪ e` \ ex is a
MST.

e`

ex

6.3: Minimum Spanning Tree T.S. 5

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step,

given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step,

given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step,

given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Let A ⊆ E be a forest, intially empty

At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Basic Strategy

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Use Disjoint Sets to keep track
of connected components!

6.3: Minimum Spanning Tree T.S. 6

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Execution of Kruskal’s Algorithm

a

b

c

d

e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2
7

8

6.3: Minimum Spanning Tree T.S. 7

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Initialisation (l. 4-9): O(V + E log E)

Main Loop (l. 11-16): O(E · α(n))

⇒ Overall: O(E log E) = O(E log V)

Time Complexity

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

If edges are already sorted, runtime becomes O(E · α(n))!

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

Approach:

Go through all edges in increasing
order of their weights

Add edge to A if no cycle is
introduced

0: def kruskal(G)
1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() # Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet(v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet(edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append(edge)
16: D.union(startSet,endSet)
17: return A

Consider the cut of all connected components (disjoint sets)

L. 14 ensures that we extend A by an edge that goes across the cut

This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)

Correctness

6.3: Minimum Spanning Tree T.S. 8

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b

f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b

f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e

d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e

d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Start growing a tree from a designated root vertex

At each step, add lightest edge linked to A that does not yield cycle

Basic Strategy

Implementation will be based on vertices!

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞
∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

∞

∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0 ∞

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9

3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Prim’s Algorithm

Every vertex in Q has key and pointer of least-weight edge to V \Q
At each step:

1. extract vertex from Q with smallest key⇔ safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Implementation

Implementation will be based on vertices!Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A

Use a Priority Queue!

6
4

11

3

9 8

4

6

5

3
9

2 7

8

a

c

b f

g

e
d

h

0

4

11

6

8

4

6

3

9
3

7

2

5

We computed same MST as Kruskal,
but in a completely different order!

Final MST is given
(implicitly) by the pointers!

6.3: Minimum Spanning Tree T.S. 9

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V),

ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V),

ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V),

DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V),

DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)

⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V),

DecreaseKey (16-20): O(E · log V)

⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)

⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V),

DecreaseKey (16-20): O(E · log V)

⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:

Init (l. 6-13): O(V), ExtractMin (15): O(V · log V),

DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Details of Prim’s Algorithm
0: def prim(G,r)
1: Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
3: MST induced by the .predecessor fields
4:
5: Q = MinPriorityQueue()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert(v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge(u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey(item=v, newKey=w)

Fibonacci Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · 1)
⇒ Overall: O(V log V + E)

Binary/Binomial Heaps:
Init (l. 6-13): O(V), ExtractMin (15): O(V · log V), DecreaseKey (16-20): O(E · log V)
⇒ Overall: O(V log V + E log V)

Time Complexity

Amortized CostAmortized Cost

6.3: Minimum Spanning Tree T.S. 10

Summary (Kruskal and Prim)

Add safe edge to the current MST as long as possible

Theorem: An edge is safe if it is the lightest of a cut respecting A

Generic Idea

Gradually transforms a forest into a MST by merging trees

invokes disjoint set data structure

Runtime O(E log V)

Kruskal’s Algorithm

Gradually extends a tree into a MST by adding incident edges

invokes Fibonacci heaps (priority queue)

Runtime O(V log V + E)

Prim’s Algorithm

6.3: Minimum Spanning Tree T.S. 11

Summary (Kruskal and Prim)

Add safe edge to the current MST as long as possible

Theorem: An edge is safe if it is the lightest of a cut respecting A

Generic Idea

Gradually transforms a forest into a MST by merging trees

invokes disjoint set data structure

Runtime O(E log V)

Kruskal’s Algorithm

Gradually extends a tree into a MST by adding incident edges

invokes Fibonacci heaps (priority queue)

Runtime O(V log V + E)

Prim’s Algorithm

6.3: Minimum Spanning Tree T.S. 11

Summary (Kruskal and Prim)

Add safe edge to the current MST as long as possible

Theorem: An edge is safe if it is the lightest of a cut respecting A

Generic Idea

Gradually transforms a forest into a MST by merging trees

invokes disjoint set data structure

Runtime O(E log V)

Kruskal’s Algorithm

Gradually extends a tree into a MST by adding incident edges

invokes Fibonacci heaps (priority queue)

Runtime O(V log V + E)

Prim’s Algorithm

6.3: Minimum Spanning Tree T.S. 11

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Outlook: Reverse-Delete Algorithm

Let A be initially the set of all edges

Consider all edges in decreasing order of their weight

Remove edge from A as long as all vertices are connected by A

Basic Idea

a

b

c

d
e

f

g

h

6
4

11

3

9 8

4

6

5

3
9

2 7

8

Can be implemented in time
O(E log V (log log V)3). [Thorup, 2000]

6.3: Minimum Spanning Tree T.S. 12

Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))

Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002

6.3: Minimum Spanning Tree T.S. 13

Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))

Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002

6.3: Minimum Spanning Tree T.S. 13

Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))

Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002

6.3: Minimum Spanning Tree T.S. 13

Current State-of-the-Art

Does a linear-time MST algorithm exist?

randomised MST algorithm with expected runtime O(E)

based on Boruvka’s algorithm (from 1926)

Karger, Klein, Tarjan, JACM’1995

deterministic MST algorithm with runtime O(E · α(n))

Chazelle, JACM’2000

deterministic MST algorithm with asymptotically optimal runtime

however, the runtime itself is not known...

Pettie, Ramachandran, JACM’2002

6.3: Minimum Spanning Tree T.S. 13

6.4: Single-Source Shortest Paths
Frank Stajano Thomas Sauerwald

Lent 2016

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

1

x

7

y

1

z

8

5

�4

�2

�3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 13

Outline

Introduction

Bellman-Ford Algorithm

6.4: Single-Source Shortest Paths T.S. 2

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

What if G is unweighted?

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

What if G is unweighted?

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Shortest Path Problem

Given: directed graph
G = (V ,E) with edge weights,
pair of vertices s, t ∈ V

Goal: Find a path of minimum
weight from s to t in G

Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Two possible answers are:

1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange
Applications

6.4: Single-Source Shortest Paths T.S. 3

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)

Bellman-Ford Algorithm

Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)

Shortest Paths via Matrix Multiplication

Johnson’s Algorithm

6.4: Single-Source Shortest Paths T.S. 4

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)

Bellman-Ford Algorithm

Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)

Shortest Paths via Matrix Multiplication

Johnson’s Algorithm

6.4: Single-Source Shortest Paths T.S. 4

Distances and Negative-Weight Cycles (Figure 24.1)

s

a b

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

a b

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

a b

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

b

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

b

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

c d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

d

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

e f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

f

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

g

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

h i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

i

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

j

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h

i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h

i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h

i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h

i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Distances and Negative-Weight Cycles (Figure 24.1)

s

0

s

0

s

a

3

a

3

a

b

−1

b

−1

b

c

5

c

5

c

d

11

d

11

d

e

−∞

e

−∞

e

f

−∞

f

−∞

f

g

−∞

g

−∞

g

h

+∞

h

+∞

h

i

+∞

i

+∞

i

j

+∞

j

+∞

j

3

−4

4

5
6

−3

8

2

3

−6

7

2

3−8

Negative-Weight Cycle
(reachable from s)

Negative-Weight Cycle
(not reachable from s)

6.4: Single-Source Shortest Paths T.S. 5

Outline

Introduction

Bellman-Ford Algorithm

6.4: Single-Source Shortest Paths T.S. 6

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v
2

8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v

2
8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Relaxing Edges

Fix the source vertex s ∈ V

v .δ is the length of the shortest path (distance) from s to v

v .d is the length of the shortest path discovered so far

Definition

At the beginning: s.d = s.δ = 0, v .d =∞ for v 6= s

At the end: v .d = v .δ for all v ∈ V

Given estimates u.d and v .d , can we find a
better path from v using the edge (u, v)?

v .d
?
> u.d + w(u, v)

Relaxing an edge (u, v)

0

s

6

u

9

v

2
8

v

After relaxing (u, v), regardless of whether we found a shortcut:
v .d ≤ u.d + w(u, v)

6.4: Single-Source Shortest Paths T.S. 7

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d

≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.

6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d ≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.

6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d ≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.

6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d ≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.

6.4: Single-Source Shortest Paths T.S. 8

Properties of Shortest Paths and Relaxations

Triangle inequality (Lemma 24.10)

For any edge (u, v) ∈ E , we have v .δ ≤ u.δ + w(u, v)

Upper-bound Property (Lemma 24.11)

We always have v .d ≥ v .δ for all v ∈ V , and once v .d achieves the
value v .δ, it never changes.

Convergence Property (Lemma 24.14)

If s u → v is a shortest path from s to v , and if u.d = u.δ prior to
relaxing edge (u, v), then v .d = v .δ at all times afterward.

Toolkit

0

s

u.δ

u

v .d

v

v .δ

v .d ≤ u.d + w(u, v)

= u.δ + w(u, v)

= v .δ

Since v .d ≥ v .δ, we have v .d = v .δ.

6.4: Single-Source Shortest Paths T.S. 8

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).

Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).
Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

Path-Relaxation Property

If p = (v0, v1, . . . , vk) is a shortest path from s = v0 to vk , and we relax
the edges of p in the order (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = vk .δ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15)

Proof:

By induction on i , 0 ≤ i ≤ k :
After the i th edge of p is relaxed, we have vi .d = vi .δ.

For i = 0, by the initialization s.d = s.δ = 0.
Upper-bound Property⇒ the value of s.d never changes after that.

Inductive Step (i − 1→ i): Assume vi−1.d = vi−1.δ and relax (vi−1, vi).
Convergence Property⇒ vi .d = vi .δ (now and at all later steps)

v0.δ

v0

v1.δ

v1

v2.δ

v2

vi−1.δ

vi−1

?

vi

vi .δ

vi

“Propagation”: By relaxing proper edges, set of vertices with v .δ = v .d gets larger

6.4: Single-Source Shortest Paths T.S. 9

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity

6.4: Single-Source Shortest Paths T.S. 10

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity

6.4: Single-Source Shortest Paths T.S. 10

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity

6.4: Single-Source Shortest Paths T.S. 10

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity

6.4: Single-Source Shortest Paths T.S. 10

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

A single call of line 9-11 costs O(1)

In each pass every edge is relaxed⇒ O(E) time per pass

Overall (V − 1) + 1 = V passes⇒ O(V · E) time

Time Complexity

6.4: Single-Source Shortest Paths T.S. 10

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

∞

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

∞

x

∞

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

∞

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

∞

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

∞

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

11

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

6

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Execution of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

0

s

2

t

4

x

7

y

−2

z

8

5

−4

−2

−3

9

72

6

7

6.4: Single-Source Shortest Paths T.S. 11

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ

≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v)

= u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (1/2)

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V | − 1 passes, we have v .d = v .δ for all vertices
v ∈ V (that are reachable) and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Proof that v .d = v .δ

Let v be a vertex reachable from s

Let p = (v0 = s, v1, . . . , vk = v) be a shortest path from s to v

p is simple, hence k ≤ |V | − 1

Path-Relaxation Property⇒ after |V | − 1 passes, v .d = v .δ

Proof that Bellman-Ford returns TRUE

Need to prove: v .d ≤ u.d + w(u, v) for all edges

Let (u, v) ∈ E be any edge. After |V | − 1 passes:

v .d = v .δ ≤ u.δ + w(u, v) = u.d + w(u, v)

Triangle inequality (holds even if w(u, v) < 0!)

6.4: Single-Source Shortest Paths T.S. 12

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

Bellman-Ford Algorithm: Correctness (2/2)

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Theorem 24.3

Proof:

Let c = (v0, v1, . . . , vk = v0) be a negative-weight cycle reachable from s

If Bellman-Ford returns TRUE, then for every 1 ≤ i < k ,

vi .d ≤ vi−1.d + w(vi−1, vi)

⇒
k∑

i=1

vi .d ≤
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi)

⇒ 0 ≤
k∑

i=1

w(vi−1, vi)

This cancellation is only valid if all .d-values are finite!

This contradicts the assumption that c is a negative-weight cycle!

6.4: Single-Source Shortest Paths T.S. 13

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.

6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.

6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm

BELLMAN-FORD(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.

6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V| times
7: flag = 0
8: for e in G.edges()
9: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1
14: if flag = 0 return TRUE
15:
16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.

6.4: Single-Source Shortest Paths T.S. 14

The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW(G,w,s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V| times
7: flag = 0
8: for e in G.edges()
9: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1
14: if flag = 0 return TRUE
15:
16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass i keeps all .d variables, then so does pass i + 1.

6.4: Single-Source Shortest Paths T.S. 14

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V , E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

⇠
⇠

0/1
0 ��0/8

⇠⇠0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

⇠
⇠

8/1
0 ��0/2

��0/9
⇠⇠8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10⇠⇠0/10

��2/9

��0/6
⇠⇠0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
⇠⇠6/10

��2/2

��0/4

⇠⇠6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

⇠⇠8/10 ��8/9

��8/8

��2/4
⇠⇠8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V , Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3

7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

6.6: Maximum flow T.S. 2

History of the Maximum Flow Problem [Harris, Ross (1955)]

21
-C

-0

5

0!
E

0

70
=

In
4'

oS
0

'm
a

0

0
O

f

0

3

(a
~

0

za

~0a
a)

O
n,

_
Z

Z

a_

w
 0>a

L
L

,,

a cc

cC
fl

SEC
R

ET
R

7-

Maximum Flow is 163,000 tons per day!

6.6: Maximum flow T.S. 3

History of the Maximum Flow Problem [Harris, Ross (1955)]

21
-C

-0

5

0!
E

0

70
=

In
4'

oS
0

'm
a

0

0
O

f

0

3

(a
~

0

za

~0a
a)

O
n,

_
Z

Z

a_

w
 0>a

L
L

,,

a cc

cC
fl

SEC
R

ET
R

7-

Maximum Flow is 163,000 tons per day!

6.6: Maximum flow T.S. 3

Flow Network

Abstraction for material (one commodity!) flowing through the edges

G = (V ,E) directed graph without parallel edges

distinguished nodes: source s and sink t

every edge e has a capacity c(e)

Flow Network

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

Abstraction for material (one commodity!) flowing through the edges

G = (V ,E) directed graph without parallel edges

distinguished nodes: source s and sink t

every edge e has a capacity c(e)

Flow Network

Capacity function c : V × V → R+

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

Abstraction for material (one commodity!) flowing through the edges

G = (V ,E) directed graph without parallel edges

distinguished nodes: source s and sink t

every edge e has a capacity c(e)

Flow Network

Capacity function c : V × V → R+ c(u, v) = 0 ⇔ (u, v) 6∈ E

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

Flow Conservation

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

Flow Conservation

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

Flow Conservation

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

Flow Conservation

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)∑

v∈V f (s, v) =
∑

v∈V f (v , t)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25

|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25

|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25

|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

Flow Network

A flow is a function f : V × V → R that satisfies:

For every u, v ∈ V , f (u, v) ≤ c(u, v)

For every u, v ∈ V , f (u, v) = −f (v , u)

For every u ∈ V \ {s, t}, ∑v∈V f (u, v) = 0

The value of a flow is defined as |f | = ∑
v∈V f (s, v)

Flow

s

2

3

4

5

6

6

7

t

10

5

15

4

9

4

15

8

6

16

10
15

15 10

10

10/10

5/5

10/15

0/4

5/9

0/4

5/15

5/8

0/6

10/30

5/100/15

0/15 10/10

10/10

10/10

5/5

13/15

0/4

8/9

0/4

2/15

8/8

3/6

13/30

8/100/15

0/15 10/10

10/10

|f | = 5 + 10 + 10 = 25|f | = 8 + 10 + 10 = 28

How to find a Maximum Flow?

6.6: Maximum flow T.S. 4

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?

Greedy did not succeed!

6.6: Maximum flow T.S. 5

A First Attempt

Start with f (u, v) = 0 everywhere
Repeat as long as possible:

Find a (s, t)-path p where each edge e = (u, v) has f (u, v) < c(u, v)
Augment flow along p

Greedy Algorithm

s

2

3

4

5 t

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6

��0/1010
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 19

10
/10

9/10

0/2 5/6

4/4

6/8

9/9

9/10

10/10

Is this optimal?

Greedy did not succeed!

6.6: Maximum flow T.S. 5

Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

6.6: Maximum flow T.S. 6

Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6

6.6: Maximum flow T.S. 7

Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6

6.6: Maximum flow T.S. 7

Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6

6.6: Maximum flow T.S. 7

Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6

6.6: Maximum flow T.S. 7

Residual Graph

Edge e = (u, v) ∈ E

flow f (u, v) and capacity c(u, v)

Original Edge

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E ,
f (v , u) if (v , u) ∈ E ,
0 otherwise.

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v
6/17

Residual Gf :

u v

11

6

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Residual Graph with anti-parallel edges

Edge e = (u, v) ∈ E (& possibly e′ = (v , u) ∈ E)

flow f (u, v) and capacity c(u, v)

Original Edge

For every pair (u, v) ∈ V × V ,

cf (u, v) = c(u, v)− f (u, v).

Residual Capacity

Gf = (V ,Ef , cf), Ef := {(u, v) : cf (u, v) > 0}
Residual Graph

Graph G:

u v

6/17

2/4

Residual Gf :

u v

??

??

17-(6-2)

4-(2-6)

13

8

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10
1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10

1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6

1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10

1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6

1/8

1/12
1/14

1/6

0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10

1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6

0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10

1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

Example of a Residual Graph (Handout)

Flow network G
s

2

3

4

5

t

1/14

1/6

2/3

4/10
5/12

5/8

4/7

3/4

1/3

3/7

3/4

1/3

3/7

2/4

0/3

2/7

2/4

0/3

2/7

4/10
5/12

0/10
1/12

0/10

1/12

5/8

4/7

1/8

0/7

1/8

0/7

1/8

1/12
1/14

1/6
1/8

1/12
1/14

1/6
0/8

0/12
0/14

0/6

0/8

0/12
0/14

0/6

Residual Graph Gf

s

2

3

4

5

t

11
11

13
1

5
1

7
8

1
3

2
1

4
3

1 2

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.

6.6: Maximum flow T.S. 7

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

Augmenting path: Path
from source to sink in Gf

If f ′ is a flow in Gf and f a flow
in G, then f + f ′ is a flow in G

Questions:
How to find an augmenting path?
Does this method terminate?
If it terminates, how good is the solution?

Using BFS or DFS, we can find an
augmenting path in O(V + E) time.

6.6: Maximum flow T.S. 8

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10

8/1
0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0

|f | = 8

|f | = 10|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10

��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8

|f | = 10

|f | = 16|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/10

10
/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10

��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10

|f | = 16

|f | = 18|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/10

10
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/10

10
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

��8/10 ��8/9

��8/8

��2/4
��8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/10

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/10

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/10

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V ,E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

�
�

0/1
0 ��0/8

��0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

�
�

8/1
0 ��0/2

��0/9
��8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10��0/10

��2/9

��0/6
��0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
��6/10

��2/2

��0/4

��6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10��8/10 ��8/9

��8/8

��2/4
��8/10

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V ,Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3
7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

6.6: Maximum flow T.S. 10

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 19

9 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 19

9 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 11

Outline

Introduction

Ford-Fulkerson

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

6.6: Maximum flow T.S. 12

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integeral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 13

6.6: Maximum flow
Frank Stajano Thomas Sauerwald

Lent 2016

Illustration of the Ford-Fulkerson Method

s

2

3

4

5 t

Graph G = (V , E , c):

0/1
0

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

⇠
⇠

0/1
0 ��0/8

⇠⇠0/10
8/1

0

0/10

0/2 0/6

0/4

8/8

0/9

0/10

8/10

⇠
⇠

8/1
0 ��0/2

��0/9
⇠⇠8/10

10
/10

0/10

2/2 0/6

0/4

8/8

2/9

0/10

10/10⇠⇠0/10

��2/9

��0/6
⇠⇠0/1010

/10

6/10

2/2 6/6

0/4

8/8

8/9

6/10

10/10
⇠⇠6/10

��2/2

��0/4

⇠⇠6/1010
/10

8/10

0/2 6/6

2/4

8/8

8/9

8/10

10/10

⇠⇠8/10 ��8/9

��8/8

��2/4
⇠⇠8/1010

/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

s

2

3

4

5 t

Residual Graph Gf = (V , Ef , cf):

10

10

2 6

4

8

9

10

10

2

8

10

2 6

4

8

9

10

2

8

10

10

2 6

4

8

7

2

10

10

10

4

6

2 6

4

8

1

8

4

6

10

10

2

8

2 6

2

2

8

1

8

2

8

10

10

1

9

2 6

1

3

7

1

9

1

9

10

|f | = 0|f | = 8|f | = 10|f | = 16

|f | = 18

|f | = 19

Is this a max-flow?

6.6: Maximum flow T.S. 9

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow T.S. 11

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) =

10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

A cut (S,T) is a partition of V into S and T = V \ S such that s ∈ S
and t ∈ T .

The capacity of a cut (S,T) is the sum of capacities of the edges
from S to T :

c(S,T) =
∑

u∈S,v∈T

c(u, v) =
∑

(u,v)∈E(S,T)

c(u, v)

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.

Cut

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 19

9 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 199 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

From Flows to Cuts

The value of the max-flow is equal to the capacity of the min-cut, that is

max
f
|f | = min

S,T⊆V
c(S,T).

Theorem (Max-Flow Min-Cut Theorem)

s

2

3

4

5 t

Graph G = (V ,E , c):

10

10

2 6

4

8

9

10

10

c({s, 3}, {2, 4, 5, t}) = 10 + 9 = 19

|f | = 19

10
/10

9/10

0/2 6/6

3/4

7/8

9/9

9/10

10/10

10− 0 + 9 = 19

9 + 7− 6 + 9 = 19

6.6: Maximum flow T.S. 12

Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)

1. For every u, v ∈ V , f (u, v) ≤ c(u, v),
2. For every u, v ∈ V , f (u, v) = −f (v , u),
3. For every u ∈ V \ {s, t},

∑
v∈V f (u, v) = 0.

Let f be any flow and (S, T) be any cut:

|f | =
∑
v∈V

f (s, v)

(3)
=

∑
u∈S

∑
v∈V

f (u, v)

=
∑
u∈S

∑
v∈S

f (u, v) +
∑
u∈S

∑
v∈T

f (u, v)

(2)
=

∑
u∈S

∑
v∈T

f (u, v)

(1)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S, T).

Since this holds for any pair of flow and cut, it follows that
max

f
|f | ≤ min

(S,T)
c(S, T)

Flow-Value-Lemma:
For any cut (S,T),

|f | =
∑
u∈S

∑
v∈T

f (u, v).

6.6: Maximum flow T.S. 12

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow T.S. 13

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 14

Analysis of Ford-Fulkerson

0: def FordFulkerson(G)
1: initialize flow to 0 on all edges
2: while an augmenting path in Gf can be found:
3: push as much extra flow as possible through it

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Lemma

Flow before iteration integral
& capacities in Gf are integral
⇒ Flow after iteration integral

For integral capacities c(u, v), Ford-Fulkerson terminates after C :=
maxu,v c(u, v) iterations and returns the maximum flow.

Theorem

(proof omitted here, see CLRS3)

6.6: Maximum flow T.S. 14

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1

s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Slow Convergence of Ford-Fulkerson (Figure 26.7)

s

u

v

t

G

0/1000

0/1000

0/1000

0/1000

0/1

1/1000

0/1000

0/1000

1/1000

1/1

1/1000

1/1000

1/1000

1/1000

0/1

2/1000

1/1000

1/1000

2/1000

1/1

2/1000

2/1000

2/1000

2/1000

0/1

3/1000

2/1000

2/1000

3/1000

1/1

3/1000

3/1000

3/1000

3/1000

0/1 s

u

v

t

Gf

1000

1000

1000

1000

1

999
1

1000

1000

999
1

1

999
1

999
1

999
1

999
1

1

998
2

999
1

999
1

998
2

1

998
2

998
2

998
2

998
2

1

997
3

998
2

998
2

997
3

1

997
3

997
3

997
3

997
3

1

Number of iterations is C := maxu,v c(u, v)!

For irrational capacities, Ford-Fulkerson
may even fail to terminate!

6.6: Maximum flow T.S. 15

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1 0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1 0/1 0/φ

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1 0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1 0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 1 φ

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1 0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 1 φ

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0

Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 1 φ

��0/1

1/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0

Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 1 φ

��0/1

1/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0

Iteration: 1, |f | = 1

Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 φ

��0/1

1/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0

Iteration: 1, |f | = 1

Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

0/φ

s

2 3 4 5

t

1 φ

��0/1

1/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1

Iteration: 2, |f | = 1

Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

1 φ

��0/11/1

1

��0/φ��1/1��0/1

φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1

Iteration: 2, |f | = 1

Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

1 φ

��0/11/1

1

��0/φ��1/1��0/1

φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1

Iteration: 2, |f | = 1 + φ

Iteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1

φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1

Iteration: 2, |f | = 1 + φ

Iteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1

φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φ

Iteration: 3, |f | = 1 + φ

Iteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1

0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φ

Iteration: 3, |f | = 1 + φ

Iteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1

0/φ1/11− φ2/1

��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φ

Iteration: 3, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1

0/φ1/11− φ2/1

��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φ

Iteration: 3, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1

0/φ1/11− φ2/1

��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1

��0/φ��1/1����1− φ2/1

φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1

φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1

φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ

Iteration: 4, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1

φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2

Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:

After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−

Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!

|f | = 1 + 2
∑∞

i=1 ϕ
i

≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i ≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i ≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Non-Termination of Ford-Fulkerson for Irrational Capacities

s

2 3 4 5

t

./∞ ./∞ ./∞

./∞ ./∞
./∞

0/1

φ2 = 1− φ

s

2 3 4 5

t

��0/11/1

1

��0/φ��1/1��0/1 φ/φ1− φ/11− φ2/1

φ

1− φ

1− φ

φ
φ

φ

1− φ 1 φ

��φ/φ����1− φ/11− φ2/1 0/φ1/11− φ2/1 ��0/φ��1/1����1− φ2/1 φ− φ3/φφ/11/1

1

φ

1− φ

φ− φ3

φ3

��1/1 ��φ/1 φ− φ3/φ

1− φ2/1 1/1 φ− φ3/φ

11− φ

φ 1− φ

φ3

Iteration: 1, |f | = 0Iteration: 1, |f | = 1Iteration: 2, |f | = 1Iteration: 2, |f | = 1 + φIteration: 3, |f | = 1 + φIteration: 3, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φIteration: 4, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ φ2Iteration: 5, |f | = 1 + 2 · φ+ 2 · φ2

In summary:
After iteration 1: 0←−, 1−→, 0←−, |f | = 1

After iteration 5: 1−φ2

←− , 1−→, φ−φ
3

←− , |f | = 1 + 2φ+ 2φ2

After iteration 9: 1−φ4

←− , 1−→, φ−φ
5

←− , |f | = 1 + 2φ+ 2φ2 + 2φ3 + 2φ4

More generally,

For every i = 0, 1, . . . after iteration 1 + 4 · i : 1−φ2i

−→ , 1−→, φ−φ
2i+1

←−
Ford-Fulkerson does not terminate!
|f | = 1 + 2

∑∞
i=1 ϕ

i ≈ 4.23607 < 5

It does not even converge to a maximum flow!

iterations

flow value

1 5 9 13 17 21 25 29 33 37 41 45 49

1

2

3

4

5

6

7

6.6: Maximum flow T.S. 16

Summary and Outlook

works only for integral (rational) capacities

Runtime: O(E · |f ∗|) = O(E · V · C)

Ford-Fulkerson Method

Idea: Find an augmenting path with high capacity

Consider subgraph of Gf consisting of edges (u, v) with cf (u, v) > ∆

scaling parameter ∆, which is initially 2dlog2 Ce and 1 after termination

Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V)

Edmonds-Karp Algorithm

6.6: Maximum flow T.S. 17

Summary and Outlook

works only for integral (rational) capacities

Runtime: O(E · |f ∗|) = O(E · V · C)

Ford-Fulkerson Method

Idea: Find an augmenting path with high capacity

Consider subgraph of Gf consisting of edges (u, v) with cf (u, v) > ∆

scaling parameter ∆, which is initially 2dlog2 Ce and 1 after termination

Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V)

Edmonds-Karp Algorithm

6.6: Maximum flow T.S. 17

Summary and Outlook

works only for integral (rational) capacities

Runtime: O(E · |f ∗|) = O(E · V · C)

Ford-Fulkerson Method

Idea: Find an augmenting path with high capacity

Consider subgraph of Gf consisting of edges (u, v) with cf (u, v) > ∆

scaling parameter ∆, which is initially 2dlog2 Ce and 1 after termination

Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V)

Edmonds-Karp Algorithm

6.6: Maximum flow T.S. 17

Summary and Outlook

works only for integral (rational) capacities

Runtime: O(E · |f ∗|) = O(E · V · C)

Ford-Fulkerson Method

Idea: Find an augmenting path with high capacity

Consider subgraph of Gf consisting of edges (u, v) with cf (u, v) > ∆

scaling parameter ∆, which is initially 2dlog2 Ce and 1 after termination

Runtime: O(E2 · log C)

Capacity-Scaling Algorithm

Idea: Find the shortest augmenting path in Gf

Runtime: O(E2 · V)

Edmonds-Karp Algorithm

6.6: Maximum flow T.S. 17

Outline

A Glimpse at the Max-Flow Min-Cut Theorem

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

6.6: Maximum flow T.S. 18

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Application: Maximum-Bipartite-Matching Problem

A matching is a subset M ⊆ E such that for all
v ∈ V , at most one edge of M is incident to v .

Matching

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Bipartite Graph

Given a bipartite graph G = (L ∪ R,E), find a
matching of maximum cardinality.

L R

Jobs Machines

6.6: Maximum flow T.S. 19

Matchings in Bipartite Graphs via Maximum Flows

a

b

c

d

e

f

g

h

i

j

k

l

s t

6.6: Maximum flow T.S. 20

Matchings in Bipartite Graphs via Maximum Flows

a

b

c

d

e

f

g

h

i

j

k

l

s t

6.6: Maximum flow T.S. 20

Matchings in Bipartite Graphs via Maximum Flows

a

b

c

d

e

f

g

h

i

j

k

l

s t

6.6: Maximum flow T.S. 20

Matchings in Bipartite Graphs via Maximum Flows

a

b

c

d

e

f

g

h

i

j

k

l

s t

6.6: Maximum flow T.S. 20

Correspondence between Maximum Matchings and Max Flow

The cardinality of a maximum matching M in a bipartite graph G equals
the value of a maximum flow f in the corresponding flow network G̃.

Theorem (Corollary 26.11)

a

b

c

d

e

f

g

h

i

j

k

l

Graph G

a

b

c

d

e

f

g

h

i

j

k

l

s t

Graph G̃

6.6: Maximum flow T.S. 21

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Matching to Flow

Given a maximum matching of cardinality k

Consider flow f that sends one unit along each each of k paths

⇒ f is a flow and has value k

max cardinality matching ≤ value of maxflow

Graph G

s t

Graph G̃

6.6: Maximum flow T.S. 22

From Flow to Matching

Let f be a maximum flow in G̃ of value k

Integrality Theorem

⇒ f (u, v) ∈ {0, 1} and k integral

Let M ′ be all edges from L to R which carry a flow of one
a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R

6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k

Integrality Theorem

⇒ f (u, v) ∈ {0, 1} and k integral

Let M ′ be all edges from L to R which carry a flow of one
a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R

L R

6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k

Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R

L R

6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral

Let M ′ be all edges from L to R which carry a flow of one
a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R

L R

6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation

⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation

⇒ every node in L sends at most one unit
b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit

b) Flow Conservation

⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit

c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit
c) Cut (L ∪ {s},R ∪ {t})

⇒ net flow is k ⇒ M ′ has k edges
⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit
c) Cut (L ∪ {s},R ∪ {t})⇒ net flow is k

⇒ M ′ has k edges
⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit
c) Cut (L ∪ {s},R ∪ {t})⇒ net flow is k ⇒ M ′ has k edges

⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit
c) Cut (L ∪ {s},R ∪ {t})⇒ net flow is k ⇒ M ′ has k edges
⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

From Flow to Matching

Let f be a maximum flow in G̃ of value k
Integrality Theorem⇒ f (u, v) ∈ {0, 1} and k integral
Let M ′ be all edges from L to R which carry a flow of one

a) Flow Conservation⇒ every node in L sends at most one unit
b) Flow Conservation⇒ every node in R receives at most one unit
c) Cut (L ∪ {s},R ∪ {t})⇒ net flow is k ⇒ M ′ has k edges
⇒ By a) & b), M ′ is a matching and by c), M ′ has cardinality k

value of maxflow ≤ max cardinality matching

s t

1/1

1/1

1/1

L R L R
6.6: Maximum flow T.S. 23

6.5: All-Pairs Shortest Paths
Frank Stajano Thomas Sauerwald

Lent 2016

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v 2 V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:

1) Reweight every edge (u, v) by ew(u, v) = w(u, v) + u.� � v .�
2) Remove vertex s and its incident edges

3. For every vertex v 2 V , run Dijkstra on (G, E , ew)

Johnson’s Algorithm

3

8

�4 7
1

4

�5

2

6

s
0

0

0

0

0

0

�1

�5

�4 0

4

13

0 10
0

0

0

2

2

�1

�4

Direct: 7, Detour: �1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V +E))

6.5: All-Pairs Shortest Paths T.S. 11

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson’s Algorithm

6.5: All-Pairs Shortest Paths T.S. 2

Formalising the Problem

Given: directed graph G = (V ,E), V = {1, 2, . . . , n}, with edge
weights represented by a matrix W :

wi,j =





weight of edge (i, j) for an edge (i, j) ∈ E ,
∞ if there is no edge from i to j,
0 if i = j.

Goal: Obtain a matrix of shortest path weights L, that is

`i,j =

{
weight of a shortest path from i to j, if j is reachable from i
∞ otherwise.

All-Pairs Shortest Path Problem

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

6.5: All-Pairs Shortest Paths T.S. 3

Formalising the Problem

Given: directed graph G = (V ,E), V = {1, 2, . . . , n}, with edge
weights represented by a matrix W :

wi,j =





weight of edge (i, j) for an edge (i, j) ∈ E ,
∞ if there is no edge from i to j,
0 if i = j.

Goal: Obtain a matrix of shortest path weights L, that is

`i,j =

{
weight of a shortest path from i to j, if j is reachable from i
∞ otherwise.

All-Pairs Shortest Path Problem

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

6.5: All-Pairs Shortest Paths T.S. 3

Formalising the Problem

Given: directed graph G = (V ,E), V = {1, 2, . . . , n}, with edge
weights represented by a matrix W :

wi,j =





weight of edge (i, j) for an edge (i, j) ∈ E ,
∞ if there is no edge from i to j,
0 if i = j.

Goal: Obtain a matrix of shortest path weights L, that is

`i,j =

{
weight of a shortest path from i to j, if j is reachable from i
∞ otherwise.

All-Pairs Shortest Path Problem

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

6.5: All-Pairs Shortest Paths T.S. 3

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson’s Algorithm

6.5: All-Pairs Shortest Paths T.S. 4

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j =

min
(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j = min

(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)

= min
1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j = min

(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)

= min
1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

A Recursive Approach

i k j

Any shortest path from i to j of length k ≥ 2 is the concatenation of
a shortest path of length k − 1 and an edge

Basic Idea

Let `(m)
i,j be min. weight of any path from i to j with at most m edges

Then `(1)i,j = wi,j , so L(1) = W

How can we obtain L(2) from L(1)?

`
(2)
i,j = min

(
`
(1)
i,j , min

1≤k≤n
`
(1)
i,k + wk,j

)

`
(m)
i,j = min

(
`
(m−1)
i,j , min

1≤k≤n
`
(m−1)
i,k + wk,j

)
= min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

Recall that wj,j = 0!

6.5: All-Pairs Shortest Paths T.S. 5

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(2) =




0 3 8 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(2) =




0 3 8 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0


 L(2) =




0 3 8 ? −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0


 L(2) =




0 3 8 ? −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(2) =




0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(3) =




0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0




L(2) =




0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(3) =




0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0




L(2) =




0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 ?
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(3) =




0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0




L(2) =




0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 ?
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

1

2

3

5 4

3
8

−4 7
1

4

−52

6

1

4

3

5

L(1) = W =




0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0




L(3) =




0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0




L(2) =




0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0




L(4) =




0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0




`
(2)
1,4 = min{0 +∞, 3 + 1, 8 +∞,∞+ 0, − 4 + 6}

`
(4)
3,5 = min{7 − 4, 4 + 7, 0 +∞, 5 +∞, 11 + 0}

6.5: All-Pairs Shortest Paths T.S. 6

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)

Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×
∞ ⇔ ?

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×
∞ ⇔ 0

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×
∞ ⇔ 0

0 ⇔ ?

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×
∞ ⇔ 0

0 ⇔ 1

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(m)

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

L(n−1) = L(n) = L(n+1) = . . . = L, since every shortest path uses at most
n − 1 = |V | − 1 edges (assuming absence of negative-weight cycles)
Computing L(m):

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

(L(m−1) ·W)i,j =
∑

1≤k≤n

(
`
(m−1)
i,k × wk,j

)

The correspondence is as follows:

min ⇔
∑

+ ⇔ ×
∞ ⇔ 0

0 ⇔ 1

L(m) can be
computed in O(n3)

6.5: All-Pairs Shortest Paths T.S. 7

Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)

6.5: All-Pairs Shortest Paths T.S. 8

Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)

6.5: All-Pairs Shortest Paths T.S. 8

Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)

6.5: All-Pairs Shortest Paths T.S. 8

Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).

We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)

6.5: All-Pairs Shortest Paths T.S. 8

Computing L(n−1) efficiently

`
(m)
i,j = min

1≤k≤n

(
`
(m−1)
i,k + wk,j

)

For, say, n = 738, we subsequently compute

L(1), L(2), L(3), L(4), . . . , L(737) = L

Since we don’t need the intermediate matrices, a more efficient way is

L(1), L(2), L(4), . . . , L(512), L(1024) = L

Takes O(n · n3) = O(n4)

Takes O(log n · n3).We need L(4) = L(2) ·L(2) = L(3) ·L(1)! (see Ex. 25.1-4)

6.5: All-Pairs Shortest Paths T.S. 8

Outline

All-Pairs Shortest Path

APSP via Matrix Multiplication

Johnson’s Algorithm

6.5: All-Pairs Shortest Paths T.S. 9

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra

after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative

shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

Johnson’s Algorithm

allow negative-weight edges and negative-weight cycles

one pass of Bellman-Ford and |V | passes of Dijkstra
after Bellman-Ford, edges are reweighted s.t.

all edge weights are non-negative
shortest paths are maintained

Overview

Adding a constant to every edge doesn’t work!

3

8

−4
7

1

4

−5

2

6

1003

1008

996
1007

1001

1004

995

1002

1006

6.5: All-Pairs Shortest Paths T.S. 10

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0

2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0

2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort

Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1

Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1

Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1

Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

How Johnson’s Algorithm works

1. Add a new vertex s and directed edges (s, v), v ∈ V , with weight 0
2. Run Bellman-Ford on this augmented graph with source s

If there are negative weight cycles, abort
Otherwise:
1) Reweight every edge (u, v) by w̃(u, v) = w(u, v) + u.δ − v .δ
2) Remove vertex s and its incident edges

3. For every vertex v ∈ V , run Dijkstra on (G,E , w̃)

Johnson’s Algorithm

3

8

−4 7
1

4

−5

2

6

s
0

0

0

0

0

0

−1

−5

−4 0

4

13

0 10
0

0

0

2

2

−1

−4

Direct: 7, Detour: −1 Direct: 10, Detour: 2

Runtime: O(V ·E+V ·(V log V+E))

6.5: All-Pairs Shortest Paths T.S. 11

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 1.

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 1.
Let u.δ and v .δ be the distances from the fake source s

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 1.
Let u.δ and v .δ be the distances from the fake source s

u.δ + w(u, v) ≥ v .δ (triangle inequality)

⇒ w̃(u, v) + u.δ + w(u, v) ≥ w(u, v) + u.δ − v .δ + v .δ

⇒ w̃(u, v) ≥ 0

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 1.
Let u.δ and v .δ be the distances from the fake source s

u.δ + w(u, v) ≥ v .δ (triangle inequality)

⇒ w̃(u, v) + u.δ + w(u, v) ≥ w(u, v) + u.δ − v .δ + v .δ

⇒ w̃(u, v) ≥ 0

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 1.
Let u.δ and v .δ be the distances from the fake source s

u.δ + w(u, v) ≥ v .δ (triangle inequality)

⇒ w̃(u, v) + u.δ + w(u, v) ≥ w(u, v) + u.δ − v .δ + v .δ

⇒ w̃(u, v) ≥ 0

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.

Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.
Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.
Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.
Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi)

=
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.
Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi) =
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ)

= w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Correctness of Johnson’s Algorithm

w̃(u, v) = w(u, v) + u.δ − v .δ

For any graph G = (V ,E ,w) without negative-weight cycles:

1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

Theorem

Proof of 2.
Let p = (v0, v1, . . . , vk) be any path

In the original graph, the weight is
∑k

i=1 w(vi−1, vi) = w(p).

In the reweighted graph, the weight is

k∑

i=1

w̃(vi−1, vi) =
k∑

i=1

(w(vi−1, vi) + vi−1.δ − vi .δ) = w(p) + v0.δ − vk .δ

6.5: All-Pairs Shortest Paths T.S. 12

Comparison of all Shortest-Path Algorithms

Algorithm
SSSP APSP negative

sparse dense sparse dense weights

Bellman-Ford V 2 V 3 V 3 V 4 X

Dijkstra V log V V 2 V 2 log V V 3 X

Matrix Mult. – – V 3 log V V 3 log V (X)

Johnson – – V 2 log V V 3 X

can handle negative weight edges,
but not negative weight cycles

6.5: All-Pairs Shortest Paths T.S. 13

7: Geometric Algorithms
Frank Stajano Thomas Sauerwald

Lent 2016

Solving Line Intersection (without Trigonometry and Division!)

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 � p3)⇥ (p4 � p3) = (3, 1)⇥ (1, 3) = 8

(p2 � p3)⇥ (p4 � p3) = (�1, 3)⇥ (1, 3) = �6

Opposite signs) p1p2 crosses
(infinite) line through p3 and p4

Opposite signs) p1p2 crosses
(infinite) line through p3 and p4

(p3 � p1)⇥ (p2 � p1) = (�3,�1)⇥ (�4, 2) = �10

(p4 � p1)⇥ (p2 � p1) = (�2, 2)⇥ (�4, 2) = 4

Opposite signs) p3p4 crosses
(infinite) line through p1 and p2

Opposite signs) p3p4 crosses
(infinite) line through p1 and p2

p1p2 crosses p3p4

p3

p4

(p3 � p1)⇥ (p2 � p1) < 0

(p4 � p1)⇥ (p2 � p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 21

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms

7: Geometric Algorithms T.S. 2

Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?

7: Geometric Algorithms T.S. 3

Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?

7: Geometric Algorithms T.S. 3

Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?

7: Geometric Algorithms T.S. 3

Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?

7: Geometric Algorithms T.S. 3

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)

= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1

= 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1

= 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1

= y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1 = y1x2 − y2x1

= −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1 = y1x2 − y2x1 = −(p1 × p2)

= −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1 = y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but not used here):
p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1 = y1x2 − y2x1 = −(p1 × p2) = −5

7: Geometric Algorithms T.S. 4

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Cross Product in 3D

y

x

z

p1

p2

p3

p1 + p2

p1 × p2 = (0, 0, x1y2 − x2y1)

p1 × p3

(p1 × ·) > 0

(p1 × ·) < 0

7: Geometric Algorithms T.S. 5

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p3 = (1,−1)

p1 × p2 > 0: left (counterclockwise) turn

p1 × p3 < 0: right (clockwise) turn

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

7: Geometric Algorithms T.S. 6

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Using Cross product to determine Turns (origin shifted)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3

7: Geometric Algorithms T.S. 7

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3)

= (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3)

= 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3)

= (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3)

= −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1)

= (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2)

= −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1)

= (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2)

= 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇

p1p2 ∩ p̃3p4 6= ∅

p̃1p2 ∩ p̃3p4 ⊇

p̃1p2 ∩ p3p4 6= ∅

Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅

Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

1

2

3

4

1 2 3 4 5
(0, 0)

p3

p4

p2

p1

(p1 − p3)× (p4 − p3) = (3, 1)× (1, 3) = 8

(p2 − p3)× (p4 − p3) = (−1, 3)× (1, 3) = −6

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

Opposite signs ⇒ p1p2 crosses
(infinite) line through p3 and p4

(p3 − p1)× (p2 − p1) = (−3,−1)× (−4, 2) = −10

(p4 − p1)× (p2 − p1) = (−2, 2)× (−4, 2) = 4

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

Opposite signs ⇒ p3p4 crosses
(infinite) line through p1 and p2

p̃1p2 ∩ p̃3p4 ⊇ p1p2 ∩ p̃3p4 6= ∅
p̃1p2 ∩ p̃3p4 ⊇ p̃1p2 ∩ p3p4 6= ∅
Since p̃1p2 ∩ p̃3p4 consists of (at most) one point
⇒ p1p2 ∩ p3p4 6= ∅

p1p2 crosses p3p4

p3

p4

(p3 − p1)× (p2 − p1) < 0

(p4 − p1)× (p2 − p1) < 0

p1p2 does not cross p3p4

7: Geometric Algorithms T.S. 8

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Solving Line Intersection

x

y

(0, 0)

p3

p4

p2

p1

DIRECTION(p3, p4, p1) = (p1 − p3)× (p4 − p3)

0: DIRECTION(pi , pj , pk)
1: return (pk − pi)× (pj − pi)

0: SEGMENTS-INTERSECT(p1, p2, p3, p4)
1: d1 = DIRECTION(p3, p4, p1)
2: d2 = DIRECTION(p3, p4, p2)
3: d3 = DIRECTION(p1, p2, p3)
4: d4 = DIRECTION(p1, p2, p4)
5: If d1 · d2 < 0 and d3 · d4 < 0 return TRUE
6: · · · (handle all degenerate cases)

In total 4 satisfying conditions!

Lines could touch or be colinear

p2

p1

p3

p4

p2

p1

p4

p3

7: Geometric Algorithms T.S. 9

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms

7: Geometric Algorithms T.S. 10

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem

7: Geometric Algorithms T.S. 11

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s

7: Geometric Algorithms T.S. 12

Graham’s Scan

00

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle

Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X
Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X
Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X
Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea
Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea
Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea
Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine X
Otherwise, keep on removing recent points until point can be added

Basic Idea
Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Graham’s Scan

0

0

1

2

3
4

x

y

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)

7: Geometric Algorithms T.S. 13

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i = 0123456789101112131415 X 0 1 2 345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i = 0123456789101112131415 X 0 1 2 345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i = 0

123456789101112131415 X

0

1 2 345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0

1

23456789101112131415 X

0 1

2 345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01

2

3456789101112131415 X

0 1 2

345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012

3

456789101112131415 X

0 1 2 3

45 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123

4

56789101112131415 X

0 1 2 3

45 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123

4

56789101112131415 X

0 1 2 3

45 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123

4

56789101112131415 X

0 1 2

345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123

4

56789101112131415 X

0 1 2

345 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123

4

56789101112131415 X

0 1

2 3

4

5 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234

5

6789101112131415 X

0 1

2 3

4

5 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234

5

6789101112131415 X

0 1

2 3

4

5 6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234

5

6789101112131415 X

0 1

2 34

5

6 78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345

6

789101112131415 X

0 1

2 34

5 6

78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123456

7

89101112131415 X

0 1

2 34

5 6 7

8 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567

8

9101112131415 X

0 1

2 34

5 6 7

8 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567

8

9101112131415 X

0 1

2 34

5 6 7

8 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567

8

9101112131415 X

0 1

2 34

5 6

78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567

8

9101112131415 X

0 1

2 34

5 6

78 9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567

8

9101112131415 X

0 1

2 34

5

6 7

8

9 101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678

9

101112131415 X

0 1

2 34

5

6 7

8 9

101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123456789

10

1112131415 X

0 1

2 34

5

6 7

8 9 10

1112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910

11

12131415 X

0 1

2 34

5

6 7

8 9 10

1112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910

11

12131415 X

0 1

2 34

5

6 7

8 9 10

1112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910

11

12131415 X

0 1

2 34

5

6 7

8 9

101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910

11

12131415 X

0 1

2 34

5

6 7

8 9

101112 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910

11

12131415 X

0 1

2 34

5

6 7

8

9 10

11

12 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011

12

131415 X

0 1

2 34

5

6 7

8

9 10

11

12 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011

12

131415 X

0 1

2 34

5

6 7

8

9 10

11

12 13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011

12

131415 X

0 1

2 34

5

6 7

8

9 1011

12

13 1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

0123456789101112

13

1415 X

0 1

2 34

5

6 7

8

9 1011

12 13

1415

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

012345678910111213

14

15 X

0 1

2 34

5

6 7

8

9 1011

12 13 14

15

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011121314

15

X

0 1

2 34

5

6 7

8

9 1011

12 13 14

15

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011121314

15

X

0 1

2 34

5

6 7

8

9 1011

12 13 14

15

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011121314

15

X

0 1

2 34

5

6 7

8

9 1011

12 13

14

15

7: Geometric Algorithms T.S. 14

Execution of Graham’s Scan

0

7

10

1

2

3

4

6

5

8

12

9

13
11

14

15

i =

01234567891011121314

15 X 0 1

2 34

5

6 7

8

9 1011

12 13

14

15

7: Geometric Algorithms T.S. 14

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point

2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180!

Runtime: O(n · h), where h
is no. points on convex hull.

Output sensitive algorithm!

7: Geometric Algorithms T.S. 15

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Execution of Jarvis’ March

x

y

x

y

x

y

x

y

x

y

x

y

x

y

7: Geometric Algorithms T.S. 16

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(nh) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool
(avoids trigonometry and divison!)

take care of degenerate cases

Lessons Learned

7: Geometric Algorithms T.S. 17

Outline

Introduction and Line Intersection

Convex Hull

Glimpse at (More) Advanced Algorithms

7: Geometric Algorithms T.S. 18

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End

7: Geometric Algorithms T.S. 19

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End

7: Geometric Algorithms T.S. 19

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End

7: Geometric Algorithms T.S. 19

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End

7: Geometric Algorithms T.S. 19

Linear Programming and Simplex

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75
28

12

9.6

maximize 3x1 + x2 + 2x3
subject to

x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0
Go to End

7: Geometric Algorithms T.S. 19

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, AND S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as
follows: Find the shortest route (tour) for a salesman starting from a

given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d1i), where doi represents the 'distance' from I to J,
arrange the points in a cyclic order in such a way that the sum of the d1j
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most (n - 1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,3"78 little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the djj used representing road distances as
taken from an atlas.

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.10 It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game' which is concerned with finding
the number of different tours possible over a specified network. The latter problem
is cited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem). The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.4 5'6

393

7: Geometric Algorithms T.S. 20

Travelling Salesman Problem: The 42 (49) Cities

394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia was selected:

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala.
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga.
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C.
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C.
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va.
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C.
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass.
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me.

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md.

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del.
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn.
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J.
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y.
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn.
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dj=
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles
between I and J. The d1i have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, * * *, G, successively,
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the d1j of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.

7: Geometric Algorithms T.S. 21

Road Distances

\0)
cO

 0O

00
n

00
e

cn
C

- I-
tr\

o
C

N
C

cl

cn cn -t
00

rN

C
4

f
0

00\,O

0
tn

0 \
'

C
C

,
C

-)
n

n\ ,O

c
0

t
Q

>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

O
.

0
q O

 00
ol

o
e

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
c

C
t'I t n

+
+ t-oo

0
N

0

0
>

n
cn

0
t-

z
>

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
,

C
,>

e
?-\,

roo +r"
0

e
0

?
0

?
\o

0
c

o
O

-

t" 00]00 C
~

H

F
,,

E
m

N

>
+

>
>

t
+

+
?

+?t
+

O

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t

t
Q

'
m

+m
O

>

tw
#)b

.-w
9

C
-4 C

,
C

4
Q

o
\1-

\0
0

00 ac
s

(0
iC

it

3
i0

t
00

I- ,

t1
?

t (~~~~~~~n
Itm

-<
. r -\o

,O
 C

o ~O
 rO

o
e 4

? 6>t
I

00
M

M

f-

4 r
> 00

C
6 O

 H
e %4

00)
Q

o

an
~

b
6

on
6

H

X

?
O

H

ct

+
tn

a> a>
4

0

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn
r

X
bt

X
e\o \0

to
00

0
0 C

, O
 0

O
n m

?i

? 00
0tC

I
0

0 0 00
.

00 ??o
00

L"O

tO

ci t es) c i
t'Thf?ci

.00'
000

cn
st 0,

4i

~ ~4-~0)
00

ci
C

)
C

S) t~ 'tci\O

'-ci t0-~ ~,
j.0

t 0-
H

00

0C

i

cd
-,o

o-o
r-

coZ\~
00

oo
O

(7

0
ft+m

?
s

SA
?

c
H

cn

ocall 0
0

0
W

C

S-
o

tn
o

cic~~-000000
00m

000-'-'M
~

c
00c

Z
t '.'

t0
t"-'t00

ci)
0

i
0

H

a
-

tc
t Z-000

ci
00

V
-.

t O

0)'
C

,
0

0
0

0"0o
C

it
N

',
''

kf
~~

)'t'ci0000
-~~~~~~~ci'C

00
0000

d
I0~0

cic
-p\

-
0

ci
0

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00 
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00

0
C

X
~~~~~~~~~~~~~~~~~~~~- 

*0 
C

' 
- 

)+ mo 
v00 

1c H
F 

tl 
C

A
 C

 n 
C

 
,oo 

t- 
o 

_I 

-o 
o 

ci 
~cif-~0 

O
 

0 
0 

', 
-, 

, 
00 

- 
t 

r 
0 

o 
0 

C
 

C
 

c 
F4 

i 
" 

0 
\O

'-ci00 
ci 

0N
00\0 

00 
f--0000 

-00X
-= 

~-A
 

tit- 
c 

C
A

 
"C

, 
00 

0N
0c'c 

ci 
0 

c 
c 

i 
c00 roN

 
C

o\ 
r' 

" 
04 

r 
r0 

00 
-\ 

"O
 

cm
 

C
\ 

m
 

0 
rb4 

t- 
-t 

r\. 
o 

m
O

O
 

C
P\ 0 

0 
t3n C

n 
\ d 

U
N

 CP\00 
r-0 

0 
0 

c 
0 

i 
0 

't 
' 

0 
N

 
, 

' 
b0 

""O
 

-- 
m

0 
00 

ci 
m

m
00 0 

't 
'tci)00 

080 O
N

 
i00 

fm
 cN

 
' 

0 
'0 

' 

0) 
ci 

ci 
'-'~0 

'-ci'~0 'tf--00 
000000 

O
N

O
 

c 
\.O

 
ci 

t- 
',tr 

~\C
 0 

w
m

 

ci 
'tci)'-ci00 

00 
f--i 

c 
o 

it N ci 
m

 
4 c 

cO
 

n 
q- tn 

W
 

0e 
ci'- 

O
~ci 

0-?O
 ci 

~i't"0 
'ciO

N
O

 
ci 

c 
I-,0 O

N
- 

'-cic'o 
-,o 

O
C

) C
O

 C
 

)'c\ 
. tO

 X
 

o0 0) 
Q

r0 
F- 

0 
C

')'t 
t-4 

4 
0 

0 
f- 

C
= 

f\ 
C

%
 

f 
00 

-* 

c')t 
C

4 
" 

) 
'cX

Io --\O
 

t 
-f 

O
N

 
0 

ci 
c 

c 
cn 

t 
- 

'tO
-00 

+ 
 

00 
.) 

- 
I 

C
, ) 0) 

F- 
H

 
-00 

0)0 
O

N
 

O
N

O
C

= 
0 

- 

\O
 

-C
O

 
ciO

N
 rC

 
' 

C
A

 
o 

't00 
)o 

n 
O

N
 O

 
rt 

O
 

C
' )\00 

ci ' 
rcic 

o 
00- o"- 

- 

-0 
00 

000 
'- 

c 
ci 

\i' 
C

) 
"0f--00 

0 
0 

M
 

0 
0 

- 
O

N
 

C
IA

 
O

 0C
i-' 

0 
0 

0- 
r0 

00 
C

0 ci 
C

 
00 

0-O
N

 I- 
c 

i 
' 

- 
0 

-c 
c 

0 

ci 
i 

- 
00 

0-0 
c 

0 
'H

'tc 
C

n 
C

Y
'o 

-I 
'. 

-0 
00 

O
t 

) 
0000 

- 
C

A
 

11- 
-00 

C
i ci 

000 
? 

W
 

0 
C

c 
" 

' 
- 

- 
- 

- 
O

 
- -00N

 
0 

M
'- 

\o 
0 

c 
M

q0-~ 
0N

 
cc-\,O

N
'.0 

"C
 ci 

O
O

N
 ci 

\,O
 00 \000 

ci 
't~~~ci00ciC

')C
00c~~ic0 

'-~ 
\O

C
ic 

C
A

ic 
cn -,i,-4t 

tj 

t 
- 

O
 

M
O

O
 ', 

O
 

O
 

V
 

- 
0\, 

C
) 

',) 
'.O

O
N

N
C

) 
00 

" 
C

) 
, -- 

-C
 

C
'\00 

0 
ci 

'I 
O

 
O

'4 
. 

C
l C

n 0 
000 

O
 

t 
0 

0M
 

- 
O

 
-??? 

r 

f-o- 
0 

C
, 

-'t 
O

0 
0 

C
0 

' t 
--C

-) 
o 

0 
00 

0\, 
- O

 
'ci00 

O
C

A
 

t 
00 

0 
M

 
t 

ci 
C

')'-ci 
f--- 

C
''- 

' t '3 t o ci 
o)0000 

'-cit 
' t't 

0'-t 
c')'-+W

'c 
) 

t 
ci 

0 
V

6 
V

 
c 

ci 
ci ~~~ 

~ 't'0 
0-C

 
f- -'c 

ci 
(' 

''c 
)0 

0'-- 
'-i- 

-vi 
-l0'" 

'C
A

~ici 
c 

0c 
0 X

ci 
0- 

ci 
0 't0"0 

0-'-800c C
"C

i 
0 

, 
0 

C
')'t 

', 
00 

C
,) 

cn 
i'c 

tl 
''' 

-i 
i'c 

f 
cici 

C
A

ci 
I- 

\- 
.-0 

-N
#- 

C
A

 
-, 

c 
N

.t 
'' 

C
'. 

iN
-tc'c) 

' 
o~~~~~~~~~~~~~~~~~~~~~~~C

 
H

7O
 

r- 
-1 

r 
tn 

3 
\3 ,O

 
45 

m
 

C
4 

C
A

 
-n+< 

t6> 
c n 

'-f 
0 

O
 C
i4 

\ 
- 'I- 

i 
O

 
\cO

 
O

 
00 

0)0 
cn 

')ci 
'-'- 

i-I 
O

- 
O

N
-C

 
f--"-, 

'-) 
m

 

i ' 
0 

%
,O

 
0O

 
' 

tt-\ 
00\ )O

 
c\ 

0 
04 

0) 
O

N
C

 
f 

O
N

 
-\ C

> 
Y

 
C

f- O
 

ci'3 
' 

+ + 
+ 

)00 0 
O

a 
-0 

00 
ooci 

C
",00 

'-ci'-o 
C

-- 
ci 

't'-ci 
f--f-- 

f-i 
' 

i- 
00 

i 
cO

N
cO

N
 

0 
0- 

0C
 

- 

C
'O

cim
 -c 

-n 
--N

o 
000 

o 0 
0w

'0000 
1. 

t-0 
C

" ,'- 
r- 

00 
'T0 

C
O

N
 00 

O
 

sf-C
-A

 
f- 

' 
iti 

c 

N
m

 
m

 
M

) 
'i s) 

ooO
 

O
O

 
y 

Q
tN

 130dt 
000 C

~, 
O

 
i 

Z 
o 

o 
M

c 
\O

 
8-Q

-) 
C

\ 

S~~~~~~~diF~~~~~~~" 
r*tO

 
"_ G

e 
.- 

V
d iU4(" 

N
6~h 

N
eez 

F#0 
) 

-m
m

etm
 

m
bo 

m
m

 

7: Geometric Algorithms T.S. 22



The (Unique) Optimal Tour (699 Units ≈ 12,345 miles)

C
) 

U
l)~~~~~ 

I 
X

4 

0 

C
C

 

A
 

0~~~~~~~~~~0 

* 
| 

~~~A


./H

'-

fC
s

E 4*

400
~

~
~

0

_~~~~~~~~~
V

40M

<

7: Geometric Algorithms T.S. 23

Iteration 1: Objective 641

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1

1

1

11

0.50

0.50

1

0.50
1

1

1

1

1

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

7: Geometric Algorithms T.S. 24

Iteration 1: Objective 641, Eliminate Subtour 1, 2, 41, 42

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1

1

1

11

0.50

0.50

1

0.50
1

1

1

1

1

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

7: Geometric Algorithms T.S. 24

Iteration 2: Objective 676

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

0.50

0.50

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

0.50

1

1

7: Geometric Algorithms T.S. 25

Iteration 2: Objective 676, Eliminate Subtour 3− 9

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

0.50

0.50

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

0.50

1

1

7: Geometric Algorithms T.S. 25

Iteration 3: Objective 681

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1 1

1

1

1

1

1

0.50

0.50

1

0.50

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 26

Iteration 3: Objective 681, Eliminate Subtour 24, 25, 26, 27

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1 1

1

1

1

1

1

0.50

0.50

1

0.50

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 26

Iteration 4: Objective 682.5

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

0.50

0.50

1

0.50

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 27

Iteration 4: Objective 682.5, Eliminate Small Cut by 13− 17

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

0.50

0.50

1

0.50

1

1

1

1

1

0.50

0.50

10.50

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 27

Iteration 5: Objective 686

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

11

1

1
1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 28

Iteration 5: Objective 686, Eliminate Subtour 10, 11, 12

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

11

1

1
1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 28

Iteration 6: Objective 686

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 29

Iteration 6: Objective 686, Eliminate Subtour 13− 23

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 29

Iteration 7: Objective 688

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 30

Iteration 7: Objective 688, Eliminate Subtour 11− 23

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 30

Iteration 8: Objective 697

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 31

Iteration 8: Objective 697, Branch on x(13, 12)

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 31

Iteration 9, Branch a x(13, 12) = 1: Objective 699 (Valid Tour)

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1 1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 32

7: Geometric Algorithms T.S. 33

7: Geometric Algorithms T.S. 34

Iteration 10, Branch b x(13, 12) = 0: Objective 701

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

11

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

7: Geometric Algorithms T.S. 35

The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

Don’t forget to visit the online feedback page!

Please send comments on the slides to:
tms41@cam.ac.uk

7: Geometric Algorithms T.S. 36

