

5.1: Amortized Analysis

Frank Stajano
Thomas Sauerwald

Use of Amortized Analysis

Amortized Analysis

Use of Amortized Analysis

Amortized Analysis

next week

Fibonacci Heaps

Use of Amortized Analysis

Amortized Analysis

Fibonacci Heaps

Finding Shortest Paths

Motivating Example: Stack

Motivating Example: Stack

Motivating Example: Stack

Motivating Example: Stack

Stack Operations
• PUSH (\mathbf{S}, \mathbf{x})
pushes object x onto stack S

Motivating Example: Stack

Stack Operations
• PUSH (\mathbf{S}, \mathbf{x})

- pushes object x onto stack S
POP (S)

Motivating Example: Stack

Motivating Example: Stack

Motivating Example: Stack

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

```
0: MULTIPOP (S,k)
1: while not S.empty() and k > 0
2: POP (S)
3: k = k - 1
```


Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$

Motivating Example: Stack

Stack Operations

- PUSH (S, x)
- pushes object x onto stack S
- total cost of 1
- POP (S)
- pops the top of (a non-empty) stack S
- total cost of 1
- MULTIPOP (\mathbf{S}, \mathbf{k})
- pops the k top objects (S non-empty)
\Rightarrow total cost of $\min \{|S|, k\}$

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

Sequence of Stack Operations

A new Analysis Tool: Amortized Analysis

Amortized Analysis

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations

A new Analysis Tool: Amortized Analysis

Data structure operations (Heap, Stack, Queue etc.)

- analyse a sequence of operations

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small

This is not average case analysis!

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

Aggregate Analysis

- Determine an upper bound $T(n)$ for the total cost of any sequence of n operations
- amortized cost of each operation is the average $\frac{T(n)}{n}$

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
- Aggregate Analysis
- Potential Method

Aggregate Analysis

- Determine an upper bound $T(n)$ for the total cost of any sequence of n operations
- amortized cost of each operation is the average $\frac{T(n)}{n}$

Even though operations may be of different types/costs

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{\text {PUSH }}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$\operatorname{MULTIPOP}(k)$ contributes $\min \{k,|S|\}$ to $T_{\text {POP }}(n)$

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{\text {PUSH }}(n) \leq 2 \cdot T_{P U S H}(n)
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n) \leq 2 \cdot T_{P U S H}(n) \leq 2 \cdot n .
$$

Stack: Aggregate Analysis

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n=n^{2}$ (correct, but not tight!)

$$
T(n) \leq T_{P O P}(n)+T_{P U S H}(n) \leq 2 \cdot T_{P U S H}(n) \leq 2 \cdot n .
$$

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$

Second Technique: Potential Method

Second Technique: Potential Method

Second Technique: Potential Method

Second Technique: Potential Method

Stack as a coin-operated machine (p. 83)

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Stack and Coins

Potential Method in Detail

- c_{i} is the actual cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i

$$
c_{i}<\widehat{c}_{i}, c_{i}=\widehat{c}_{i} \text { or }
$$

- \widehat{c}_{i} is the amortized cost of operation i

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

Function that maps states of the data structure to some value

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

- PUSH(): $c_{i}=1$
- POP: $c_{i}=1$
- PUSH(): $\Phi_{i}-\Phi_{i-1}=1$
- POP: $\Phi_{i}-\Phi_{i-1}=-1$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}-\Phi_{0}
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=C_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}
$$

Potential Method in Detail

- c_{i} is the actual cost of operation i
- \widehat{c}_{i} is the amortized cost of operation i
- Φ_{i} is the potential stored after operation $i\left(\Phi_{0}=0\right)$

$$
\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)
$$

$$
\sum_{i=1}^{n} \widehat{c}_{i}=\sum_{i=1}^{n}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{n} c_{i}+\Phi_{n}
$$

If $\Phi_{n} \geq 0$ for all n, sum of amortized costs is an upper bound for the sum of actual costs!

Stack: Analysis via Potential Method

$$
\Phi_{i}=
$$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after } i \text { th operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Stack: Analysis via Potential Method

$$
\Phi_{i}=\# \text { objects in the stack after ith operation (= \# coins) }
$$

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

POP

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after ith operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2 n$

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Stack: Analysis via Potential Method

$\Phi_{i}=$ \# objects in the stack after ith operation (= \# coins)

PUSH

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2 n$

- $c_{i}=1$
- $\Phi_{i}-\Phi_{i-1}=-1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1-1=0$

$$
n / 2 \text { PUSH, } n / 2 \mathrm{POP} \Rightarrow T(n) \leq n
$$

MULTIPOP(k)

- $c_{i}=\min \{k,|S|\}$
- $\Phi_{i}-\Phi_{i-1}=-\min \{k,|S|\}$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=\min \{k,|S|\}-\min \{k,|S|\}=0$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
$A[3] A[2] A[1] A[0]$

1	0	1	1	11

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
$A[3] A[2] A[1] A[0]$

1	0	1	1	11

INC

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
$A[3] A[2] A[1] A[0]$

1	0	1	1	11

INC

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
$A[3] A[2] A[1] A[0]$

1	0	1	1

INC
$A[3] A[2] A[1] A[0]$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
12

Second Example: Binary Counter

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: ??

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$
$A[3] A[2] A[1] A[0]$

1	0	1	1
11			

INC
$A[3] A[2] A[1] A[0]$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
12

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$

$$
\begin{aligned}
& A[3] A[2] A[1] A[0] \\
& \begin{array}{c|c|c|c}
1 & 0 & 1 & 11
\end{array}
\end{aligned}
$$

INC
$A[3] A[2] A[1] A[0]$
$\begin{array}{llll}1 & 1 & 0 & 0 \\ 12\end{array}$
What is the total cost of a sequence of n INC operations?

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$

INC
$A[3] A[2] A[1] A[0]$

1	1	0
0	12	

What is the total cost of a sequence of n INC operations?
Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: $\leq k$

$$
\begin{aligned}
& A[3] A[2] A[1] A[0] \\
& 10
\end{aligned} \begin{aligned}
& 10 \\
& 1
\end{aligned} 101011 .
$$

INC
$A[3] A[2] A[1] A[0]$

1	1	0
0	12	

What is the total cost of a sequence of n INC operations?
Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

Second Example: Binary Counter

Binary Counter

- Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits
- Use array for counting from 0 to $2^{k}-1$
- only operation: INC
- increases the counter by one
- total cost: Z延 number of flips (smallest index of a zero)
$A[3] A[2] A[1] A[0]$

$A[3] A[2] A[1] A[0]$

1	1	0
0	12	

What is the total cost of a sequence of n INC operations?
Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Incrementing a Binary Counter

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Counter Value	$A[7]$	$A[6]$	$A[5]$	$A[4]$	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Incrementing a Binary Counter: Aggregate Analysis

| Counter
 Value | $A[3]$ | $A[2]$ | $A[1]$ | $A[0]$ | Total
 Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 3 |
| 3 | 0 | 0 | 1 | 1 | 4 |
| 4 | 0 | 1 | 0 | 0 | 7 |
| 5 | 0 | 1 | 0 | 1 | 8 |
| 6 | 0 | 1 | 1 | 0 | 10 |
| 7 | 0 | 1 | 1 | 1 | 11 |

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{2}}\right\rfloor$ times

$$
T(n) \leq
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{2}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{2}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right)
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right) \leq 2 \cdot n
$$

Incrementing a Binary Counter: Aggregate Analysis

Counter Value	$A[3]$	$A[2]$	$A[1]$	$A[0]$	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit $A[i]$ is only flipped every 2^{i} increments
- In a sequence of n increments from 0 , bit $A[i]$ is flipped $\left\lfloor\frac{n}{2^{i}}\right\rfloor$ times

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$.

$$
T(n) \leq \sum_{i=0}^{k-1}\left\lfloor\frac{n}{2^{i}}\right\rfloor \leq \sum_{i=0}^{k-1} \frac{n}{2^{i}}=n \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k-1}}\right) \leq 2 \cdot n .
$$

Binary Counter: Analysis via Potential Function
$\Phi_{i}=$

Binary Counter: Analysis via Potential Function

$\Phi_{i}=\#$ ones in the binary representation of i

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$

1100

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=\#$ ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=\#$ ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$

0111

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$

01111

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Binary Counter: Analysis via Potential Function

$$
\Phi_{0}=0 \checkmark \quad \Phi_{i} \geq 0 \checkmark
$$

$\Phi_{i}=$ \# ones in the binary representation of i

Increment without Carry-Over

- actual cost: $c_{i}=1$
- potential change: $\Phi_{i}-\Phi_{i-1}=1$
- amortized cost: $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+1=2$

Amortized Cost $=2 \Rightarrow T(n) \leq 2 n$

Increment with Carry-Over

- $c_{i}=x+1,(x$ lowest index of a zero $)$
- $\Phi_{i}-\Phi_{i-1}=-x+1$
- $\widehat{c}_{i}=c_{i}+\left(\Phi_{i}-\Phi_{i-1}\right)=1+x-x+1=2$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!
E.g. by bounding the number of expensive operations

Aggregate Analysis

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost

credit

Summary

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis

- Determine an absolute upper bound $T(n)$
- every operation has amortized cost $\frac{T(n)}{n}$

Full power of this method will become clear later!

Potential Method

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost
 credit

Operation	Binomial heap worst-case cost
MAKE-HEAP	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$
MINIMUM	$\mathcal{O}(\log n)$
EXTRACT-MIN	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(\log n)$
DECREASE-KEY	$\mathcal{O}(\log n)$
DeLETE	$\mathcal{O}(\log n)$

Next Lecture: Fibonacci Heap

Operation	Binomial heap worst-case cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Crucial for many applications including shortest paths and minimum spanning trees!

5.2 Fibonacci Heaps

Frank Stajano
Thomas Sauerwald

Priority Queues Overview

Operation	Linked list	Binary heap	Binomial heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
InSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
EXtract-Min	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Merge	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
DeLETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Priority Queues Overview

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Insert	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MInimum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Merge	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DeLETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap	Fibonacci heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.
Binomial Heap: $k / 2$ Decrease-Key
$+k / 2$ INSERT

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.
Binomial Heap: $k / 2$ Decrease-Key
$+k / 2$ INSERT

- $c_{1}=c_{2}=\cdots=c_{k}=\mathcal{O}(\log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.
Binomial Heap: $k / 2$ Decrease-Key
$+k / 2$ INSERT

- $c_{1}=c_{2}=\cdots=c_{k}=\mathcal{O}(\log n)$
$\Rightarrow \sum_{i=1}^{k} c_{i}=\mathcal{O}(k \log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.

Binomial Heap: $k / 2$ Decrease-Key
$+k / 2$ INSERT
Fibonacci Heap: $k / 2$
Decrease-Key $+k / 2$ Insert

- $c_{1}=c_{2}=\cdots=c_{k}=\mathcal{O}(\log n)$
$\Rightarrow \sum_{i=1}^{k} c_{i}=\mathcal{O}(k \log n)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.

Binomial Heap: $k / 2$ Decrease-Key
$+k / 2$ INSERT

$$
\begin{aligned}
\cdot c_{1}=c_{2} & =\cdots=c_{k}=\mathcal{O}(\log n) \\
\Rightarrow \sum_{i=1}^{k} c_{i} & =\mathcal{O}(k \log n)
\end{aligned}
$$

Fibonacci Heap: k/2
DECREASE-KEY + $k / 2$ InSERT

- $\widehat{c}_{1}=\widehat{c}_{2}=\cdots=\widehat{c}_{k}=\mathcal{O}(1)$

Binomial Heap vs. Fibonacci Heap: Costs

Operation	Binomial heap actual cost	Fibonacci heap amortized cost
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
MERGE	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

n is the number of items in the heap when the operation is performed.

Binomial Heap: $k / 2$ Decrease-Key $+k / 2$ Insert

$$
\begin{aligned}
\text { - } c_{1}=c_{2} & =\cdots=c_{k}=\mathcal{O}(\log n) \\
\Rightarrow \sum_{i=1}^{k} c_{i} & =\mathcal{O}(k \log n)
\end{aligned}
$$

Fibonacci Heap: $k / 2$
Decrease-Key $+k / 2$ Insert

- $\widehat{c}_{1}=\widehat{c}_{2}=\cdots=\widehat{c}_{k}=\mathcal{O}(1)$
$\Rightarrow \sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} \widehat{c}_{i}=\mathcal{O}(k)$

Actual vs. Amortized Cost

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

Reminder: Binomial Heaps

Binomial Trees

Binomial Heaps

- Binomial Heap is a collection of binomial trees of different orders, each of which obeys the heap property

Reminder: Binomial Heaps

Binomial Trees

Binomial Heaps

- Binomial Heap is a collection of binomial trees of different orders, each of which obeys the heap property
- Operations:

Reminder: Binomial Heaps

Binomial Trees

Binomial Heaps

- Binomial Heap is a collection of binomial trees of different orders, each of which obeys the heap property
- Operations:
- Merge: Merge two binomial heaps using Binary Addition Procedure
- Insert: Add $B(0)$ and perform a Merge
- Extract-Min: Find tree with minimum key, cut it and perform a Merge
- Decrease-Key: The same as in a binary heap

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{rrrrrl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{aligned}
& \begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11
\end{array} \\
& \begin{array}{ccccc|c}
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
\end{aligned}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Merging two Binomial Heaps

$$
\begin{array}{cccccl}
0 & 0 & 1 & 1 & 1 & =7 \\
0 & 1 & 0 & 1 & 1 & =11 \\
1 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 1 & 0 & =18
\end{array}
$$

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:

- consists of binomial trees, and every order appears at most once
- immediately tidy up after INSERT or Merge

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:

- consists of binomial trees, and every order appears at most once
- immediately tidy up after Insert or Merge

Fibonacci Heap:

- forest of MIN-HEAPs
- lazily defer tidying up; do it on-the-fly when search for the MIN

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)
- Tree roots are stored in a circular, doubly-linked list

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)
- Tree roots are stored in a circular, doubly-linked list

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)
- Tree roots are stored in a circular, doubly-linked list
- Min-Pointer pointing to the smallest element

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)
- Tree roots are stored in a circular, doubly-linked list
- Min-Pointer pointing to the smallest element

Structure of Fibonacci Heaps

Fibonacci Heap

- Forest of MIN-HEAPs
- Nodes can be marked (roots are always unmarked)
- Tree roots are stored in a circular, doubly-linked list
- Min-Pointer pointing to the smallest element

A single Node

Magnifying a Four-Node Portion

Magnifying a Four-Node Portion

Magnifying a Four-Node Portion

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

Fibonacci Heap: Insert

Fibonacci Heap: Insert

INSERT

- Create a singleton tree

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

(17)

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

(17)

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

17

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree $=0$

Fibonacci Heap: Ехтract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark

Fibonacci Heap: Ехтract-Min

- Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Every root becomes child of another root at most once!
$d(n)$ is the maximum degree of a root in any Fibonacci heap of size n

Actual Costs:

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Every root becomes child of another root at most once!
$d(n)$ is the maximum degree of a root in any Fibonacci heap of size n

Actual Costs: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

Fibonacci Heap: Decrease-Key (First Try)

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)

Fibonacci Heap: Decrease-Key (First Try)

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise,

1. Decrease-Key $24 \rightsquigarrow 20$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise,

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise,

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise,

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise,

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

5

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$
5. Decrease-Key $30 \rightsquigarrow 12$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$
5. Decrease-Key $30 \rightsquigarrow 12$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

1. Decrease-Key $24 \rightsquigarrow 20$
2. Decrease-Key $46 \rightsquigarrow 15$
3. Decrease-Key $35 \rightsquigarrow 5$
4. Decrease-Key $26 \rightsquigarrow 19$
5. Decrease-Key $30 \rightsquigarrow 12$

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Fibonacci Heap: Decrease-Key (First Try)

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- Check if heap-order is violated
- If not, then done.
- Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root node loses at most one child before becoming root

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x
- Decrease the key of x (given by a pointer)

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

5

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked,

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

5.2 Fibonacci Heaps (Analysis)

Frank Stajano

Thomas Sauerwald

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

Amortized Analysis via Potential Method

- InSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual \mathcal{O} (trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual \mathcal{O} (trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT:
actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Lifecycle of a node

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n)) \quad$ amortized $\mathcal{O}(d(n))$?
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$ amortized $\mathcal{O}(1)$?

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Lifecycle of a node

Outline

Structure

Operations

Glimpse at the Analysis

Amortized Analysis

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widehat{c}_{i}=c_{i}+\Delta \Phi
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

$$
\widehat{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

$$
\widehat{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

First Coin \rightsquigarrow pays cut
Second Coin \rightsquigarrow increase of trees (H)
Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widehat{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

5.2 Fibonacci Heaps (Analysis)

Frank Stajano

Thomas Sauerwald

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Fibonacci Heap: Insert

Fibonacci Heap: Insert

INSERT

- Create a singleton tree

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Insert

INSERT

- Create a singleton tree
- Add to root list and update min-pointer (if necessary)

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

(17)

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

(17)

Fibonacci Heap: Еxtract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them

17

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree $=0$

Fibonacci Heap: Ехтract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)
degree

0	1	2	3

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın
Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children)

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark

Fibonacci Heap: Ехтract-Min

- Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Ехтract-Min

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Every root becomes child of another root at most once!
$d(n)$ is the maximum degree of a root in any Fibonacci heap of size n

Actual Costs:

Fibonacci Heap: Еxtract-Mın

Extract-Min

- Delete min \checkmark
- Meld childen into root list and unmark them \checkmark
- Consolidate so that no roots have the same degree (\# children) \checkmark
- Update minimum \checkmark

Every root becomes child of another root at most once!
$d(n)$ is the maximum degree of a root in any Fibonacci heap of size n

Actual Costs: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x
- Decrease the key of x (given by a pointer)

Fibonacci Heap: Decrease-Key

- Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:

Fibonacci Heap: Decrease-Key

Decrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked,

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node X

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DECREASE-KEY of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Fibonacci Heap: Decrease-Key

DeCrease-Key of node x

- Decrease the key of x (given by a pointer)
- (Here we consider only cases where heap-order is violated)
\Rightarrow Cut tree rooted at x, unmark x, meld into root list and:
- Check if parent node is marked
- If unmarked, mark it (unless it is a root)
- If marked, unmark and meld it into root list and recurse (Cascading Cut)

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Amortized Analysis via Potential Method

- InSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual \mathcal{O} (trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$

Amortized Analysis via Potential Method

- Insert: actual $\mathcal{O}(1)$
- Extract-Min: actual \mathcal{O} (trees $(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(\#$ cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis via Potential Method

- INSERT:
actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$
- Decrease-Key: actual \mathcal{O} (\# cuts $) \leq \mathcal{O}(\operatorname{marks}(H))$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Lifecycle of a node

Amortized Analysis via Potential Method

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n)) \quad$ amortized $\mathcal{O}(d(n))$?
- Decrease-Key: actual \mathcal{O} (\# cuts) $\leq \mathcal{O}($ marks $(H))$ amortized $\mathcal{O}(1)$?

$\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)$

Lifecycle of a node

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- DECREASE-KEY: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\tilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

Amortized Analysis of Decrease-Key

Actual Cost

- Decrease-Key: $\mathcal{O}(x+1)$, where x is the number of cuts.

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

First Coin \sim pays cut Second Coin \sim increase of trees (H)

Change in Potential

- $\operatorname{trees}\left(H^{\prime}\right)=\operatorname{trees}(H)+x$
- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)-x+2$
$\Rightarrow \Delta \Phi \leq x+2 \cdot(-x+2)=4-x$.

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(x+1)+4-x=\mathcal{O}(1)
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Min: $\mathcal{O}(\operatorname{trees}(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right)$? marks (H)

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks($\left.H^{\prime}\right)$? marks (H)

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
degrees

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})=\mathcal{O}(d(n))
$$

Amortized Analysis of Extract-Min

Actual Cost

- Extract-Mın: $\mathcal{O}($ trees $(H)+d(n))$

$$
\Phi(H)=\operatorname{trees}(H)+2 \cdot \operatorname{marks}(H)
$$

Change in Potential

- marks $\left(H^{\prime}\right) \leq \operatorname{marks}(H)$
- $\operatorname{trees}\left(H^{\prime}\right) \leq d(n)+1$
$\Rightarrow \Delta \Phi \leq d(n)+1-\operatorname{trees}(H)$
degrees

Amortized Cost

$$
\widetilde{c}_{i}=c_{i}+\Delta \Phi \leq \mathcal{O}(\operatorname{trees}(\mathrm{H})+d(n))+d(n)+1-\operatorname{trees}(\mathrm{H})=\mathcal{O}(d(n))
$$

How to bound $d(n)$?

Outline

Recap of Insert, Extract-Min and Decrease-Key

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap
Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Bounding the Maximum Degree

Binomial Heap

Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Fibonacci Heap
Not all trees are binomial trees, but still $d(n) \leq \log _{\varphi} n$, where $\varphi \approx 1.62$.

Bounding the Maximum Degree

Binomial Heap

Every tree is a binomial tree $\Rightarrow d(n) \leq \log _{2} n$.

Fibonacci Heap
Not all trees are binomial trees, but still $d(n) \leq \log _{\varphi} n$, where $\varphi \approx 1.62$.

```
Skip Analysis
```


Lower Bounding Degrees of Children

$$
d(n) \leq \log _{\varphi} n
$$

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment and $d_{1}, d_{2}, \ldots, d_{k}$ be their degrees

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least φ^{k} nodes.

$$
d(n) \leq \log _{\varphi} n
$$

- Consider any node x of degree k (not necessarily a root) at the final state
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in the order of attachment and $d_{1}, d_{2}, \ldots, d_{k}$ be their degrees
$\Rightarrow \quad \forall 1 \leq i \leq k: \quad d_{i} \geq i-2$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0) \quad N(1)$

- 0

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0) \quad N(1)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$N(0)$	$N(1)$	$N(2)$	$N(3)$	
$\bullet 0$	$\bullet 1$	0	0	0
0	0	0	0	0

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.
$N(0)$

- 0

$N(3)$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
N(0)=1 \quad N(1)
$$

$$
N(2)
$$

$$
N(3)
$$

$$
N(4)
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2) & N(3) \\
0 & 0 & 0 & 0
\end{array}
$$

$$
N(4)
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3) \\
0 & 0 & 0 & 0
\end{array}
$$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
0 & \bullet 1 & 0 & 0<0
\end{array}
$$

$N(4)$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \emptyset_{0}^{1} & \bullet 0 & \bullet 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \emptyset_{0}^{1} & ๑_{0}^{2} & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \emptyset_{0}^{1} & 0_{0} & 0 \\
& 0 & 0 & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{llll}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \varrho_{0}^{1} & 0.0 & 0
\end{array}
$$

$N(4)=8$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
\begin{array}{cccc}
N(0)=1 & N(1)=2 & N(2)=3 & N(3)=5 \\
\bullet 0 & \bullet_{0}^{1} & 0.2 & 3 \\
& 0 & \bullet 0 & 0
\end{array}
$$

$$
N(4)=8=5+3
$$

From Degrees to Minimum Subtree Sizes

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

Definition
Let $N(k)$ be the minimum possible number of nodes of a subtree rooted at a node of degree k.

$$
N(k)=F(k+2) ?
$$

$$
N(0)=1 \quad N(1)=2 \quad N(2)=3
$$

$$
N(3)=5
$$

$$
N(4)=8=5+3
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2 \quad N(k)=F(k+2) ?
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2 \quad N(k)=F(k+2) ?
$$

From Minimum Subtree Sizes to Fibonacci Numbers

$$
\forall 1 \leq i \leq k: \quad d_{i} \geq i-2
$$

$$
N(k)=F(k+2) ?
$$

$$
\begin{aligned}
& N(k)= \\
& \\
& \quad \begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{\ell=0}^{k-2} N(\ell) \\
& =N(k-1+1)+N(k-2) \\
& =F(k+1)+F(k)=F(k+2)
\end{aligned}
\end{aligned}
$$

Exponential Growth of Fibonacci Numbers

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$ 2

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$.

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
F(k+2)=
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step ($k \geq 2$):

$$
F(k+2)=F(k+1)+F(k)
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step $(k \geq 2)$:

$$
\begin{aligned}
F(k+2) & =F(k+1)+F(k) \quad \text { (by the inductive hypothesis) } \\
& \geq \varphi^{k-1}+\varphi^{k-2} \quad
\end{aligned}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step ($k \geq 2$):

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) \\
& \geq \varphi^{k-1}+\varphi^{k-2} \quad \text { (by the inductive hypothesis) } \\
& =\varphi^{k-2} \cdot(\varphi+1)
\end{array}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step ($k \geq 2$):

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) & \\
& \geq \varphi^{k-1}+\varphi^{k-2} & \\
& =\varphi^{k-2} \cdot(\varphi+1) & \\
& =\varphi^{k-2} \cdot \varphi^{2} & \left(\varphi^{2}=\varphi+1\right)
\end{array}
$$

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers $k \geq 0$, the $(k+2)$ nd Fib. number satisfies $F(k+2) \geq \varphi^{k}$, where $\varphi=(1+\sqrt{5}) / 2=1.61803 \ldots$

$$
\varphi^{2}=\varphi+1
$$

Fibonacci Numbers grow at least exponentially fast in k.

Proof by induction on k :

- Base $k=0: F(2)=1$ and $\varphi^{0}=1 \checkmark$
- Base $k=1: F(3)=2$ and $\varphi^{1} \approx 1.619<2 \checkmark$
- Inductive Step ($k \geq 2$):

$$
\begin{array}{rlr}
F(k+2) & =F(k+1)+F(k) & \\
& \geq \varphi^{k-1}+\varphi^{k-2} & \text { (by the inductive hypothesis) } \\
& =\varphi^{k-2} \cdot(\varphi+1) & \\
& =\varphi^{k-2} \cdot \varphi^{2} & \left(\varphi^{2}=\varphi+1\right) \\
& =\varphi^{k} &
\end{array}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$N(k)$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
N(k)=F(k+2)
$$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
N(k)=F(k+2) \geq \varphi^{k}
$$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
n \geq N(k)=F(k+2) \geq \varphi^{k}
$$

Putting the Pieces Together

Amortized Analysis

- INSERT: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost $\mathcal{O}(d(n))$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
\begin{aligned}
n \geq N(k)=F(k+2) & \geq \varphi^{k} \\
\log _{\varphi} n & \geq k
\end{aligned}
$$

Putting the Pieces Together

Amortized Analysis

- Insert: amortized cost $\mathcal{O}(1)$
- Extract-Min: amortized cost Of(d) \mathcal{O}) $(\log n)$
- Decrease-Key: amortized cost $\mathcal{O}(1)$

$$
\begin{aligned}
n \geq N(k)=F(k+2) & \geq \varphi^{k} \\
\log _{\varphi} n & \geq k
\end{aligned}
$$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$$
\Phi(H)=\operatorname{trees}(H)
$$

What if we don't have marked nodes?

- InSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual \mathcal{O} (trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1)$
- Extract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1) \quad$ amortized $\mathcal{O}(1)$
- EXtract-Min: actual $\mathcal{O}($ trees $(H)+d(n))$ amortized $\mathcal{O}(d(n))$
- Decrease-Key: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

What if we don't have marked nodes?

- INSERT: actual $\mathcal{O}(1) \quad$ amortized $\mathcal{O}(1)$
- EXTRACT-MIN: actual $\mathcal{O}(\operatorname{trees}(H)+d(n))$ amortized $\mathcal{O}(d(n)) \neq \mathcal{O}(\log n)$
- Decrease-Key: actual $\mathcal{O}(1)$ amortized $\mathcal{O}(1)$

$\Phi(H)=\operatorname{trees}(H)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Can we perform EXTRACT-MIN in o(log $n) ?$				
Operation	Linked list	Binary heap	Binomia	heap
Fibon. heap				
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

If this was possible, then there would be a sorting algorithm with runtime $o(n \log n)$!

Can we perform EXTRACT-MIN in $\mathcal{O}(\log n) ?$							
Operation	Linked list	Binary heap	Binomid feap	Fibon. heap			
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$			
$\underline{\text { INSERT }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$			
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$			
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$			

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
INSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
UNION	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
Make-Heap	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
InSERT	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Minimum	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Extract-Min	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Union	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Decrease-Key	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
Delete	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
DELETE = DECREASE-KEY + EXTRACT-MIN				
EXTRACT-MIN $=$ MIN + DELETE				
40				

Summary

Operation	Linked list	Binary heap	Binomial heap	Fibon. heap
MAKE-HEAP	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\underline{\text { INSERT }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
MINIMUM	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
EXTRACT-MIN	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
$\underline{\text { UNION }}$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DECREASE-KEY	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$
DELETE	$\mathcal{O}(1)$	$\mathcal{O}(\operatorname{lon} n)$	$\mathcal{O}(\operatorname{lon} n)$	$\mathcal{O})$
Crucial for many applications including				
shortest paths and minimum spanning trees!				

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
\Rightarrow less efficient than the original Fibonacci heap

Recent Studies

- Fibonacci Numbers were discovered >800 years ago
- Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap (STOC'12)

Strict Fibonacci Heap:

- pointer-based heap implementation similar to Fibonacci Heaps
- achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap (ICALP'15)

- Queries to marked bits are intercepted and responded with a random bit
- several lower bounds on the amortized cost in terms of the size of the heap and the number of operations
\Rightarrow less efficient than the original Fibonacci heap
\Rightarrow marked bit is not redundant!

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap amortized cost	Van Emde Boas Tree actual cost
$\frac{\mathcal{I N S E R T}}{\mathrm{MINIMUM}}$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
EXTRACT-MIN	$\mathcal{O}(1)$	$\mathcal{O}(1)$
MERGE/UNION	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
DECREASE-KEY	$\mathcal{O}(1)$	-
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
SUCC	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log \log u)$
MAXIMUM	-	$\mathcal{O}(1)$

Outlook: A More Efficient Priority Queue for fixed Universe

Operation	Fibonacci heap amortized cost	Van Emde Boas Tree actual cost
$\frac{\mathcal{I N S E R T}}{\text { MINIMUM }}$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
EXTRACT-MIN	$\mathcal{O}(1)$	$\mathcal{O}(1)$
MERGE/UNION $n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log \log u)$
DECREASE-KEY	$\mathcal{O}(1)$	-
DELETE	$\mathcal{O}(\log n)$	$\mathcal{O}(\log \log u)$
SUCC	-	$\mathcal{O}(\log \log u)$
PRED	-	$\mathcal{O}(\log \log u)$
MAXIMUM	-	$\mathcal{O}(1)$

all this requires key values to be in a universe of size u !

5.3: Disjoint Sets

Thomas Sauerwald

Outline

Disjoint Sets

Disjoint Sets (aka Union Find)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
$h_{1}=$ FindSet (y)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
$h_{1}=$ FindSet (y)

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{4}=\operatorname{Union}\left(h_{0}, h_{3}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

- Handle MakeSet (Item x)

Precondition: none of the existing sets contains x
Behaviour: create a new set $\{x\}$ and return its handle

- Handle FindSet (Item x)

Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

- Handle Union (Handle h, Handle g)

Precondition: $\mathrm{h} \neq \mathrm{g}$
Behaviour: merge two disjoint sets and return handle of new set
$h_{5}=$ Union $\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

First Attempt: List Implementation

Union $\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

First Attempt: List Implementation

First Attempt: List Implementation

UNION-Operation

- Add extra pointer to the last element in each list

First Attempt: List Implementation

$\operatorname{Union}\left(h_{1}, h_{2}\right)$

First Attempt: List Implementation

Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

First Attempt: List Implementation

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time

Union $\left(h_{1}, h_{2}\right)$

FIndSet-Operation

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FINDSET-Operation

- Add backward pointer to the list head from everywhere

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

- Union-Operation
- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FINDSET-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FINDSET takes constant time

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

$\operatorname{Union}\left(h_{1}, h_{2}\right)$

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

_ Union-Operation

- Add extra pointer to the last element in each list
\Rightarrow UNION takes constant time

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FINDSET takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

Need to update all backward pointers!

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation

FindSet-Operation

- Add backward pointer to the list head from everywhere
\Rightarrow FindSeT takes constant time
$\operatorname{Union}\left(h_{1}, h_{2}\right)$

Need to update all backward pointers!

FindSet $\left(z_{3}\right)$

First Attempt: List Implementation (Analysis)

$$
d=\text { DisjointSet() }
$$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d . \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . \operatorname{Union}\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d \cdot \operatorname{MakeSet}\left(x_{3}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

First Attempt: List Implementation (Analysis)
$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d . \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

Cost for n UNION operations: $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

First Attempt: List Implementation (Analysis)

$d=$ DisjointSet()
$h_{0}=d . \operatorname{MakeSet}\left(x_{0}\right)$
$h_{1}=d . \operatorname{MakeSet}\left(x_{1}\right)$
$h_{0}=d . U n i o n\left(h_{1}, h_{0}\right)$
$h_{2}=d \operatorname{MakeSet}\left(x_{2}\right)$
$h_{0}=d . U n i o n\left(h_{2}, h_{0}\right)$
$h_{3}=d \operatorname{MakeSet}\left(x_{3}\right)$
$h_{0}=d . U n i o n\left(h_{3}, h_{0}\right)$

better to append shorter list to longer \rightsquigarrow Weighted-Union Heuristic

Cost for n UNION operations: $\sum_{i=1}^{n} i=\Theta\left(n^{2}\right)$

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)
can be done easily without significant overhead

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily)
can be done easily without significant overhead

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Weighted-Union Heuristic

Weighted-Union Heuristic

- Keep track of the length of each list
- Append shorter list to the longer list (breaking ties arbitrarily) can be done easily without significant overhead

Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Amortized Analysis: Every operation has amortized cost $\mathcal{O}(\log n)$, but there may be operations with total $\operatorname{cost} \Theta(n)$.

Analysis of Weighted-Union Heuristic

> Theorem 21.1
> Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Analysis of Weighted-Union Heuristic

> Theorem 21.1
> Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

Analysis of Weighted-Union Heuristic

> Theorem 21.1
> Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations

Analysis of Weighted-Union Heuristic

Theorem 21.1
 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

> Theorem 21.1 Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, Make-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, Make-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Analysis of Weighted-Union Heuristic

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of which are MAKESET operations, takes $\mathcal{O}(m+n \cdot \log n)$ time.

Proof:
Can we improve on this further?

- n MAKE-SET operations \Rightarrow at most $n-1$ UNION operations
- Consider element x and the number of updates of its backward pointer
- After each update of x, its set increases by a factor of at least 2
\Rightarrow Backward pointer of x is updated at most $\log _{2} n$ times
- Other updates for Union, Make-Set \& Find-Set take $\mathcal{O}(1)$ time per operation

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- UnIon: $\mathcal{O}(1)$

How to Improve?

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- UNION: $\mathcal{O}(1)$

Weighted-Union Heuristic

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(1)$
- UNION: $\mathcal{O}(\log n)$ (amortized)

How to Improve?

Doubly-Linked List

- MakeSet: $\mathcal{O}(1)$
- FindSet: $\mathcal{O}(n)$
- UNION: $\mathcal{O}(1)$

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)

Disjoint Sets via Forests

$$
\{b, c, e, h\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)

Disjoint Sets via Forests

$$
\{b, c, e, h\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Disjoint Sets via Forests

$$
\{b, c, e, h\} \quad\{d, f, g\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Disjoint Sets via Forests

$$
\{b, c, e, h\} \quad\{d, f, g\} \quad\{b, c, d, e, f, g, h\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- Union: Merge the two trees

Disjoint Sets via Forests

$\{b, c, e, h\} \quad\{d, f, g\}$
$\{b, c, d, e, f, g, h\}$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- Union: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

$$
\{b, c, e, h\} \quad\{d, f, g\} \quad\{b, c, d, e, f, g, h\}
$$

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- UnION: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- Union: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Disjoint Sets via Forests

Forest Structure

- Set is represented by a rooted tree with root being the representative
- Every node has pointer . p to its parent (for root $x, x . p=x$)
- Union: Merge the two trees

Append tree of smaller height \rightsquigarrow Union by Rank

Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :

b


```
0: FindSet (x)
1: if }x\not=x.
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :

b


```
0: FindSet (x)
1: if }x\not=x.
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b):


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet(x)
1: if x\not=x.p
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b):

b


```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :

b


```
0: FindSet (x)
1: if x\not=x.p
2: x.p = FindSet (x.p)
3: return x.p
```


Path Compression during FindSet

FindSet (b) :


```
0: FindSet (x)
1: if x\not=x.p
2: }\quadx.p=FindSet (x.p
3: return x.p
```


Path Compression during FindSet

FindSet (b) :

Maintaining the exact height

 would be costly, hence rank is only an upper bound!```
0: FindSet (x)
1: if }x\not=x.
2: }\quad\quad\quad.p=FindSet (x.p
3: return x.p
```

Combining Union by Rank and Path Compression

Theorem 21.14
Any sequence of $m$ MAKESET, Union, FindSet operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

## Combining Union by Rank and Path Compression

Any sequence of $m$ MAKESET, Union, FINdSET operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

## Combining Union by Rank and Path Compression

Any sequence of $m$ MAKESET, Union, FindSet operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

More than the number of atoms in the universe!

## Combining Union by Rank and Path Compression

Any sequence of $m$ MAKESET, UNION, FINDSET operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

$\log ^{*}(n)$, the iterated logarithm, satifies $\alpha(n) \leq \log ^{*}(n)$, but still $\log ^{*}\left(10^{80}\right)=5$.

## Combining Union by Rank and Path Compression

Any sequence of $m$ MAKESET, Union, FINdSET operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

## Combining Union by Rank and Path Compression

Data Structure is essentially optimal! (for more details see CLRS)
Theorem 21.14


Any sequence of $m$ MAKESET, UnION, FINDSET operations, $n$ of which are MAKESET operations, can be performed in $\mathcal{O}(m \cdot \alpha(n))$ time.

In practice, $\alpha(n)$ is a small constant

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq 10^{80}\end{cases}
$$

Simulating the Effects of Union by Rank and Path Compression

## Simulating the Effects of Union by Rank and Path Compression

## Experimental Setup

1. Initialise singletons $1,2, \ldots, 300$
2. For every $1 \leq i \leq 300$, pick a random $1 \leq r \leq 300, r \neq i$ and perform Union(FindSet(i), FindSet $(r)$ )

## Simulating the Effects of Union by Rank and Path Compression

## Experimental Setup

1. Initialise singletons $1,2, \ldots, 300$
2. For every $1 \leq i \leq 300$, pick a random $1 \leq r \leq 300, r \neq i$ and perform Union(FindSet(i), FindSET(r))
3. Perform $j \in\{0,100,200,300,600,900,1200,1500,1800\}$ many additional FINDSET $(r)$, where $1 \leq r \leq 300$ is random

## Union by Rank without Path Compression



## Union by Rank with Path Compression



## Union by Rank with Path Compression (100 additional FindSet)



## Union by Rank with Path Compression (200 additional FindSet)


5.3: Disjoint Sets

## Union by Rank with Path Compression (300 additional FindSet)



## Union by Rank with Path Compression (600 additional FindSet)



## Union by Rank with Path Compression (900 additional FindSet)



## Union by Rank with Path Compression (1200 additional FindSet)



## Union by Rank with Path Compression (1500 additional FindSet)



## Union by Rank with Path Compression (1800 additional FindSet)



## Union by Rank with Path Compression (1800 additional FindSet)



## Overview

|  | Union by Rank | Union by Rank <br> \& Path Compression |
| :---: | :---: | :---: |
| 300 MAKESET \& 300 UNION | 2.12 | 1.75 |
| 100 extra FINDSET | 2.12 | 1.53 |
| 200 extra FINDSET | 2.12 | 1.35 |
| 300 extra FINDSET | 2.12 | 1.22 |
| 600 extra FINDSET | 2.12 | 1.08 |
| 900 extra FINDSET | 2.12 | 1.02 |
| 1200 extra FINDSET | 2.12 | 1.01 |
| 1500 extra FINDSET | 2.12 | 1.00 |
| 1800 extra FINDSET | 2.12 | 0.98 |



## 6.1 \& 6.2: Graph Searching

Frank Stajano

Thomas Sauerwald

## Outline

# Introduction to Graphs and Graph Searching 

## Breadth-First Search

## Depth-First Search

## Topological Sort

## Origin of Graph Theory



Seven Bridges at Königsberg 1737

## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia
Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge exactly once?

## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia
Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge exactly once?

## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia

Seven Bridges at Königsberg 1737


Is there a tour which crosses each bridge exactly once?
(B) (D)


## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia

Seven Bridges at Königsberg 1737


Is there a tour which crosses each bridge exactly once?

## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia

Seven Bridges at Königsberg 1737


Is there a tour which crosses each bridge exactly once?


Is there a tour which visits every island exactly once?

## Origin of Graph Theory



Source: Wikipedia


Source: Wikipedia

Seven Bridges at Königsberg 1737


Is there a tour which crosses each bridge exactly once?


Is there a tour which visits every island exactly once?
$\rightsquigarrow 1 B$ course: Complexity Theory

## What is a Graph?

Directed Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


## What is a Graph?

Directed Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)



## What is a Graph?

Directed Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$

## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges



## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$



$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges

Paths and Connectivity

- A sequence of edges between two vertices forms a path


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

## What is a Graph?

## Path $p=(1,2,3,4)$



$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$



$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)

Undirected Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges

Paths and Connectivity

- A sequence of edges between two vertices forms a path

Path $p=(1,2,3,1)$, which is a cycle


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$


$V=\{1,2,3,4\}$
$E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}$

## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges

Paths and Connectivity

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then $G$ is connected

Undirected Graph
A graph $G=(V, E)$ consists of:


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


## $G$ is not connected

 Undirected Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$

- A sequence of edges between two vertices forms a path
- If each pair of vertices has a path linking them, then $G$ is connected


$V=\{1,2,3,4\}$
$E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}$


## What is a Graph?

## Directed Graph

A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of edges (arcs)


## $G$ is not connected

 Undirected Graph
A graph $G=(V, E)$ consists of:

- $V$ : the set of vertices
- $E$ : the set of (undirected) edges

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{(1,2),(1,3),(2,3),(3,1),(3,4)\}
\end{aligned}
$$

- A sequence of edges between two
vertices forms a path
- If each pair of vertices has a path linking them, then $G$ is connected


$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},\{1,3\},\{2,3\},\{3,4\}\}
\end{aligned}
$$

Later: edge-weighted graphs $G=(V, E, w)$

## Representations of Directed and Undirected Graphs


(a)

(b)

|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 |
|  |  |  |  |  |  |

(c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph $G$ with 5 vertices and 7 edges. (b) An adjacency-list representation of $G$. (c) The adjacency-matrix representation of $G$.

## Representations of Directed and Undirected Graphs


(a)

(b)

|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 |
|  |  |  |  |  |  |

(c)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph $G$ with 5 vertices and 7 edges. (b) An adjacency-list representation of $G$. (c) The adjacency-matrix representation of $G$.

Most times we will use the adjacency-list representation!


Figure 22.2 Two representations of a directed graph. (a) A directed graph $G$ with 6 vertices and 8 edges. (b) An adjacency-list representation of $G$. (c) The adjacency-matrix representation of $G$.

## Overview



Overview


## Overview



## Overview



Priority Queues


Dynamic Programming


## Overview



## Graph Searching



Overview

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.


## Graph Searching



Overview

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.
- Two strategies: Breadth-First-Search and Depth-First-Search


## Graph Searching



Overview

- Graph searching means traversing a graph via the edges in order to visit all vertices
- useful for identifying connected components, computing the diameter etc.
- Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of $V$ and $E$ (often write just $V$ instead of $|V|$, and $E$ instead of $|E|$ )

## Outline

# Introduction to Graphs and Graph Searching 

Breadth-First Search

## Depth-First Search

## Topological Sort

## Breadth-First Search: Basic Ideas



Basic Idea

- Given an undirected/directed graph $G=(V, E)$ and source vertex $s$


## Breadth-First Search: Basic Ideas



Basic Idea

- Given an undirected/directed graph $G=(V, E)$ and source vertex $s$
- BFS sends out a wave from $s \rightsquigarrow$ compute distances/shortest paths


## Breadth-First Search: Basic Ideas



Basic Idea

- Given an undirected/directed graph $G=(V, E)$ and source vertex $s$
- BFS sends out a wave from $s \rightsquigarrow$ compute distances/shortest paths
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors (=adjacent vertices)
Black = Visited and all neighbors

## Breadth-First-Search: Pseudocode

```
0: def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source }
3:
4: assert(s in G.vertices())
5:
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
12:
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u=Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1
26: v.predecessor =u
27: Q.insert(v)
28: u.colour = "black"
```


## Breadth-First-Search: Pseudocode

```
def bfs(G,s)
1: Run BFS on the given graph G
2: starting from source s
4: assert(s in G.vertices())
6: # Initialize graph and queue
7: for v in G.vertices():
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
11: Q = Queue()
13: # Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d=u.d+1
26: v.predecessor =u
27: Q.insert(v)
28: u.colour = "black"
```

5:
12:
17:

- From any vertex, visit all adjacent vertices before going any deeper


## Breadth-First-Search: Pseudocode

```
0: def bfs(G,s)
```

0: def bfs(G,s)
1: Run BFS on the given graph G
1: Run BFS on the given graph G
2: starting from source s
2: starting from source s
4: assert(s in G.vertices())
4: assert(s in G.vertices())
6: \# Initialize graph and queue
6: \# Initialize graph and queue
7: for v in G.vertices():
7: for v in G.vertices():
8: v.predecessor = None
8: v.predecessor = None
9: v.d = Infinity \# .d = distance from s
9: v.d = Infinity \# .d = distance from s
10: v.colour = "white"
10: v.colour = "white"
11: Q = Queue()
11: Q = Queue()
12:
13: \# Visit source vertex
13: \# Visit source vertex
14: s.d = 0
14: s.d = 0
15: s.colour = "grey"
15: s.colour = "grey"
16: Q.insert(s)
16: Q.insert(s)
17:
18: \# Visit the adjacents of each vertex in Q
18: \# Visit the adjacents of each vertex in Q
9: while not Q.isEmpty():
9: while not Q.isEmpty():
20: u = Q.extract()
20: u = Q.extract()
21: assert (u.colour == "grey")
21: assert (u.colour == "grey")
22: for v in u.adjacent()
22: for v in u.adjacent()
23: if v.colour = "white"
23: if v.colour = "white"
24: v.colour = "grey"
24: v.colour = "grey"
25: v.d=u.d+1
25: v.d=u.d+1
26: v.predecessor =u
26: v.predecessor =u
27: Q.insert(v)
27: Q.insert(v)
28: u.colour = "black"
28: u.colour = "black"
3:
5:

```
- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors

\section*{Breadth-First-Search: Pseudocode}
```

0: def bfs(G,s)

```
0: def bfs(G,s)
1: Run BFS on the given graph G
1: Run BFS on the given graph G
2: starting from source s
2: starting from source s
4: assert(s in G.vertices())
4: assert(s in G.vertices())
6: # Initialize graph and queue
6: # Initialize graph and queue
7: for v in G.vertices():
7: for v in G.vertices():
8: v.predecessor = None
8: v.predecessor = None
9: v.d = Infinity # .d = distance from s
9: v.d = Infinity # .d = distance from s
10: v.colour = "white"
10: v.colour = "white"
11: Q = Queue()
11: Q = Queue()
12:
13: # Visit source vertex
13: # Visit source vertex
14: s.d = 0
14: s.d = 0
15: s.colour = "grey"
15: s.colour = "grey"
16: Q.insert(s)
16: Q.insert(s)
17:
18: # Visit the adjacents of each vertex in Q
18: # Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
19: while not Q.isEmpty():
20: u = Q.extract()
20: u = Q.extract()
21: assert (u.colour == "grey")
21: assert (u.colour == "grey")
22: for v in u.adjacent()
22: for v in u.adjacent()
23: if v.colour = "white"
23: if v.colour = "white"
24: v.colour = "grey"
24: v.colour = "grey"
25: v.d=u.d+1
25: v.d=u.d+1
26: v.predecessor =u
26: v.predecessor =u
27: Q.insert(v)
27: Q.insert(v)
28: u.colour = "black"
28: u.colour = "black"
5:
```

- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors

- Runtime ???


## Breadth-First-Search: Pseudocode

```
0: def bfs(G,s)
```

0: def bfs(G,s)
1: Run BFS on the given graph G
1: Run BFS on the given graph G
2: starting from source s
2: starting from source s
4: assert(s in G.vertices())
4: assert(s in G.vertices())
6: \# Initialize graph and queue
6: \# Initialize graph and queue
7: for v in G.vertices():
7: for v in G.vertices():
8: v.predecessor = None
8: v.predecessor = None
9: v.d = Infinity \# .d = distance from s
9: v.d = Infinity \# .d = distance from s
10: v.colour = "white"
10: v.colour = "white"
11: Q = Queue()
11: Q = Queue()
12:
13: \# Visit source vertex
13: \# Visit source vertex
14: s.d = 0
14: s.d = 0
15: s.colour = "grey"
15: s.colour = "grey"
16: Q.insert(s)
16: Q.insert(s)
17:
18: \# Visit the adjacents of each vertex in Q
18: \# Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
19: while not Q.isEmpty():
20: u = Q.extract()
20: u = Q.extract()
21: assert (u.colour == "grey")
21: assert (u.colour == "grey")
22: for v in u.adjacent()
22: for v in u.adjacent()
23: if v.colour = "white"
23: if v.colour = "white"
24: v.colour = "grey"
24: v.colour = "grey"
25: v.d=u.d+1
25: v.d=u.d+1
26: v.predecessor =u
26: v.predecessor =u
27: Q.insert(v)
27: Q.insert(v)
28: u.colour = "black"
28: u.colour = "black"
5:

```
- From any vertex, visit all adjacent vertices before going any deeper
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors
- Runtime ???

\section*{Breadth-First-Search: Pseudocode}
```

def bfs(G,s)
Run BFS on the given graph G
starting from source s
assert(s in G.vertices())

# Initialize graph and queue

for v in G.vertices():
v.predecessor = None
v.d = Infinity \# .d = distance from s
v.colour = "white"
Q = Queue()
13: \# Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
18: \# Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25:
26: v.predecessor =u
27: Q.insert(v)
28: u.colour = "black"

```
\(12:\)
17:

Assuming that all executions of the FOR-loop for \(u\) takes \(O(|u . a d j|)\) (adjacency list model!)

\section*{Breadth-First-Search: Pseudocode}
```

def bfs(G,s)
Run BFS on the given graph G
starting from source s
assert(s in G.vertices())

# Initialize graph and queue

for v in G.vertices():
v.predecessor = None
v.d = Infinity \# .d = distance from s
v.colour = "white"
Q = Queue()
13: \# Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
18: \# Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d=u.d+1
26: v.predecessor =u
27: Q.insert(v)
28: u.colour = "black"

```

Assuming that all executions of the FOR-loop for \(u\) takes \(O(|u . a d j|)\) (adjacency list model!)
\(12:\)
17:

\section*{Breadth-First-Search: Pseudocode}
```

def bfs(G,s)
Run BFS on the given graph G
starting from source s
assert(s in G.vertices())

# Initialize graph and queue

for v in G.vertices():
v.predecessor = None
v.d = Infinity \# .d = distance from s
v.colour = "white"
Q = Queue()
13: \# Visit source vertex
14: s.d = 0
15: s.colour = "grey"
16: Q.insert(s)
18: \# Visit the adjacents of each vertex in Q
19: while not Q.isEmpty():
20: u = Q.extract()
21: assert (u.colour == "grey")
22: for v in u.adjacent()
23: if v.colour = "white"
24: v.colour = "grey"
25: v.d=u.d+1
26: v.predecessor =u
27: Q.insert(v)
28: u.colour = "black"

```

Assuming that all executions of the FOR-loop for \(u\) takes \(O(|u . a d j|)\) (adjacency list model!)
12:
17:

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue:}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(s\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \\ K}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \\ k}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(k \quad r\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(k \quad r\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \({ }^{\text {k }} \quad\) r}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: K r w}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: K X w}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: K X w}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: K X w}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: K X w}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\nless<\) w v}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\nless<\) w v}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \nless X\) K \(v\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \nless X\) K \(v\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \nless X\) K \(v\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \lll \lll\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \lll \lll t\)}

\section*{Execution of BFS (Figure 22.3)}

\section*{Queue: \(\quad \lll \ll k t\)}

Execution of BFS (Figure 22.3)
\[
\text { Queue: } \quad \nless \quad X \quad \text { Wr } v<t \quad x
\]

Execution of BFS (Figure 22.3)
\[
\text { Queue: } \quad \nless \quad X \quad \text { Wr } v<t \quad x
\]

Execution of BFS (Figure 22.3)

\section*{}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(K \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(K \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(K \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(X \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(X \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X\) K \(K \quad X \quad x \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \nless X \quad \not K K \quad X \quad X \quad u\)}

Execution of BFS (Figure 22.3)

Execution of BFS (Figure 22.3)

\section*{}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{Queue: \(\quad \forall x \times 2 \times x\)}

Execution of BFS (Figure 22.3)

\section*{}

\section*{Outline}

\title{
Introduction to Graphs and Graph Searching
}

\section*{Breadth-First Search}

\author{
Depth-First Search
}

\author{
Topological Sort
}

\section*{Depth-First Search: Basic Ideas}

Basic Idea
- Given an undirected/directed graph \(G=(V, E)\) and source vertex \(s\)

\section*{Depth-First Search: Basic Ideas}

Basic Idea
- Given an undirected/directed graph \(G=(V, E)\) and source vertex \(s\)
- As soon as we discover a vertex, explore from it \(\rightsquigarrow\) Solving Mazes

\section*{Depth-First Search: Basic Ideas}

Basic Idea
- Given an undirected/directed graph \(G=(V, E)\) and source vertex \(s\)
- As soon as we discover a vertex, explore from it \(\rightsquigarrow\) Solving Mazes
- Two time stamps for every vertex: Discovery Time, Finishing Time

\section*{Depth-First-Search: Pseudocode}
```

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: \# Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"
10: dfsRecurse(G,s)
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() \# .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() \# .f = finish time

```

\section*{Depth-First-Search: Pseudocode}
```

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: \# Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"
10: dfsRecurse(G,s)
0: def dfsRecurse(G,s):
1: s.colour = "grey"
2: s.d = time() \# .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f = time() \# .f = finish time

```
- We always go deeper before visiting other neighbors

\section*{Depth-First-Search: Pseudocode}
```

0: def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
3:
4: assert(s in G.vertices())
5:
6: \# Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
9: v.colour = "white"
10: dfsRecurse(G,s)

```
```

0: def dfsRecurse(G,s):

```
0: def dfsRecurse(G,s):
1: s.colour = "grey"
1: s.colour = "grey"
2: s.d=time() # .d = discovery time
2: s.d=time() # .d = discovery time
3: for v in s.adjacent()
3: for v in s.adjacent()
4: if v.colour = "white"
4: if v.colour = "white"
5: v.predecessor = s
5: v.predecessor = s
6: dfsRecurse(G,v)
6: dfsRecurse(G,v)
7: s.colour = "black"
7: s.colour = "black"
8: s.f = time() # .f = finish time
```

8: s.f = time() \# .f = finish time

```
- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f

\section*{Depth-First-Search: Pseudocode}
```

def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
4: assert(s in G.vertices())
6: \# Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
v.colour = "white"
dfsRecurse(G,s)

```
3:
\(5:\)
0 : def dfsRecurse(G,s):
1: s.colour = "grey"
2: \(\quad\) s.d = time() \# .d = discovery time
3: for \(v\) in s.adjacent()
4: \(\quad\) if v.colour = "white"
5: \(\quad\) v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: \(\quad\) s.f = time() \# .f = finish time
- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors

\section*{Depth-First-Search: Pseudocode}
```

def dfs(G,s):
1: Run DFS on the given graph G
2: starting from the given source s
4: assert(s in G.vertices())
6: \# Initialize graph
7: for v in G.vertices():
8: v.predecessor = None
v.colour = "white"
dfsRecurse(G,s)

```
3:
5:
0 : def dfsRecurse(G,s):
1: s.colour = "grey"
2: \(\quad\) s.d = time() \# .d = discovery time
3: for v in s.adjacent()
4: if v.colour = "white"
5: \(\quad\) v.predecessor \(=s\)
6: dfsRecurse(G,v)
7: s.colour = "black"
8: \(\quad\) s.f = time() \# .f = finish time
- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors

\section*{Depth-First-Search: Pseudocode}
```

def dfs(G,s):
Run DFS on the given graph G
starting from the given source s
assert(s in G.vertices())
\# Initialize graph
for v in G.vertices():
v.predecessor = None
v.colour = "white"
dfsRecurse(G,s)

```
```

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time() \# .d = discovery time
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time() \# .f = finish time

```
- We always go deeper before visiting other neighbors
- Discovery and Finish times, .d and .f
- Vertex Colours:

White = Unvisited
Grey = Visited, but not all neighbors
Black = Visited and all neighbors
- Runtime \(O(V+E)\)

\section*{Execution of DFS}

6.1 \& 6.2: Graph Searching
T.S.

Execution of DFS

\section*{\(S\)}

6.1 \& 6.2: Graph Searching
T.S.

Execution of DFS

\section*{\(S\)}

6.1 \& 6.2: Graph Searching
T.S.

Execution of DFS

\section*{\(S\)}

6.1 \& 6.2: Graph Searching
T.S.

Execution of DFS

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{\(S\)}

\section*{Execution of DFS}

\section*{\(S\)}

\section*{Execution of DFS}

\section*{\(S\)}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{w}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{w}

\section*{Execution of DFS}

\section*{Execution of DFS}

\section*{Paranthesis Theorem (Theorem 22.7)}

\section*{Outline}

\title{
Introduction to Graphs and Graph Searching
}

\section*{Breadth-First Search}

\section*{Depth-First Search}

Topological Sort

\section*{Topological Sort}

\section*{Topological Sort}

\section*{Topological Sort}

\section*{Topological Sort}

\section*{Topological Sort}

\section*{Solving Topological Sort}

Knuth's Algorithm (1968)
- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time

\section*{Solving Topological Sort}

watch

Knuth's Algorithm (1968)
- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time
\[
\text { Runtime } O(V+E)
\]

\section*{Solving Topological Sort}

watch

Knuth's Algorithm (1968)
- Perform DFS's so that all vertices are visited
- Output vertices in decreasing order of their finishing time
\[
\text { Runtime } O(V+E)
\]

Don't need to sort the vertices - use DFS directly!

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Execution of Knuth's Algorithm}

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Correctness of Topological Sort using DFS}

If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored,

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey,

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey,

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black,

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v.f \(<u . f\).

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v. \(f<u . f\).
3. If \(v\) is white,

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v.f \(<u . f\).
3. If \(v\) is white, we call \(\operatorname{DFS}(v)\) and \(v . f<u . f\).

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v.f \(<u . f\).
3. If \(v\) is white, we call \(\operatorname{DFS}(v)\) and \(v . f<u . f\).

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v.f \(<u . f\).
3. If \(v\) is white, we call \(\operatorname{DFS}(v)\) and \(v . f<u . f\).

\(\Rightarrow\) In all cases \(v . f<u . f\), so \(v\) appears after \(u\).

\section*{Correctness of Topological Sort using DFS}

Theorem 22.12
If the input graph is a DAG, then the algorithm computes a linear order.

\section*{Proof:}
- Consider any edge \((u, v) \in E(G)\) being explored, \(\Rightarrow u\) is grey and we have to show that \(v . f<u . f\)
1. If \(v\) is grey, then there is a cycle (can't happen, because \(G\) is acyclic!).
2. If \(v\) is black, then v. \(f<u . f\).
3. If \(v\) is white, we call \(\operatorname{DFS}(v)\) and \(v . f<u . f\).

\(\Rightarrow\) In all cases \(v . f<u . f\), so \(v\) appears after \(u\).

\section*{Summary of Graph Searching}

Breadth-First-Search
- vertices are processed by a queue
- computes distances and shortest paths \(\rightsquigarrow\) similar idea used later in Prim's and Dijkstra's algorithm
- Runtime \(\mathcal{O}(V+E)\)

\section*{Summary of Graph Searching}

Breadth-First-Search
- vertices are processed by a queue
- computes distances and shortest paths \(\rightsquigarrow\) similar idea used later in Prim's and Dijkstra's algorithm
- Runtime \(\mathcal{O}(V+E)\)

Depth-First-Search
- vertices are processed by recursive calls (\(\approx\) stack)
- discovery and finishing times
- application: Topogical Sorting of DAGs

- Runtime \(\mathcal{O}(V+E)\)

\section*{6.3: Minimum Spanning Tree}

Thomas Sauerwald

\section*{Minimum Spanning Tree Problem}

Minimum Spanning Tree Problem
- Given: undirected, connected graph \(G=(V, E, w)\) with non-negative edge weights

\section*{Minimum Spanning Tree Problem}

Minimum Spanning Tree Problem
- Given: undirected, connected graph \(G=(V, E, w)\) with non-negative edge weights
- Goal: Find a subgraph \(\subseteq E\) of minimum total weight that links all vertices

\section*{Minimum Spanning Tree Problem}

Minimum Spanning Tree Problem
- Given: undirected, connected graph \(G=(V, E, w)\) with non-negative edge weights
- Goal: Find a subgraph \(\subseteq E\) of minimum total/weight that links all vertices

Must be necessarily a tree!

\section*{Minimum Spanning Tree Problem}

Minimum Spanning Tree Problem
- Given: undirected, connected graph \(G=(V, E, w)\) with non-negative edge weights
- Goal: Find a subgraph \(\subseteq E\) of minimum total weight that links all vertices

Applications
- Street Networks, Wiring Electronic Components, Laying Pipes
- Weights may represent distances, costs, travel times, capacities, resistance etc.

\section*{Generic Algorithm}

0 : def minimum spanningTree (G)
1: \(\quad A=\) empty set of edges
2: while \(A\) does not span all vertices yet:
3: add a safe edge to A

\section*{Generic Algorithm}
```

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

```

An edge of \(G\) is safe if by adding the edge to \(A\), the resulting subgraph is still a subset of a minimum spanning tree.

\section*{Generic Algorithm}
```

0: def minimum spanningTree(G)
1: A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A

```

An edge of \(G\) is safe if by adding the edge to \(A\), the resulting subgraph is still a subset of a minimum spanning tree.

\section*{How to find a safe edge?}

Finding safe edges

Definitions
- a cut is a partition of \(V\) into at least two disjoint sets

Finding safe edges

Finding safe edges

Finding safe edges

Finding safe edges
Definitions
- a cut is a partition of \(V\) into at least two disjoint sets
- a cut respects \(A \subseteq E\) if no edge of \(A\) goes across the cut

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\),

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)
- Consider now the tree \(T \cup e_{\ell} \backslash e_{x}\) :

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)
- Consider now the tree \(T \cup e_{\ell} \backslash e_{x}\) :

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)
- Consider now the tree \(T \cup e_{\ell} \backslash e_{x}\) :
- This tree must be a spanning tree

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)
- Consider now the tree \(T \cup e_{\ell} \backslash e_{x}\) :
- This tree must be a spanning tree
- If \(w\left(e_{\ell}\right)<w\left(e_{X}\right)\), then this spanning tree has
 smaller cost than \(T\) (can't happen!)

\section*{Proof of Theorem}

Let \(A \subseteq E\) be a subset of a MST of \(G\). Then for any cut that respects \(A\), the lightest edge of \(G\) that goes across the cut is safe.

\section*{Proof:}
- Let \(T\) be a MST containing \(A\)
- Let \(e_{\ell}\) be the lightest edge across the cut
- If \(e_{\ell} \in T\), then we are done
- If \(e_{\ell} \notin T\), then adding \(e_{\ell}\) to \(T\) introduces cycle
- This cycle crosses the cut through \(e_{\ell}\) and another edge \(e_{x}\)
- Consider now the tree \(T \cup e_{\ell} \backslash e_{x}\) :
- This tree must be a spanning tree
- If \(w\left(e_{\ell}\right)<w\left(e_{X}\right)\), then this spanning tree has
 smaller cost than \(T\) (can't happen!)
- If \(w\left(e_{\ell}\right)=w\left(e_{X}\right)\), then \(T \cup e_{\ell} \backslash e_{x}\) is a MST.

\section*{Glimpse at Kruskal's Algorithm}

6.3: Minimum Spanning Tree

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty

6.3: Minimum Spanning Tree

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step,

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Glimpse at Kruskal's Algorithm}

\section*{Basic Strategy}
- Let \(A \subseteq E\) be a forest, intially empty
- At every step, given \(A\), perform:

Add lightest edge to \(A\) that does not introduce a cycle

\section*{Execution of Kruskal's Algorithm}

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

Time Complexity

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

Time Complexity

\section*{Details of Kruskal's Algorithm}
```

def kruskal(G)
Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

Time Complexity
- Initialisation (I. 4-9): \(\mathcal{O}(V+E \log E)\)

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Time Complexity
- Initialisation (I. 4-9): \(\mathcal{O}(V+E \log E)\)

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

Time Complexity
- Initialisation (I. 4-9): \(\mathcal{O}(V+E \log E)\)
- Main Loop (I. 11-16): \(\mathcal{O}(E \cdot \alpha(n))\)

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Time Complexity
 - Initialisation (l. 4-9): \(\mathcal{O}(V+E \log E)\)
 - Main Loop (l. 11-16): \(\mathcal{O}(E \cdot \alpha(n))\)
\(\Rightarrow\) Overall: \(\mathcal{O}(E \log E)=\mathcal{O}(E \log V)\)

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Time Complexity
 - Initialisation (l. 4-9): \(\mathcal{O}(V+E \log E)\)
 - Main Loop (l. 11-16): \(\mathcal{O}(E \cdot \alpha(n))\)
\(\Rightarrow\) Overall: \(\mathcal{O}(E \log E)=\mathcal{O}(E \log V)\)
 If edges are already sorted, runtime becomes \(O(E \cdot \alpha(n))\) !

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```

Correctness

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Correctness
- Consider the cut of all connected components (disjoint sets)

\section*{Details of Kruskal's Algorithm}
```

0: def kruskal (G)
1: Apply Kruskal's algorithm to graph G
2: Return set of edges that form a MST
3:
4: A = Set() \# Set of edges of MST; initially empty.
5: D = DisjointSet()
6: for v in G.vertices():
7: D.makeSet (v)
8: E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Correctness
- Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend \(A\) by an edge that goes across the cut

\section*{Details of Kruskal's Algorithm}
```

def kruskal(G)
Apply Kruskal's algorithm to graph G
Return set of edges that form a MST
A = Set() \# Set of edges of MST; initially empty.
D = DisjointSet()
for v in G.vertices():
D.makeSet (v)
E = G.edges()
9: E.sort(key=weight, direction=ascending)
10:
11: for edge in E:
12: startSet = D.findSet (edge.start)
13: endSet = D.findSet(edge.end)
14: if startSet != endSet:
15: A.append (edge)
16: D.union(startSet,endSet)
17: return A

```
 Correctness
- Consider the cut of all connected components (disjoint sets)
- L. 14 ensures that we extend \(A\) by an edge that goes across the cut
- This edge is also the lightest edge crossing the cut (otherwise, we would have included a lighter edge before)

\section*{Prim's Algorithm}

\section*{- Basic Strategy}
- Start growing a tree from a designated root vertex

\section*{Prim's Algorithm}

\section*{- Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{- Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{_ Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{- Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{_ Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{- Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{_ Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

Implementation will be based on vertices!

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

Assign every vertex not in \(A\) a key which is at all stages equal to the smallest weight of an edge connecting to \(A\)

\section*{Prim's Algorithm}

\section*{Basic Strategy}
- Start growing a tree from a designated root vertex
- At each step, add lightest edge linked to \(A\) that does not yield cycle

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

\section*{Implementation}
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

\section*{Implementation}
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

\section*{Implementation}
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

\section*{Implementation}
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of \(\operatorname{cut}(V \backslash Q, Q)\)
2. update keys and pointers of its neighbors in \(Q\)

Final MST is given (implicitly) by the pointers!

\section*{Prim's Algorithm}

Implementation
- Every vertex in \(Q\) has key and pointer of least-weight edge to \(V \backslash Q\)
- At each step:
1. extract vertex from \(Q\) with smallest key \(\Leftrightarrow\) safe edge of cut (\(V \backslash Q, Q\))
2. update keys and pointers of its neighbors in \(Q\)

Final MST is given (implicitly) by the pointers!

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge(u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

Time Complexity

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey(item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey(item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\),

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey(item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\),

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\),

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey(item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\),

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey(item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\), DecreaseKey (16-20): \(\mathcal{O}(E \cdot 1)\)

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\), DecreaseKey (16-20): \(\mathcal{O}(E \cdot 1)\) Amortized Cost

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the .predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\), DecreaseKey (16-20): \(\mathcal{O}(E \cdot 1)\) \(\Rightarrow\) Overall: \(\mathcal{O}(V \log V+E)\)

\section*{Details of Prim's Algorithm}
```

def prim(G,r)
Apply Prim's Algorithm to graph G and root r
Return result implicitly by modifying G:
MST induced by the predecessor fields
Q = MinPriorityQueue()
for v in G.vertices():
v.predecessor = None
if v == r:
v.key = 0
else:
v.key = Infinity
Q.insert(v)
while not Q.isEmpty():
u = Q.extractMin()
for v in u.adjacent():
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

```

Time Complexity
- Fibonacci Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\), DecreaseKey (16-20): \(\mathcal{O}(E \cdot 1)\) \(\Rightarrow\) Overall: \(\mathcal{O}(V \log V+E)\)
- Binary/Binomial Heaps:

Init (I. 6-13): \(\mathcal{O}(V)\), ExtractMin (15): \(\mathcal{O}(V \cdot \log V)\), DecreaseKey (16-20): \(\mathcal{O}(E \cdot \log V)\) \(\Rightarrow\) Overall: \(\mathcal{O}(V \log V+E \log V)\)

\section*{Summary (Kruskal and Prim)}

Generic Idea
- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting \(A\)

\section*{Summary (Kruskal and Prim)}

Generic Idea
- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting \(A\)

Kruskal's Algorithm
- Gradually transforms a forest into a MST by merging trees
- invokes disjoint set data structure
- Runtime \(\mathcal{O}(E \log V)\)

\section*{Summary (Kruskal and Prim)}

Generic Idea
- Add safe edge to the current MST as long as possible
- Theorem: An edge is safe if it is the lightest of a cut respecting \(A\)

Kruskal's Algorithm
- Gradually transforms a forest into a MST by merging trees
- invokes disjoint set data structure
- Runtime \(\mathcal{O}(E \log V)\)

\section*{Prim's Algorithm}
- Gradually extends a tree into a MST by adding incident edges
- invokes Fibonacci heaps (priority queue)
- Runtime \(\mathcal{O}(V \log V+E)\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Outlook: Reverse-Delete Algorithm}

\section*{Basic Idea}
- Let \(A\) be initially the set of all edges
- Consider all edges in decreasing order of their weight
- Remove edge from \(A\) as long as all vertices are connected by \(A\)

\section*{Current State-of-the-Art}

\section*{Does a linear-time MST algorithm exist?}

\section*{Current State-of-the-Art}

\section*{Does a linear-time MST algorithm exist?}

Karger, Klein, Tarjan, JACM'1995
- randomised MST algorithm with expected runtime \(O(E)\)
- based on Boruvka's algorithm (from 1926)

\section*{Current State-of-the-Art}

\section*{Does a linear-time MST algorithm exist?}

Karger, Klein, Tarjan, JACM'1995
- randomised MST algorithm with expected runtime \(O(E)\)
- based on Boruvka’s algorithm (from 1926)

Chazelle, JACM'2000
- deterministic MST algorithm with runtime \(O(E \cdot \alpha(n))\)

\section*{Current State-of-the-Art}

\section*{Does a linear-time MST algorithm exist?}

Karger, Klein, Tarjan, JACM'1995
- randomised MST algorithm with expected runtime \(O(E)\)
- based on Boruvka's algorithm (from 1926)

Chazelle, JACM'2000
- deterministic MST algorithm with runtime \(O(E \cdot \alpha(n))\)

Pettie, Ramachandran, JACM'2002
- deterministic MST algorithm with asymptotically optimal runtime
- however, the runtime itself is not known...

\section*{6.4: Single-Source Shortest Paths}

\author{
Frank Stajano
}

Thomas Sauerwald

\section*{Outline}

\author{
Introduction
}

\section*{Bellman-Ford Algorithm}

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)
\(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)\) such that \(w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)\) is minimized.

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)
\(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=t\right)\) such that \(w(p)=\sum_{i=1}^{k} w\left(v_{k-1}, v_{k}\right)\) is minimized.

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)

\section*{What if \(G\) is unweighted?}

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)

\section*{What if \(G\) is unweighted?}

Two possible answers are:
1. Run BFS (computes shortest paths in unweighted graphs)
2. Set the weight of all edges to 1

\section*{Shortest Path Problem}

\section*{Shortest Path Problem}
- Given: directed graph \(G=(V, E)\) with edge weights, pair of vertices \(s, t \in V\)
- Goal: Find a path of minimum weight from \(s\) to \(t\) in \(G\)

Applications
- Car Navigation, Internet Routing, Arbitrage in Concurrency Exchange

\section*{Variants of Shortest Path Problems}

Single-source shortest-paths problem (SSSP)
- Bellman-Ford Algorithm
- Dijsktra Algorithm

\section*{Variants of Shortest Path Problems}

Single-source shortest-paths problem (SSSP)
- Bellman-Ford Algorithm
- Dijsktra Algorithm

\section*{All-pairs shortest-paths problem (APSP)}
- Shortest Paths via Matrix Multiplication
- Johnson's Algorithm

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Distances and Negative-Weight Cycles (Figure 24.1)}

\section*{Outline}

\section*{Introduction}

\author{
Bellman-Ford Algorithm
}

\section*{Relaxing Edges}

Definition
Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- \(v . d\) is the length of the shortest path discovered so far

\section*{Relaxing Edges}

Definition
Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)

\section*{Relaxing Edges}

Definition
Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

\section*{Relaxing Edges}

Definition
Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- \(v . d\) is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

Relaxing an edge (\(u, v\))
Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?

\section*{Relaxing Edges}

\section*{Definition}

Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

Relaxing an edge (\(u, v\))
Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?
\[
v . d \stackrel{?}{>} u . d+w(u, v)
\]

\section*{Relaxing Edges}

\section*{Definition}

Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

Relaxing an edge (\(u, v\))
Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?
\[
v . d \stackrel{?}{>} u . d+w(u, v)
\]

\section*{Relaxing Edges}

\section*{Definition}

Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

Relaxing an edge (\(u, v\))
Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?
\[
v . d \stackrel{?}{>} u . d+w(u, v)
\]

\section*{Relaxing Edges}

\section*{Definition}

Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

Relaxing an edge (\(u, v\))
Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?
\[
v \cdot d \gg u \cdot d+w(u, v)
\]

\section*{Relaxing Edges}

\section*{Definition}

Fix the source vertex \(s \in V\)
- \(v . \delta\) is the length of the shortest path (distance) from \(s\) to \(v\)
- v.d is the length of the shortest path discovered so far
- At the beginning: \(s . d=s . \delta=0, v . d=\infty\) for \(v \neq s\)
- At the end: \(v . d=v . \delta\) for all \(v \in V\)

\section*{Relaxing an edge (\(u, v\))}

Given estimates \(u . d\) and \(v . d\), can we find a better path from \(v\) using the edge \((u, v)\) ?
\[
v . d \stackrel{?}{>} u . d+w(u, v)
\]

After relaxing \((u, v)\), regardless of whether we found a shortcut: \(v . d \leq u . d+w(u, v)\)

\section*{Properties of Shortest Paths and Relaxations}

\section*{Toolkit}

Triangle inequality (Lemma 24.10)
- For any edge \((u, v) \in E\), we have \(v . \delta \leq u . \delta+w(u, v)\)

Upper-bound Property (Lemma 24.11)
- We always have \(v . d \geq v . \delta\) for all \(v \in V\), and once \(v . d\) achieves the value \(v . \delta\), it never changes.
Convergence Property (Lemma 24.14)
- If \(s \rightsquigarrow u \rightarrow v\) is a shortest path from \(s\) to \(v\), and if \(u . d=u . \delta\) prior to relaxing edge \((u, v)\), then \(v . d=v . \delta\) at all times afterward.

v.d

\section*{Properties of Shortest Paths and Relaxations}

\section*{Toolkit}

Triangle inequality (Lemma 24.10)
- For any edge \((u, v) \in E\), we have \(v . \delta \leq u . \delta+w(u, v)\)

Upper-bound Property (Lemma 24.11)
- We always have \(v . d \geq v . \delta\) for all \(v \in V\), and once \(v . d\) achieves the value \(v . \delta\), it never changes.
Convergence Property (Lemma 24.14)
- If \(s \rightsquigarrow u \rightarrow v\) is a shortest path from \(s\) to \(v\), and if \(u . d=u . \delta\) prior to relaxing edge \((u, v)\), then \(v . d=v . \delta\) at all times afterward.
\[
v \cdot d \leq u \cdot d+w(u, v)
\]

\section*{Properties of Shortest Paths and Relaxations}

\section*{Toolkit}

Triangle inequality (Lemma 24.10)
- For any edge \((u, v) \in E\), we have \(v . \delta \leq u . \delta+w(u, v)\)

Upper-bound Property (Lemma 24.11)
- We always have \(v . d \geq v . \delta\) for all \(v \in V\), and once \(v . d\) achieves the value \(v . \delta\), it never changes.
Convergence Property (Lemma 24.14)
- If \(s \rightsquigarrow u \rightarrow v\) is a shortest path from \(s\) to \(v\), and if \(u . d=u . \delta\) prior to relaxing edge \((u, v)\), then \(v . d=v . \delta\) at all times afterward.

\[
\begin{aligned}
v . d & \leq u \cdot d+w(u, v) \\
& =u \cdot \delta+w(u, v)
\end{aligned}
\]

\section*{Properties of Shortest Paths and Relaxations}

\section*{Toolkit}

Triangle inequality (Lemma 24.10)
- For any edge \((u, v) \in E\), we have \(v . \delta \leq u . \delta+w(u, v)\)

Upper-bound Property (Lemma 24.11)
- We always have \(v . d \geq v . \delta\) for all \(v \in V\), and once \(v . d\) achieves the value \(v . \delta\), it never changes.
Convergence Property (Lemma 24.14)
- If \(s \rightsquigarrow u \rightarrow v\) is a shortest path from \(s\) to \(v\), and if \(u . d=u . \delta\) prior to relaxing edge \((u, v)\), then \(v . d=v . \delta\) at all times afterward.

\[
\begin{aligned}
v . d & \leq u \cdot d+w(u, v) \\
& =u \cdot \delta+w(u, v) \\
& =v \cdot \delta
\end{aligned}
\]

\section*{Properties of Shortest Paths and Relaxations}

\section*{Toolkit}

Triangle inequality (Lemma 24.10)
- For any edge \((u, v) \in E\), we have \(v . \delta \leq u . \delta+w(u, v)\)

Upper-bound Property (Lemma 24.11)
- We always have \(v . d \geq v . \delta\) for all \(v \in V\), and once \(v . d\) achieves the value \(v . \delta\), it never changes.
Convergence Property (Lemma 24.14)
- If \(s \rightsquigarrow u \rightarrow v\) is a shortest path from \(s\) to \(v\), and if \(u . d=u . \delta\) prior to relaxing edge \((u, v)\), then \(v . d=v . \delta\) at all times afterward.

\[
\begin{aligned}
v . d & \leq u \cdot d+w(u, v) \\
& =u \cdot \delta+w(u, v) \\
& =v \cdot \delta
\end{aligned}
\]
\(v . \delta \quad\) Since \(v . d \geq v . \delta\), we have \(v . d=v . \delta\).

\section*{Path-Relaxation Property}

Path-Relaxation Property (Lemma 24.15)
If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Path-Relaxation Property}

Path-Relaxation Property (Lemma 24.15)
If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Proof:}
- By induction on \(i, 0 \leq i \leq k\) :

After the \(i\) th edge of \(p\) is relaxed, we have \(v_{i} \cdot d=v_{i} \cdot \delta\).

\section*{Path-Relaxation Property}

\section*{Path-Relaxation Property (Lemma 24.15)}

If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Proof:}
- By induction on \(i, 0 \leq i \leq k\) : After the \(i\) th edge of \(p\) is relaxed, we have \(v_{i} \cdot d=v_{i} . \delta\).
- For \(i=0\), by the initialization \(s . d=s . \delta=0\).

Upper-bound Property \(\Rightarrow\) the value of \(s . d\) never changes after that.

\section*{Path-Relaxation Property}

\section*{Path-Relaxation Property (Lemma 24.15)}

If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Proof:}
- By induction on \(i, 0 \leq i \leq k\) : After the \(i\) th edge of \(p\) is relaxed, we have \(v_{i} \cdot d=v_{i} . \delta\).
- For \(i=0\), by the initialization \(s . d=s . \delta=0\). Upper-bound Property \(\Rightarrow\) the value of \(s . d\) never changes after that.
- Inductive Step \((i-1 \rightarrow i)\) : Assume \(v_{i-1} . d=v_{i-1} . \delta\) and relax \(\left(v_{i-1}, v_{i}\right)\).

\section*{Path-Relaxation Property}

\section*{Path-Relaxation Property (Lemma 24.15)}

If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Proof:}
- By induction on \(i, 0 \leq i \leq k\) : After the \(i\) th edge of \(p\) is relaxed, we have \(v_{i} \cdot d=v_{i} . \delta\).
- For \(i=0\), by the initialization \(s . d=s . \delta=0\). Upper-bound Property \(\Rightarrow\) the value of \(s . d\) never changes after that.
- Inductive Step \((i-1 \rightarrow i)\) : Assume \(v_{i-1} . d=v_{i-1} . \delta\) and relax \(\left(v_{i-1}, v_{i}\right)\). Convergence Property \(\Rightarrow v_{i} . d=v_{i} . \delta\) (now and at all later steps)

\section*{Path-Relaxation Property}
"Propagation": By relaxing proper edges, set of vertices with \(v . \delta=v . d\) gets larger

\section*{Path-Relaxation Property (Lemma 24.15)}

If \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) is a shortest path from \(s=v_{0}\) to \(v_{k}\), and we relax the edges of \(p\) in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\), then \(v_{k} \cdot d=v_{k} \cdot \delta\) (regardless of the order of other relaxation steps).

\section*{Proof:}
- By induction on \(i, 0 \leq i \leq k\) : After the \(i\) th edge of \(p\) is relaxed, we have \(v_{i} \cdot d=v_{i} \cdot \delta\).
- For \(i=0\), by the initialization \(s . d=s . \delta=0\). Upper-bound Property \(\Rightarrow\) the value of \(s . d\) never changes after that.
- Inductive Step \((i-1 \rightarrow i)\) : Assume \(v_{i-1} . d=v_{i-1} . \delta\) and relax \(\left(v_{i-1}, v_{i}\right)\). Convergence Property \(\Rightarrow v_{i} . d=v_{i} . \delta\) (now and at all later steps)

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
O: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
O: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Time Complexity

\section*{The Bellman-Ford Algorithm}
```

    BELLMAN-FORD (G,w,s)
    O: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Time Complexity
- A single call of line 9-11 costs \(\mathcal{O}(1)\)

\section*{The Bellman-Ford Algorithm}
```

BELLLMAN-FORD (G,w,s)
O: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7: for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Time Complexity
- A single call of line 9-11 costs \(\mathcal{O}(1)\)
- In each pass every edge is relaxed \(\Rightarrow \mathcal{O}(E)\) time per pass

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V|-1 times
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
if e.start.d + e.weight.d < e.end.d:
e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Time Complexity
- A single call of line 9-11 costs \(\mathcal{O}(1)\)
- In each pass every edge is relaxed \(\Rightarrow \mathcal{O}(E)\) time per pass
- Overall \((V-1)+1=V\) passes \(\Rightarrow \mathcal{O}(V \cdot E)\) time

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 1
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), (\(\mathrm{t}, \mathrm{y}\)), (t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), (\(\mathrm{t}, \mathrm{y}\)), (t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 2
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 3
Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}),(\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), (\(\mathrm{t}, \mathrm{y}\)), (t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), (\(\mathrm{t}, \mathrm{y}\)), (t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Execution of Bellman-Ford (Figure 24.4)}

Pass: 4
Relaxation Order: (\(\mathrm{t}, \mathrm{x}\)), \((\mathrm{t}, \mathrm{y}),(\mathrm{t}, \mathrm{z}),(\mathrm{x}, \mathrm{t}),(\mathrm{y}, \mathrm{x}),(\mathrm{y}, \mathrm{z}),(\mathrm{z}, \mathrm{x}),(\mathrm{z}, \mathrm{s}),(\mathrm{s}, \mathrm{t}),(\mathrm{s}, \mathrm{y})\)

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

Lemma 24.2/Theorem 24.3
Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

Lemma 24.2/Theorem 24.3
Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

Lemma 24.2/Theorem 24.3
Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

Lemma 24.2/Theorem 24.3
Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:
\[
v . d=v . \delta
\]

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:
\[
v . d=v . \delta \leq u \cdot \delta+w(u, v)
\]

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:
\[
v . d=v . \delta \leq u . \delta+w(u, v)=u . d+w(u, v)
\]

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:
\[
v . d=v . \delta \leq u . \delta+w(u, v)=u . d+w(u, v)
\]

\section*{Bellman-Ford Algorithm: Correctness (1/2)}

\section*{Lemma 24.2/Theorem 24.3}

Assume that \(G\) contains no negative-weight cycles that are reachable from \(s\). Then after \(|V|-1\) passes, we have \(v . d=v . \delta\) for all vertices \(v \in V\) (that are reachable) and Bellman-Ford returns TRUE.

Proof that \(v . d=v . \delta\)
- Let \(v\) be a vertex reachable from \(s\)
- Let \(p=\left(v_{0}=s, v_{1}, \ldots, v_{k}=v\right)\) be a shortest path from \(s\) to \(v\)
- \(p\) is simple, hence \(k \leq|V|-1\)
- Path-Relaxation Property \(\Rightarrow\) after \(|V|-1\) passes, \(v . d=v . \delta\)

\section*{Proof that Bellman-Ford returns TRUE}
- Need to prove: v. \(d \leq u . d+w(u, v)\) for all edges
- Let \((u, v) \in E\) be any edge. After \(|V|-1\) passes:
\[
v . d=v . \delta \leq u . \delta+w(u, v)=u . d+w(u, v)
\]

Triangle inequality (holds even if \(w(u, v)<0\) !)

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

Theorem 24.3
If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

Proof:
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Proof:}
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)
- If Bellman-Ford returns TRUE, then for every \(1 \leq i<k\),
\[
v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)
\]

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Proof:}
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)
- If Bellman-Ford returns TRUE, then for every \(1 \leq i<k\),
\[
\begin{aligned}
v_{i} \cdot d & \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad \sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
\]

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Proof:}
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)
- If Bellman-Ford returns TRUE, then for every \(1 \leq i<k\),
\[
\begin{gathered}
v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad \sum_{i=1}^{k} v_{i} \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{gathered}
\]

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

\section*{Theorem 24.3}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Proof:}
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)
- If Bellman-Ford returns TRUE, then for every \(1 \leq i<k\),
\[
\begin{gathered}
v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad \sum_{i=1}^{k} v_{i} \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad 0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{gathered}
\]

This cancellation is only valid if all . \(d\)-values are finite!

\section*{Bellman-Ford Algorithm: Correctness (2/2)}

\section*{Theorem 24.3}

If \(G\) contains a negative-weight cycle reachable from \(s\), then BellmanFord returns FALSE.

\section*{Proof:}
- Let \(c=\left(v_{0}, v_{1}, \ldots, v_{k}=v_{0}\right)\) be a negative-weight cycle reachable from \(s\)
- If Bellman-Ford returns TRUE, then for every \(1 \leq i<k\),
\[
\begin{aligned}
v_{i} \cdot d & \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad \sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
\Rightarrow \quad 0 & \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
\]

This cancellation is only valid if all . \(d\)-values are finite!
- This contradicts the assumption that \(c\) is a negative-weight cycle!

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V|-1 times
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V|-1 times
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Can we terminate earlier if there is a pass that keeps all .d variables?

\section*{The Bellman-Ford Algorithm}
```

BELLMAN-FORD (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V|-1 times
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE
16: return TRUE

```

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass \(i\) keeps all.\(d\) variables, then so does pass \(i+1\).

\section*{The Bellman-Ford Algorithm (modified)}
```

BELLMAN-FORD-NEW (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V| times
flag = 0
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1
14: if flag = 0 return TRUE
15:
16: return FALSE

```

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass \(i\) keeps all.\(d\) variables, then so does pass \(i+1\).

\section*{The Bellman-Ford Algorithm (modified)}
```

BELLMAN-FORD-NEW (G,w,s)
assert(s in G.vertices())
for v in G.vertices()
v.predecessor = None
v.d = Infinity
s.d = 0
repeat |V| times
flag = 0
for e in G.edges()
Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1
14: if flag = 0 return TRUE
15:
16: return FALSE

```

Can we terminate earlier if there is a pass that keeps all .d variables?

Yes, because if pass \(i\) keeps all.\(d\) variables, then so does pass \(i+1\).

Graph \(G=(V, E, c)\) :

Residual Graph \(G_{f}=\left(V, E_{f}, c_{t}\right)\) :

\section*{6.6: Maximum flow}

\author{
Frank Stajano
}

Thomas Sauerwald

\section*{Outline}

\author{
Introduction
}

\section*{Ford-Fulkerson}

\section*{A Glimpse at the Max-Flow Min-Cut Theorem}

\author{
Analysis of Ford-Fulkerson
}

(7) Operating divisions. Those located in Russia are believed to be accurately located. Some Russian divisions (\(2,3,4\) and 13) are lecated in two regions and are so indicated. Divisions shown in the satellites are indicated according to tre authors' best judgment since inieligence reports are unovailable. Train caposities in Russia are for \(1000-n e t-t o n\) trains or their equivalent. Train capacities in Poland are for 666 net tons (or the equivalent). Train capacities in afl other satellites are for 400 net tons (or the equivalent) except in East Germany. in East Germany, train capacities afe those of entering lines. The numbers shows in boxes are tota: interdivisional caracities.

Maximum Flow is 163,000 tons per day!

(7) Operating divisioas. Those located in Russia are believed to be accurately located. Some Russian divisions (\(2,3,4\) and 13) are lecated in two regions and are so indicated. Dlivisions shown in the satellites are indicated according to the authors' best judement since infeligence reports are unavailable. Train capasities in Russia are for \(1000-n e t-t o n\) trains or their equivalent. Troin capacities except in East Germany in (ons (or equivalent). Train capacities in all other satellites are for 400 net tons (or the equivalent) interdivisional caracities. East Germany, train capacifies are those of entering fines. The numbers shown in boxes are folal interdivisional caracities.

\section*{Flow Network}

\section*{Flow Network}
- Abstraction for material (one commodity!) flowing through the edges
- \(G=(V, E)\) directed graph without parallel edges
- distinguished nodes: source \(s\) and sink \(t\)
- every edge e has a capacity \(c(e)\)

\section*{Flow Network}

\section*{Flow Network}
- Abstraction for material (one commodity!) flowing through the edges
- \(G=(V, E)\) directed graph without parallel edges
- distinguished nodes: source \(s\) and sink \(t\)
- every edge \(e\) has a capacity \(c(e)\)

Capacity function \(c: V \times V \rightarrow \mathbb{R}^{+}\)

\section*{Flow Network}

\section*{Flow Network}
- Abstraction for material (one commodity!) flowing through the edges
- \(G=(V, E)\) directed graph without parallel edges
- distinguished nodes: source \(s\) and sink \(t\)
- every edge e has a capacity \(c(e)\)

Capacity function \(c: V \times V \rightarrow \mathbb{R}^{+}\)
\[
c(u, v)=0 \Leftrightarrow(u, v) \notin E
\]

Flow Network

\section*{—— Flow \\ A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:}

\section*{Flow Network}
```

Flow
A flow is a function $f: V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V, f(u, v) \leq c(u, v)$

```


\section*{Flow Network}
```

Flow
A flow is a function $f: V \times V \rightarrow \mathbb{R}$ that satisfies:

- For every $u, v \in V, f(u, v) \leq c(u, v)$

```


\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)

Flow Conservation
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)

Flow Conservation
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)

Flow Conservation
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)

Flow Conservation
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in v} f(s, v)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in v} f(s, v)\)
\[
\sum_{v \in V} f(s, v)=\sum_{v \in V} f(v, t)
\]

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in V} f(s, v)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in v} f(s, v)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in v} f(s, v)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in v} f(s, v)\)

\section*{Flow Network}

\section*{Flow}

A flow is a function \(f: V \times V \rightarrow \mathbb{R}\) that satisfies:
- For every \(u, v \in V, f(u, v) \leq c(u, v)\)
- For every \(u, v \in V, f(u, v)=-f(v, u)\)
- For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\)

The value of a flow is defined as \(|f|=\sum_{v \in V} f(s, v)\)

\section*{How to find a Maximum Flow?}

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (s,t)-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (\(s, t\))-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{A First Attempt}

\section*{Greedy Algorithm}
- Start with \(f(u, v)=0\) everywhere
- Repeat as long as possible:
- Find a (\(s, t\))-path p where each edge \(e=(u, v)\) has \(f(u, v)<c(u, v)\)
- Augment flow along \(p\)

\section*{Outline}

\section*{Introduction}

\section*{Ford-Fulkerson}

\section*{A Glimpse at the Max-Flow Min-Cut Theorem}

\author{
Analysis of Ford-Fulkerson
}

\section*{Residual Graph}

Original Edge
Edge \(e=(u, v) \in E\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

\section*{Residual Graph}

Original Edge
Edge \(e=(u, v) \in E\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

\section*{Graph G:}

\section*{Residual Graph}

Original Edge
Edge \(e=(u, v) \in E\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

\section*{Graph G:}

\section*{Residual Graph}

Original Edge
Edge \(e=(u, v) \in E\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
\[
c_{f}(u, v)= \begin{cases}c(u, v)-f(u, v) & \text { if }(u, v) \in E \\ f(v, u) & \text { if }(v, u) \in E \\ 0 & \text { otherwise }\end{cases}
\]

\section*{Graph G:}

Residual \(G_{f}\) :

\section*{Residual Graph}

Original Edge
Edge \(e=(u, v) \in E\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

\section*{Graph G:}

Residual \(G_{f}\) :

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Graph G:

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
For every pair \((u, v) \in V \times V\),
\[
c_{f}(u, v)=c(u, v)-f(u, v)
\]

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
For every pair \((u, v) \in V \times V\),
\[
c_{f}(u, v)=c(u, v)-f(u, v)
\]

\section*{Graph G:}

Residual \(G_{f}\) :

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
For every pair \((u, v) \in V \times V\),
\[
c_{f}(u, v)=c(u, v)-f(u, v)
\]

\section*{Graph G:}

Residual \(G_{f}\) :
17-(6-2)

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
For every pair \((u, v) \in V \times V\),
\[
c_{f}(u, v)=c(u, v)-f(u, v)
\]

\section*{Graph G:}

Residual \(G_{f}\) :

\section*{Residual Graph with anti-parallel edges}

Original Edge
Edge \(e=(u, v) \in E\left(\&\right.\) possibly \(\left.e^{\prime}=(v, u) \in E\right)\)
- flow \(f(u, v)\) and capacity \(c(u, v)\)

Residual Capacity
For every pair \((u, v) \in V \times V\),
\[
c_{f}(u, v)=c(u, v)-f(u, v)
\]

Graph G:

Residual \(G_{f}\) :

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

Residual Graph \(G_{f}\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)
0/14

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\section*{Example of a Residual Graph (Handout)}

Flow network \(G\)

\(\Omega\)
By successively eliminating cycles we can simplify and reduce the "transportation" cost of a flow.

\section*{The Ford-Fulkerson Method ("Enhanced Greedy")}

0 : def fordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3 : push as much extra flow as possible through it

\section*{The Ford-Fulkerson Method ("Enhanced Greedy")}

0 : def fordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3 : push as/much extra flow as possible through it

Augmenting path: Path from source to sink in \(G_{f}\)

\section*{The Ford-Fulkerson Method ("Enhanced Greedy")}

0 : def fordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it
If \(f^{\prime}\) is a flow in \(G_{f}\) and \(f\) a flow
in \(G\), then \(f+f^{\prime}\) is a flow in \(G\)

\section*{The Ford-Fulkerson Method ("Enhanced Greedy")}

0: def fordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

Questions:
- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?

\section*{The Ford-Fulkerson Method ("Enhanced Greedy")}
```

def fordFulkerson(G)
initialize flow to O on all edges
while an augmenting path in Gf can be found:
push as much extra flow as possible through it

```

Questions:
Using BFS or DFS, we can find an augmenting path in \(O(V+E)\) time.
- How to find an augmenting path?
- Does this method terminate?
- If it terminates, how good is the solution?

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

Illustration of the Ford-Fulkerson Method
Graph \(G=(V, E, c):\)

Residual Graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) :

\section*{Outline}

\section*{Introduction}

\section*{Ford-Fulkerson}

A Glimpse at the Max-Flow Min-Cut Theorem

\section*{Analysis of Ford-Fulkerson}

From Flows to Cuts
 and \(t \in T\).

Graph \(G=(V, E, c)\) :

From Flows to Cuts
 and \(t \in T\).

Graph \(G=(V, E, c)\) :

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]

Graph \(G=(V, E, c)\) :

\[
c(\{s, 3\},\{2,4,5, t\})=
\]

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]

Graph \(G=(V, E, c)\) :

\[
c(\{s, 3\},\{2,4,5, t\})=10+9=19
\]

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]
- A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
Graph \(G=(V, E, c): \quad|f|=19\)

\[
10-0+9=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
Graph \(G=(V, E, c)\) :
\[
|f|=19
\]

\[
9+7-6+9=19
\]

\section*{Outline}

\section*{Introduction}

\section*{Ford-Fulkerson}

\section*{A Glimpse at the Max-Flow Min-Cut Theorem}

\author{
Analysis of Ford-Fulkerson
}

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Flow before iteration integral \& capacities in \(G_{f}\) are integral \(\Rightarrow\) Flow after iteration integeral

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
initialize flow to 0 on all edges while an augmenting path in \(G_{f}\) can be found: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem
For integral capacities \(c(u, v)\), Ford-Fulkerson terminates after \(C:=\) \(\max _{u, v} c(u, v)\) iterations and returns the maximum flow.

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
initialize flow to 0 on all edges while an augmenting path in \(G_{f}\) can be found: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem
For integral capacities \(c(u, v)\), Ford-Fulkerson terminates after \(C:=\) \(\max _{u, v} c(u, v)\) iterations and returns the maximum flow.

> (proof omitted here, see CLRS3)

Graph \(G=(V, E, c)\) :

Residual Graph \(G_{f}=\left(V, E_{f}, c_{t}\right)\) :

\section*{6.6: Maximum flow}

\author{
Frank Stajano
}

Thomas Sauerwald

\section*{Outline}

\title{
A Glimpse at the Max-Flow Min-Cut Theorem
}

\section*{Analysis of Ford-Fulkerson}

\section*{Matchings in Bipartite Graphs}

From Flows to Cuts
 and \(t \in T\).

Graph \(G=(V, E, c)\) :

From Flows to Cuts
 and \(t \in T\).

Graph \(G=(V, E, c)\) :

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]

Graph \(G=(V, E, c)\) :

\[
c(\{s, 3\},\{2,4,5, t\})=
\]

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]

Graph \(G=(V, E, c)\) :

\[
c(\{s, 3\},\{2,4,5, t\})=10+9=19
\]

\section*{From Flows to Cuts}

\section*{Cut}
- A cut \((S, T)\) is a partition of \(V\) into \(S\) and \(T=V \backslash S\) such that \(s \in S\) and \(t \in T\).
- The capacity of a cut \((S, T)\) is the sum of capacities of the edges from \(S\) to \(T\) :
\[
c(S, T)=\sum_{u \in S, v \in T} c(u, v)=\sum_{(u, v) \in E(S, T)} c(u, v)
\]
- A minimum cut of a network is a cut whose capacity is minimum over all cuts of the network.

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
Graph \(G=(V, E, c): \quad|f|=19\)

\[
10-0+9=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
\[
\text { Graph } G=(V, E, c): \quad|f|=19
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]

\section*{From Flows to Cuts}

\section*{Theorem (Max-Flow Min-Cut Theorem)}

The value of the max-flow is equal to the capacity of the min-cut, that is
\[
\max _{f}|f|=\min _{S, T \subseteq V} \mathrm{c}(S, T)
\]
Graph \(G=(V, E, c)\) :
\[
|f|=19
\]

\[
9+7-6+9=19
\]

\section*{Extra: Proof of the Max-Flow Min-Cut Theorem (Easy Direction)}
1. For every \(u, v \in V, f(u, v) \leq c(u, v)\),
2. For every \(u, v \in V, f(u, v)=-f(v, u)\),
3. For every \(u \in V \backslash\{s, t\}, \sum_{v \in V} f(u, v)=0\).
- Let \(f\) be any flow and \((S, T)\) be any cut:
\[
|f|=\sum_{v \in V} f(s, v)
\]
\[
\stackrel{(3)}{=} \sum_{u \in S} \sum_{v \in V} f(u, v)
\]

Flow-Value-Lemma:
For any cut \((S, T)\),
\[
=\sum_{u \in S} \sum_{v \in S} f(u, v)+\sum_{u \in S} \sum_{v \in T} f(u, v)
\]
\[
|f|=\sum_{u \in S} \sum_{v \in T} f(u, v)
\]
\[
>\stackrel{(2)}{=} \sum_{u \in S} \sum_{v \in T} f(u, v)
\]
\[
\stackrel{(1)}{\leq} \sum_{u \in S} \sum_{v \in T} c(u, v)
\]
\[
=c(S, T)
\]
- Since this holds for any pair of flow and cut, it follows that
\[
\max _{f}|f| \leq \min _{(S, T)} c(S, T)
\]

\section*{Outline}

\section*{A Glimpse at the Max-Flow Min-Cut Theorem}

\author{
Analysis of Ford-Fulkerson
}

\section*{Matchings in Bipartite Graphs}

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
1: initialize flow to 0 on all edges
2: while an augmenting path in \(G_{f}\) can be found:
3: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Flow before iteration integral \& capacities in \(G_{f}\) are integral \(\Rightarrow\) Flow after iteration integral

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
initialize flow to 0 on all edges while an augmenting path in \(G_{f}\) can be found: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem
For integral capacities \(c(u, v)\), Ford-Fulkerson terminates after \(C:=\) \(\max _{u, v} c(u, v)\) iterations and returns the maximum flow.

\section*{Analysis of Ford-Fulkerson}

0: def FordFulkerson (G)
initialize flow to 0 on all edges while an augmenting path in \(G_{f}\) can be found: push as much extra flow as possible through it

Lemma
If all capacities \(c(u, v)\) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem
For integral capacities \(c(u, v)\), Ford-Fulkerson terminates after \(C:=\) \(\max _{u, v} c(u, v)\) iterations and returns the maximum flow.

> (proof omitted here, see CLRS3)

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Slow Convergence of Ford-Fulkerson (Figure 26.7)

G

Slow Convergence of Ford-Fulkerson (Figure 26.7)

G

\(G_{f}\)

Number of iterations is \(C:=\max _{u, v} c(u, v)\) !

\section*{Slow Convergence of Ford-Fulkerson (Figure 26.7)}

G

\(G_{f}\)

Number of iterations is \(C:=\max _{u, v} C(u, v)\) !

For irrational capacities, Ford-Fulkerson may even fail to terminate!

Non-Termination of Ford-Fulkerson for Irrational Capacities

(t)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(1,|f|=0\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(1,|f|=0\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(1,|f|=1\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(1,|f|=1\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(2,|f|=1\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(2,|f|=1\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(2,|f|=1+\phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(2,|f|=1+\phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(3,|f|=1+\phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 3, \(|f|=1+\phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(3,|f|=1+2 \cdot \phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(3,|f|=1+2 \cdot \phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(4,|f|=1+2 \cdot \phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(4,|f|=1+2 \cdot \phi\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(4,|f|=1+2 \cdot \phi+\phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(4,|f|=1+2 \cdot \phi+\phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(5,|f|=1+2 \cdot \phi+\phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(5,|f|=1+2 \cdot \phi+\phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(5,|f|=1+2 \cdot \phi+2 \cdot \phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: \(5,|f|=1+2 \cdot \phi+2 \cdot \phi^{2}\)

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{\hookrightarrow}, \stackrel{0}{\leftarrow},|f|=1\)

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

In summary:
- After iteration \(1: \stackrel{0}{\longleftarrow}, \stackrel{1}{3}, \stackrel{0}{\leftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{3}, \stackrel{0}{\longleftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{\longleftrightarrow}, \stackrel{0}{\longleftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

More generally,

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{\hookrightarrow}, \stackrel{0}{\longleftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

More generally,
- For every \(i=0,1, \ldots\) after iteration \(1+4 \cdot i: \xrightarrow{1-\phi^{2 i}} \xrightarrow{1}, \stackrel{\phi-\phi^{2 i+1}}{\leftarrow}\)

\section*{Non-Termination of Ford-Fulkerson for Irrational Capacities}

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{3}, \stackrel{0}{\longleftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

More generally,
- For every \(i=0,1, \ldots\) after iteration \(1+4 \cdot i: \xrightarrow{1-\phi^{2 i}}, \xrightarrow{1}, \stackrel{\phi-\phi^{2 i+1}}{\longleftrightarrow}\)
- Ford-Fulkerson does not terminate!

Non-Termination of Ford-Fulkerson for Irrational Capacities

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{\hookrightarrow}, \stackrel{0}{\longleftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

More generally,
- For every \(i=0,1, \ldots\) after iteration \(1+4 \cdot i: \xrightarrow{1-\phi^{2 i}} \xrightarrow{1}, \stackrel{\phi-\phi^{2 i+1}}{\leftarrow}\)
- Ford-Fulkerson does not terminate!
- \(|f|=1+2 \sum_{i=1}^{\infty} \varphi^{i} \approx 4.23607<5\)

Non-Termination of Ford-Fulkerson for Irrational Capacities

In summary:
- After iteration \(1: \stackrel{0}{\leftarrow}, \stackrel{1}{\hookrightarrow}, \stackrel{0}{\leftarrow},|f|=1\)
- After iteration \(5: \stackrel{1-\phi^{2}}{\longleftarrow}, \stackrel{1}{\longrightarrow}, \stackrel{\phi-\phi^{3}}{\longleftarrow},|f|=1+2 \phi+2 \phi^{2}\)
- After iteration 9: \(\stackrel{1-\phi^{4}}{\leftarrow}, \xrightarrow{1} \stackrel{\phi-\phi^{5}}{\leftarrow},|f|=1+2 \phi+2 \phi^{2}+2 \phi^{3}+2 \phi^{4}\)

More generally,
- For every \(i=0,1, \ldots\) after iteration \(1+4 \cdot i: \xrightarrow{1-\phi^{2 i}}, \xrightarrow{1}, \stackrel{\phi-\phi^{2 i+1}}{\longleftrightarrow}\)
- Ford-Fulkerson does not terminate!
- \(|f|=1+2 \sum_{i=1}^{\infty} \varphi^{i} \approx 4.23607<5\)
- It does not even converge to a maximum flow!

Non-Termination of Ford-Fulkerson for Irrational Capacities

\section*{Summary and Outlook}

Ford-Fulkerson Method
- works only for integral (rational) capacities
- Runtime: \(O\left(E \cdot\left|f^{*}\right|\right)=O(E \cdot V \cdot C)\)

\section*{Summary and Outlook}

Ford-Fulkerson Method
- works only for integral (rational) capacities
- Runtime: \(O\left(E \cdot\left|f^{*}\right|\right)=O(E \cdot V \cdot C)\)

Capacity-Scaling Algorithm

\section*{Summary and Outlook}

\section*{Ford-Fulkerson Method}
- works only for integral (rational) capacities
- Runtime: \(O\left(E \cdot\left|f^{*}\right|\right)=O(E \cdot V \cdot C)\)

Capacity-Scaling Algorithm
- Idea: Find an augmenting path with high capacity
- Consider subgraph of \(G_{f}\) consisting of edges \((u, v)\) with \(c_{f}(u, v)>\Delta\)
- scaling parameter \(\Delta\), which is initially \(2^{\left[\log _{2} C\right\rceil}\) and 1 after termination
- Runtime: \(O\left(E^{2} \cdot \log C\right)\)

\section*{Summary and Outlook}

\section*{Ford-Fulkerson Method}
- works only for integral (rational) capacities
- Runtime: \(O\left(E \cdot\left|f^{*}\right|\right)=O(E \cdot V \cdot C)\)

Capacity-Scaling Algorithm
- Idea: Find an augmenting path with high capacity
- Consider subgraph of \(G_{f}\) consisting of edges \((u, v)\) with \(c_{f}(u, v)>\Delta\)
- scaling parameter \(\Delta\), which is initially \(2^{\left[\log _{2} C\right\rceil}\) and 1 after termination
- Runtime: \(O\left(E^{2} \cdot \log C\right)\)

\section*{Edmonds-Karp Algorithm}
- Idea: Find the shortest augmenting path in \(G_{f}\)
- Runtime: \(O\left(E^{2} \cdot V\right)\)

\section*{Outline}

\section*{A Glimpse at the Max-Flow Min-Cut Theorem}

\section*{Analysis of Ford-Fulkerson}

Matchings in Bipartite Graphs

\section*{Application: Maximum-Bipartite-Matching Problem}

Matching
A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Application: Maximum-Bipartite-Matching Problem}

Matching
A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Application: Maximum-Bipartite-Matching Problem}

Matching
A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Application: Maximum-Bipartite-Matching Problem}

Matching
A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

Bipartite Graph
A graph \(G\) is bipartite if \(V\) can be partitioned into \(L\) and \(R\) so that all edges go between \(L\) and \(R\).

\section*{Application: Maximum-Bipartite-Matching Problem}

Matching
A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Bipartite Graph}

A graph \(G\) is bipartite if \(V\) can be partitioned into \(L\) and \(R\) so that all edges go between \(L\) and \(R\).

\section*{Application: Maximum-Bipartite-Matching Problem}

\section*{Matching}

A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Application: Maximum-Bipartite-Matching Problem}

\section*{Matching}

A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

\section*{Application: Maximum-Bipartite-Matching Problem}

\section*{Matching}

A matching is a subset \(M \subseteq E\) such that for all \(v \in V\), at most one edge of \(M\) is incident to \(v\).

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

\section*{Matchings in Bipartite Graphs via Maximum Flows}

Matchings in Bipartite Graphs via Maximum Flows

Correspondence between Maximum Matchings and Max Flow

\section*{_ Theorem (Corollary 26.11)}

The cardinality of a maximum matching \(M\) in a bipartite graph \(G\) equals the value of a maximum flow \(f\) in the corresponding flow network \(\widetilde{G}\).

Graph \(G\)

Graph \(\widetilde{G}\)

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)

Graph G

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)

Graph G

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)
- Consider flow \(f\) that sends one unit along each each of \(k\) paths

Graph G

Graph \(\widetilde{G}\)

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)
- Consider flow \(f\) that sends one unit along each each of \(k\) paths

Graph G

Graph \(\widetilde{G}\)

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)
- Consider flow \(f\) that sends one unit along each each of \(k\) paths

Graph G

Graph \(\widetilde{G}\)

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)
- Consider flow \(f\) that sends one unit along each each of \(k\) paths
\(\Rightarrow f\) is a flow and has value \(k\)

Graph G

Graph \(\widetilde{G}\)

\section*{From Matching to Flow}
- Given a maximum matching of cardinality \(k\)
- Consider flow \(f\) that sends one unit along each each of \(k\) paths
\(\Rightarrow f\) is a flow and has value \(k\)

Graph G

Graph \(\widetilde{G}\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)

\(\qquad\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral

\(\qquad\) T.S.

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\tilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit
c) \(\operatorname{Cut}(L \cup\{s\}, R \cup\{t\})\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit
c) Cut \((L \cup\{s\}, R \cup\{t\}) \Rightarrow\) net flow is \(k\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit
c) Cut \((L \cup\{s\}, R \cup\{t\}) \Rightarrow\) net flow is \(k \Rightarrow M^{\prime}\) has \(k\) edges

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit
c) \(\operatorname{Cut}(L \cup\{s\}, R \cup\{t\}) \Rightarrow\) net flow is \(k \Rightarrow M^{\prime}\) has \(k\) edges
\(\Rightarrow\) By a) \& b), \(M^{\prime}\) is a matching and by c), \(M^{\prime}\) has cardinality \(k\)

\section*{From Flow to Matching}
- Let \(f\) be a maximum flow in \(\widetilde{G}\) of value \(k\)
- Integrality Theorem \(\Rightarrow f(u, v) \in\{0,1\}\) and \(k\) integral
- Let \(M^{\prime}\) be all edges from \(L\) to \(R\) which carry a flow of one
a) Flow Conservation \(\Rightarrow\) every node in \(L\) sends at most one unit
b) Flow Conservation \(\Rightarrow\) every node in \(R\) receives at most one unit
c) Cut \((L \cup\{s\}, R \cup\{t\}) \Rightarrow\) net flow is \(k \Rightarrow M^{\prime}\) has \(k\) edges
\(\Rightarrow \mathrm{By} \mathrm{a}) \& \mathrm{~b}), M^{\prime}\) is a matching and by c), \(M^{\prime}\) has cardinality \(k\)

\section*{6.5: All-Pairs Shortest Paths}

\author{
Frank Stajano
}

Thomas Sauerwald

\section*{Outline}

\author{
All-Pairs Shortest Path
}

\section*{APSP via Matrix Multiplication}

Johnson's Algorithm

\section*{Formalising the Problem}

\section*{All-Pairs Shortest Path Problem}
- Given: directed graph \(G=(V, E), V=\{1,2, \ldots, n\}\), with edge weights represented by a matrix \(W\) :
\[
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
\]

\section*{Formalising the Problem}

\section*{All-Pairs Shortest Path Problem}
- Given: directed graph \(G=(V, E), V=\{1,2, \ldots, n\}\), with edge weights represented by a matrix \(W\) :
\[
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
\]
- Goal: Obtain a matrix of shortest path weights \(L\), that is
\[
\ell_{i, j}= \begin{cases}\text { weight of a shortest path from } i \text { to } j, & \text { if } j \text { is reachable from } i \\ \infty & \text { otherwise }\end{cases}
\]

\section*{Formalising the Problem}

\section*{All-Pairs Shortest Path Problem}
- Given: directed graph \(G=(V, E), V=\{1,2, \ldots, n\}\), with edge weights represented by a matrix \(W\) :
\[
w_{i, j}= \begin{cases}\text { weight of edge }(i, j) & \text { for an edge }(i, j) \in E \\ \infty & \text { if there is no edge from } i \text { to } j \\ 0 & \text { if } i=j\end{cases}
\]
- Goal: Obtain a matrix of shortest path weights \(L\), that is
\[
\ell_{i, j}= \begin{cases}\text { weight of a shortest path from } i \text { to } j, & \text { if } j \text { is reachable from } i \\ \infty & \text { otherwise }\end{cases}
\]

Here we will only compute the weight of the shortest path without keeping track of the edges of the path!

\section*{Outline}

\section*{All-Pairs Shortest Path}

\section*{APSP via Matrix Multiplication}

Johnson's Algorithm

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=W_{i, j}\), so \(L^{(1)}=W\)

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=W_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=W_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?
\[
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
\]

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=w_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?
\[
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
\]
\[
\ell_{i, j}^{(m)}=
\]

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=w_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?
\[
\ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right)
\]
\[
\ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=w_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?
\[
\begin{aligned}
& \ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right) \text { Recall that } w_{j, j}=0! \\
& \ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)
\end{aligned}
\]

\section*{A Recursive Approach}

\section*{Basic Idea}
- Any shortest path from \(i\) to \(j\) of length \(k \geq 2\) is the concatenation of a shortest path of length \(k-1\) and an edge
- Let \(\ell_{i, j}^{(m)}\) be min. weight of any path from \(i\) to \(j\) with at most \(m\) edges
- Then \(\ell_{i, j}^{(1)}=w_{i, j}\), so \(L^{(1)}=W\)
- How can we obtain \(L^{(2)}\) from \(L^{(1)}\) ?
\[
\begin{aligned}
& \ell_{i, j}^{(2)}=\min \left(\ell_{i, j}^{(1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(1)}+w_{k, j}\right) \text { Recall that } w_{j, j}=0! \\
& \ell_{i, j}^{(m)}=\min \left(\ell_{i, j}^{(m-1)}, \min _{1 \leq k \leq n} \ell_{i, k}^{(m-1)}+w_{k, j}\right)=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\end{aligned}
\]

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\(L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right)\)

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\(L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & ? & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)\)

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\(L^{(1)}=W=\left(\begin{array}{ccccc}0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0\end{array}\right) \quad L^{(2)}=\left(\begin{array}{ccccc}0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0\end{array}\right)\)
\[
L^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right)
\]

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

\section*{Example of Shortest Path via Matrix Multiplication (Figure 25.1)}

Computing \(L^{(m)}\)
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)

Computing \(L^{(m)}\)
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :

Computing \(L^{(m)}\)
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]

Computing \(L^{(m)}\)
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow ?
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow 0
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \\
\infty & \Leftrightarrow \\
0 & \Leftrightarrow
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right) \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \\
\infty & \Leftrightarrow \\
0 & \Leftrightarrow 1
\end{aligned}
\]

\section*{Computing \(L^{(m)}\)}
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- \(L^{(n-1)}=L^{(n)}=L^{(n+1)}=\ldots=L\), since every shortest path uses at most \(n-1=|V|-1\) edges (assuming absence of negative-weight cycles)
- Computing \(L^{(m)}\) :
\[
\begin{aligned}
\ell_{i, j}^{(m)} & =\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)<\begin{array}{c}
L^{(m)} \text { can be } \\
\text { computed in } \mathcal{O}\left(n^{3}\right)
\end{array} \\
\left(L^{(m-1)} \cdot W\right)_{i, j} & =\sum_{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)} \times w_{k, j}\right)
\end{aligned}
\]
- The correspondence is as follows:
\[
\begin{aligned}
\min & \Leftrightarrow \sum \\
+ & \Leftrightarrow \times \\
\infty & \Leftrightarrow 0 \\
0 & \Leftrightarrow 1
\end{aligned}
\]

Computing \(L^{(n-1)}\) efficiently
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- For, say, \(n=738\), we subsequently compute
\[
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
\]

Computing \(L^{(n-1)}\) efficiently
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- For, say, \(n=738\), we subsequently compute
\[
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
\]

Computing \(L^{(n-1)}\) efficiently
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- For, say, \(n=738\), we subsequently compute
\[
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
\]
- Since we don't need the intermediate matrices, a more efficient way is
\[
L^{(1)}, L^{(2)}, L^{(4)}, \ldots, L^{(512)}, L^{(1024)}=L
\]

Computing \(L^{(n-1)}\) efficiently
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- For, say, \(n=738\), we subsequently compute
\[
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
\]
- Since we don't need the intermediate matrices, a more efficient way is
\[
L^{(1)}, L^{(2)}, L^{(4)}, \ldots, L^{(512)}, L^{(1024)}=L
\]

Takes \(\mathcal{O}\left(\log n \cdot n^{3}\right)\).

Computing \(L^{(n-1)}\) efficiently
\[
\ell_{i, j}^{(m)}=\min _{1 \leq k \leq n}\left(\ell_{i, k}^{(m-1)}+w_{k, j}\right)
\]
- For, say, \(n=738\), we subsequently compute
\[
L^{(1)}, L^{(2)}, L^{(3)}, L^{(4)}, \ldots, L^{(737)}=L
\]
- Since we don't need the intermediate matrices, a more efficient way is

We need \(L^{(4)}=L^{(2)} \cdot L^{(2)}=L^{(3)} \cdot L^{(1)}!(\) see Ex. 25.1-4)
Takes \(\mathcal{O}\left(\log n \cdot n^{3}\right)\).

\section*{Outline}

\section*{All-Pairs Shortest Path}

\section*{APSP via Matrix Multiplication}

\author{
Johnson's Algorithm
}

\section*{Johnson's Algorithm}
\(\square\)

\section*{Johnson's Algorithm}
- allow negative-weight edges and negative-weight cycles

\section*{Johnson's Algorithm}
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra

\section*{Johnson's Algorithm}
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.

\section*{Johnson's Algorithm}

Overview
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative

\section*{Johnson's Algorithm}

Overview
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

\section*{Johnson's Algorithm}

\section*{Overview}
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

Adding a constant to every edge doesn't work!

\section*{Johnson's Algorithm}

\section*{Overview}
- allow negative-weight edges and negative-weight cycles
- one pass of Bellman-Ford and \(|V|\) passes of Dijkstra
- after Bellman-Ford, edges are reweighted s.t.
- all edge weights are non-negative
- shortest paths are maintained

Adding a constant to every edge doesn't work!

How Johnson's Algorithm works
Johnson's Algorithm
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0

How Johnson's Algorithm works
Johnson's Algorithm
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0

\section*{How Johnson's Algorithm works}

Johnson's Algorithm
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)

\section*{How Johnson's Algorithm works}

Johnson's Algorithm
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on \((G, E, \widetilde{w})\)

\section*{How Johnson's Algorithm works}

\section*{Johnson's Algorithm}
1. Add a new vertex \(s\) and directed edges \((s, v), v \in V\), with weight 0
2. Run Bellman-Ford on this augmented graph with source \(s\)
- If there are negative weight cycles, abort
- Otherwise:
1) Reweight every edge \((u, v)\) by \(\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta\)
2) Remove vertex \(s\) and its incident edges
3. For every vertex \(v \in V\), run Dijkstra on (\(G, E, \widetilde{w}\))

\section*{Correctness of Johnson's Algorithm}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Correctness of Johnson's Algorithm}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 1.

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

Theorem
For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 1 .}

Let \(u . \delta\) and \(v . \delta\) be the distances from the fake source \(s\)

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 1 .}

Let \(u . \delta\) and \(v . \delta\) be the distances from the fake source \(s\)
\[
u . \delta+w(u, v) \geq v . \delta \quad \text { (triangle inequality) }
\]

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 1 .}

Let \(u . \delta\) and \(v . \delta\) be the distances from the fake source \(s\)
\[
\begin{array}{rlrl}
u . \delta+w(u, v) & \geq v . \delta \quad \text { (triangle inequality) } \\
\Rightarrow \quad & \widetilde{w}(u, v)+u . \delta+w(u, v) & \geq w(u, v)+u . \delta-v . \delta+v . \delta
\end{array}
\]

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 1 .}

Let \(u . \delta\) and \(v . \delta\) be the distances from the fake source \(s\)
\[
\begin{aligned}
u . \delta+w(u, v) & \geq v . \delta \quad \text { (triangle inequality) } \\
\Rightarrow \quad \widetilde{w}(u, v)+u . \delta+w(u, v) & \geq w(u, v)+u . \delta-v . \delta+v . \delta \\
\Rightarrow \quad \widetilde{w}(u, v) & \geq 0
\end{aligned}
\]

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

Theorem
For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

Theorem
For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

Proof of 2.
Let \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) be any path

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 2.}

Let \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) be any path
- In the original graph, the weight is \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)\).

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 2.}

Let \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) be any path
- In the original graph, the weight is \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)\).
- In the reweighted graph, the weight is
\[
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)
\]

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 2.}

Let \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) be any path
- In the original graph, the weight is \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)\).
- In the reweighted graph, the weight is
\[
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+v_{i-1} . \delta-v_{i} . \delta\right)
\]

\section*{Correctness of Johnson's Algorithm}
\[
\widetilde{w}(u, v)=w(u, v)+u . \delta-v . \delta
\]

\section*{Theorem}

For any graph \(G=(V, E, w)\) without negative-weight cycles:
1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\section*{Proof of 2.}

Let \(p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)\) be any path
- In the original graph, the weight is \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)=w(p)\).
- In the reweighted graph, the weight is
\[
\sum_{i=1}^{k} \widetilde{w}\left(v_{i-1}, v_{i}\right)=\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+v_{i-1} \cdot \delta-v_{i} \cdot \delta\right)=w(p)+v_{0} \cdot \delta-v_{k} \cdot \delta
\]

\section*{Comparison of all Shortest-Path Algorithms}
\begin{tabular}{c}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Algorithm } & \multicolumn{2}{|c|}{ SSSP } & \multicolumn{2}{c|}{ APSP } & negative \\
\cline { 2 - 5 } & sparse & dense & sparse & dense & weights \\
\hline Bellman-Ford & \(V^{2}\) & \(V^{3}\) & \(V^{3}\) & \(V^{4}\) & \(\checkmark\) \\
\hline Dijkstra & \(V \log V\) & \(V^{2}\) & \(V^{2} \log V\) & \(V^{3}\) & \(X\) \\
\hline Matrix Mult. & - & - & \(V^{3} \log V\) & \(V^{3} \log V\) & \((\checkmark)\) \\
\hline Johnson & - & - & \(V^{2} \log V\) & \(V^{3}\) & \(\checkmark\) \\
\hline
\end{tabular} \\
\(\qquad\)\begin{tabular}{l}
can handle negative weight edges, \\
but not negative weight cycles
\end{tabular} \\
\hline
\end{tabular}

\section*{7: Geometric Algorithms}

\author{
Frank Stajano
}

Thomas Sauerwald

\section*{Outline}

\author{
Introduction and Line Intersection
}

\section*{Convex Hull}

\section*{Glimpse at (More) Advanced Algorithms}

\section*{Introduction}

Computational Geometry
- Branch that studies algorithms for geometric problems

\section*{Introduction}

Computational Geometry
- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Computational Geometry
- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Do these lines intersect?

Computational Geometry
- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Applications
- computer graphics
- computer vision
- textile layout
- VLSI design

Do these lines intersect?

Cross Product (Area)

Cross Product (Area)

Cross Product (Area)

Cross Product (Area)

\section*{Cross Product (Area)}

\[
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)
\]

\section*{Cross Product (Area)}

\[
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}
\]

\section*{Cross Product (Area)}

\[
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1
\]

\section*{Cross Product (Area)}

\[
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5
\]

\section*{Cross Product (Area)}

\[
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}
\end{aligned}
\]

\section*{Cross Product (Area)}

\[
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}
\end{aligned}
\]

\section*{Cross Product (Area)}

\[
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)
\end{aligned}
\]

\section*{Cross Product (Area)}

\[
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)=-5
\end{aligned}
\]

\section*{Cross Product (Area)}

Alternatively, one could take the dot-product (but not used here):
\[
p_{1} \cdot p_{2}=\left\|p_{1}\right\| \cdot\left\|p_{2}\right\| \cdot \cos (\phi) .
\]
\[
\begin{aligned}
& p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=2 \cdot 3-1 \cdot 1=5 \\
& p_{2} \times p_{1}=y_{1} x_{2}-y_{2} x_{1}=-\left(p_{1} \times p_{2}\right)=-5
\end{aligned}
\]

\section*{Cross Product in 3D}

\section*{Using Cross product to determine Turns}

Sign of cross product determines turn!

\section*{Using Cross product to determine Turns}

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

\section*{Using Cross product to determine Turns (origin shifted)}

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

\section*{Solving Line Intersection}

\section*{Solving Line Intersection}
 (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

Opposite signs \(\Rightarrow \overline{p_{3} p_{4}}\) crosses (infinite) line through \(p_{1}\) and \(p_{2}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

Opposite signs \(\Rightarrow \overline{p_{3} p_{4}}\) crosses (infinite) line through \(p_{1}\) and \(p_{2}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses
Opposite signs \(\Rightarrow \overline{p_{3} p_{4}}\) crosses (infinite) line through \(p_{1}\) and \(p_{2}\)

\section*{Solving Line Intersection}

\section*{Solving Line Intersection}

\section*{Solving Line Intersection}

- \(\widetilde{p_{1} p_{2}} \cap \widetilde{p_{3} p_{4}} \supseteq \widetilde{p_{1} p_{2}} \cap \widetilde{p_{3} p_{4}} \neq \emptyset\)
- \(\widetilde{p_{1} p_{2}} \cap \widetilde{p_{3} p_{4}} \supseteq \widetilde{p_{1} p_{2}} \cap \widetilde{p_{3} p_{4}} \neq \emptyset\)
- Since \(\widetilde{p_{1} p_{2}} \cap \widetilde{p_{3} p_{4}}\) consists of (at most) one point \(\Rightarrow \overline{p_{1} p_{2}} \cap \overline{p_{3} p_{4}} \neq \emptyset\)

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

Opposite signs \(\Rightarrow \overline{p_{3} p_{4}}\) crosses (infinite) line through \(p_{1}\) and \(p_{2}\)

\section*{Solving Line Intersection}

Opposite signs \(\Rightarrow \overline{p_{1} p_{2}}\) crosses (infinite) line through \(p_{3}\) and \(p_{4}\)

Opposite signs \(\Rightarrow \overline{p_{3} p_{4}}\) crosses (infinite) line through \(p_{1}\) and \(p_{2}\)

\section*{Solving Line Intersection}

Solving Line Intersection

\section*{\(\overline{p_{1} p_{2}}\) does not cross \(\overline{p_{3} p_{4}}\)}

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)
4: \(\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)\)
5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad \ldots\) (handle all degenerate cases)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)
4: \(\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)\)
5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad\)... (handle all degenerate cases)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)
4: \(\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)\)
5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad\)... (handle all degenerate cases)

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)
4: \(\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)\)
5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad \ldots\) (handle all degenerate cases)
Lines could touch or be colinear

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)

4: \(\quad d_{4}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)\)
5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad \ldots\) (handle all degenerate cases)
Lines could touch or be colinear

\section*{Solving Line Intersection}

0: \(\operatorname{DIRECTION}\left(p_{i}, p_{j}, p_{k}\right)\)
1: \(\quad\) return \(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\)

0: SEGMENTS-INTERSECT \(\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\)
1: \(\quad d_{1}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)\)
2: \(\quad d_{2}=\operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)\)
3: \(\quad d_{3}=\operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)\)

5: If \(d_{1} \cdot d_{2}<0\) and \(d_{3} \cdot d_{4}<0\) return TRUE
6: \(\quad \ldots\) (handle all degenerate cases)
Lines could touch or be colinear

\section*{Outline}

\section*{Introduction and Line Intersection}

\section*{Convex Hull}

Glimpse at (More) Advanced Algorithms

\section*{Convex Hull}

The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

Smallest perimeter fence enclosing the points

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

Convex Hull Problem
- Input: set of points \(Q\) in the Euclidean space

\section*{Convex Hull}

Definition
The convex hull of a set \(Q\) of points is the smallest convex polygon \(P\) for which each point in \(Q\) is either on the boundary of \(P\) or in its interior.

Convex Hull Problem
- Input: set of points \(Q\) in the Euclidean space
- Output: return points of the convex hull in counterclockwise order

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

- \(t\)

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

- \(t\)

\section*{Application of Convex Hull}

\section*{Robot Motion Planning}

Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

\(\circ t\)

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.

\section*{Application of Convex Hull}

Robot Motion Planning
Find shortest path from \(s\) to \(t\) which avoids a polygonal obstacle.
can be solved by computing the Convex hull!

Graham's Scan

Basic Idea
- Start with the point with smallest \(y\)-coordinate

\section*{Graham's Scan}

Basic Idea
- Start with the point with smallest \(y\)-coordinate

\section*{Graham's Scan}

\section*{(2)}
©

©
(0)

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle

\section*{Graham's Scan}

\section*{(2)}
(4)

(1)
(0)

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull

\section*{Graham's Scan}

\section*{(2)}
(4)

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull

\section*{Graham's Scan}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

\section*{Graham's Scan}

\section*{(4)}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

\section*{Graham's Scan}

\section*{(4)}
(2)

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine

Graham's Scan
(4)

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)

Graham's Scan

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise,

\section*{Graham's Scan}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

Efficient Sorting by comparing (not computing!) polar angles
Basic Idea
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

Efficient Sorting by comparing (not computing!) polar angles

\section*{Basic Idea}
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

Efficient Sorting by comparing (not computing!) polar angles
Basic Idea
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

Efficient Sorting by comparing (not computing!) polar angles
- Start with the point with smallest \(y\)-coordinate
- Sort all points increasingly according to their polar angle
- Try to add next point to the convex hull
- If it does not introduce non-left turn, then fine \(\checkmark\)
- Otherwise, keep on removing recent points until point can be added

\section*{Graham's Scan}

```

0: GRAHAM-SCAN(Q)
1: Let po be the point with minimum y-coordinate
2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},···,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
3: If }n<2\mathrm{ return false
4:
5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},S
8: For i=3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn
10: POP(S)
11: End While
12: }\operatorname{PUSH}(\mp@subsup{p}{i}{},\textrm{S}
13: End For
14: Return S

```

\section*{Graham's Scan}

```

    0: GRAHAM-SCAN(Q)
    1: Let po be the point with minimum y-coordinate
    2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. po
    3: If n<2 return false
    4:
    5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
    6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: PUSH(p,S)
8: For i=3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn
10: POP(S)
11: End While
12: PUSH( }\mp@subsup{p}{i}{},\textrm{S}
13: End For
14: Return S

```

\section*{Graham's Scan}

```

    0: GRAHAM-SCAN(Q)
    1: Let po be the point with minimum y-coordinate
    2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
    3: If n<2 return false
    4:
    5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
    6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},\textrm{S}
8: For i=3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn
10: POP(S)
11: End While
12: PUSH( }\mp@subsup{p}{i}{},\textrm{S}
13: End For
14: Return S

```

\section*{Graham's Scan}

```

0: GRAHAM-SCAN(Q)
1: Let po be the point with minimum y-coordinate
2: Let ( }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},···,\mp@subsup{p}{n}{})\mathrm{ be the other points sorted by polar angle w.r.t. p
3: If n<2 return false
4:
5: PUSH( }\mp@subsup{p}{0}{},\textrm{S}
6: }\quad\operatorname{PUSH}(\mp@subsup{p}{1}{},S
7: }\operatorname{PUSH}(\mp@subsup{p}{2}{},\textrm{S}
8: For i=3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),p
10: POP(S)
11: End While
12: PUSH( }\mp@subsup{p}{i}{},\textrm{S}
13: End For
14: Return S

```

\section*{Graham's Scan}

\section*{Graham's Scan}

\section*{Overall Runtime: \(O(n \log n)\)}

\section*{0: GRAHAM-SCAN(Q)}

1: Let \(p_{0}\) be the point with minimum \(y\)-coordinate
2: Let \(\left(p_{1}, p_{2}, \ldots, p_{n}\right)\) be the other points sorted by polar angle w.r.t. \(p_{0}\)
3: If \(n<2\) return false
4: \(\quad S=\emptyset\)
5: \(\quad \operatorname{PUSH}\left(p_{0}, S\right)\)
6: \(\quad \operatorname{PUSH}\left(p_{1}, S\right)\)
7: \(\quad \operatorname{PUSH}\left(p_{2}, \mathrm{~S}\right)\)
8: \(\quad\) For \(i=3\) to \(n\)
9: \(\quad\) While angle of NEXT-TO-TOP(S),TOP(S), \(p_{i}\) makes a non-left turn
10: \(\quad\) POP(S)
11: End While
12: \(\operatorname{PUSH}\left(p_{i}, \mathrm{~S}\right)\)
13: End For
14: Return S

Takes \(O(n)\) time, since every point is part of a PUSH or POP at most once.

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}
\[
i=0 \quad 0
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|}
i=1 & 0 & 1 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|}
\hline i=2 & 0 & 1 & 2 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|lll}
i=3 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{l|l|l|l|}
i=4 & 0 & 1 & 2 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|}
i=4 & 0 & 1 & 2
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|}
\hline i=4 & 0 & 2 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
i=4 \quad 0012
\]

\section*{Execution of Graham's Scan}
\[
i=4 \quad 00|1| 4
\]

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|}
\hline i=5 & 0 & 1 & 5 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|l|}
i=6 & 0 & 1 & 5 & 6 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\[
\begin{array}{l|l|l|l|l|}
i=7 & 0 & 1 & 5 & 6 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}
\begin{tabular}{l|l|l|l|l|l|}
\hline 0 & 1 & 5 & 6 & 7 \\
\hline
\end{tabular}

\section*{Execution of Graham's Scan}
\(i=8 \quad\)\begin{tabular}{lll|l|l}
\hline 0 & 1 & 5 & 6 \\
\hline
\end{tabular}

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|l|l|l|l|}
\hline i=14 & 0 & 1 & 5 & 8 & 12 & 13 & 14 \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}
\[
\begin{array}{ll|l|l|l|l|l|l|}
\hline i=15 & 0 & 1 & 5 & 8 & 12 & 13 & \\
\hline
\end{array}
\]

\section*{Execution of Graham's Scan}

\section*{Execution of Graham's Scan}

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

\section*{Jarvis' March (Gift wrapping)}

Intuition
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

4. Next point the one with smallest angle w.r.t. \(p_{k}\)

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

4. Next point the one with smallest angle w.r.t. \(p_{k}\)

Here, we rotate the coordinate system by 180 !

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

4. Next point the one with smallest angle w.r.t. \(p_{k}\)
5. Continue until \(p_{0}\) is reached

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Algorithm
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

4. Next point the one with smallest angle w.r.t. \(p_{k}\)
5. Continue until \(p_{0}\) is reached

Runtime: \(O(n \cdot h)\), where \(h\) is no. points on convex hull.

\section*{Jarvis' March (Gift wrapping)}

\section*{Intuition}
- Wrapping taut paper around the points
1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

\section*{Algorithm}
1. Let \(p_{0}\) be the lowest point
2. Next point the one with smallest angle w.r.t. \(p_{0}\)
3. Continue until highest point \(p_{k}\)

4. Next point the one with smallest angle w.r.t. \(p_{k}\)
5. Continue until \(p_{0}\) is reached

Runtime: \(O(n \cdot h)\), where \(h\) is no. points on convex hull.

Output sensitive algorithm!

\section*{Execution of Jarvis' March}

7: Geometric Algorithms
T.S.

\section*{Execution of Jarvis' March}

\section*{Execution of Jarvis' March}

Computing Convex Hull: Summary

Computing Convex Hull: Summary
Graham's Scan

Computing Convex Hull: Summary
- Graham's Scan
- natural backtracking algorithm

\section*{Computing Convex Hull: Summary}

Graham's Scan
- natural backtracking algorithm
- cross-product avoids computing polar angles

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Computing Convex Hull: Summary}

Graham's Scan
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)
```

Jarvis' March

```

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive
\[
\text { Improves Graham's scan only if } h=O(\log n)
\]

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive

Improves Graham's scan only if \(h=O(\log n)\)
There exists an algorithm with \(O(n \log h)\) runtime!

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive

Improves Graham's scan only if \(h=O(\log n)\)
There exists an algorithm with \(O(n \log h)\) runtime!
Lessons Learned

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive

Improves Graham's scan only if \(h=O(\log n)\)
There exists an algorithm with \(O(n \log h)\) runtime!
Lessons Learned

- cross product very powerful tool (avoids trigonometry and divison!)

\section*{Computing Convex Hull: Summary}

\section*{Graham's Scan}
- natural backtracking algorithm
- cross-product avoids computing polar angles
- Runtime dominated by sorting \(\rightsquigarrow O(n \log n)\)

\section*{Jarvis' March}
- proceeds like wrapping a gift
- Runtime \(O(n h) \rightsquigarrow\) output-sensitive

Improves Graham's scan only if \(h=O(\log n)\)
There exists an algorithm with \(O(n \log h)\) runtime!
Lessons Learned

- cross product very powerful tool (avoids trigonometry and divison!)
- take care of degenerate cases

\section*{Outline}

\section*{Introduction and Line Intersection}

\section*{Convex Hull}

Glimpse at (More) Advanced Algorithms

\section*{Linear Programming and Simplex}
\begin{tabular}{lllrlrll}
maximize & \(3 x_{1}\) & + & \(x_{2}\) & + & \(2 x_{3}\) \\
subject to
\end{tabular}

\section*{Linear Programming and Simplex}

\begin{tabular}{lllcllll}
\begin{tabular}{llllll}
\(\operatorname{maximize}\) & \(3 x_{1}\) & + & \(x_{2}\) & + & \(2 x_{3}\) \\
subject to
\end{tabular} & & & & \\
& \(x_{1}\) & + & \(x_{2}\) & + & \(3 x_{3}\) & \(\leq\) & 30 \\
& \(2 x_{1}\) & + & \(2 x_{2}\) & + & \(5 x_{3}\) & \(\leq\) & 24 \\
& Goto End & \(4 x_{1}\) & + & \(x_{2}\) & + & \(2 x_{3}\) & \(\leq\) \\
& & & \(x_{1}, x_{2}, x_{3}\) & & \(\geq\) & 0
\end{tabular}

\section*{Linear Programming and Simplex}

\section*{Linear Programming and Simplex}

\section*{Linear Programming and Simplex}

\title{
SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*
}

\author{
G. DANTZIG, R. FULKERSON, and S. JOHNSON \\ The Rand Corporation, Santa Monica, California \\ (Received August 9, 1954)
}

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an \(n\) by \(n\) symmetric matrix \(D=\left(d_{I J}\right)\), where \(d_{I J}\) represents the 'distance' from \(I\) to \(J\), arrange the points in a cyclic order in such a way that the sum of the \(d_{I J}\) between consecutive points is minimal. Since there are only a finite number of possibilities (at most \(1 / 2(n-1)!\)) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of \(n\). Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, \({ }^{3,7,8}\) little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be shown that a certain arrangement of 49 cities, one in each of the 48 states and Washington, D. C., is best, the \(d_{I J}\) used representing road distances as taken from an atlas.

\section*{Travelling Salesman Problem: The 42 (49) Cities}
1. Manchester, N. H.
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5. Charleston, W. Va.
6. Louisville, Ky.
7. Indianapolis, Ind.
8. Chicago, Ill.
9. Milwaukee, Wis.
10. Minneapolis, Minn.
11. Pierre, S. D.
12. Bismarck, N. D.
13. Helena, Mont.
14. Seattle, Wash.
15. Portland, Ore.
16. Boise, Idaho
17. Salt Lake City, Utah
18. Carson City, Nev.
19. Los Angeles, Calif.
20. Phoenix, Ariz.
21. Santa Fe, N. M.
22. Denver, Colo.
23. Cheyenne, Wyo.
24. Omaha, Neb.
25. Des Moines, Iowa
26. Kansas City, Mo.
27. Topeka, Kans.
28. Oklahoma City, Okla.
29. Dallas, Tex.
30. Little Rock, Ark.
31. Memphis, Tenn.
32. Jackson, Miss.
33. New Orleans, La.
34. Birmingham, Ala.
35. Atlanta, Ga.
36. Jacksonville, Fla.
37. Columbia, S. C.
38. Raleigh, N. C.
39. Richmond, Va.
40. Washington, D. C.
41. Boston, Mass.
42. Portland, Me.
A. Baltimore, Md.
B. Wilmington, Del.
C. Philadelphia, Penn.
D. Newark, N. J.
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

\section*{Road Distances}

TABLE I
Road Distances between Cities in Adjusted Units
The figures in the table are mileages between the two specified numbered cities, less 11, divided by 17 , and rounded to the nearest integer.
\(\begin{array}{lll}39 & 45 & \\ 37 & 47 & 9\end{array}\)
\(\begin{array}{llll}50 & 49 & 21 & 15\end{array}\)
\(\begin{array}{lllll}61 & 62 & 21 & 20 & 17\end{array}\)
\(\begin{array}{llllll}58 & 60 & 16 & 17 & 18 & 6\end{array}\)
\(\begin{array}{lllllll}59 & 60 & 15 & 20 & 26 & 17 & 10\end{array}\)
\(\begin{array}{llllllll}62 & 66 & 20 & 25 & 31 & 22 & 15 & 5\end{array}\)
\(\begin{array}{lllllllll}81 & 81 & 40 & 44 & 50 & 41 & 35 & 24 & 20\end{array}\)
\(\begin{array}{llllllllll}103 & 107 & 62 & 67 & 72 & 63 & 57 & 46 & 41 & 23\end{array}\)
\(\begin{array}{llllllllll}108 & 117 & 66 & 71 & 77 & 68 & 61 & 51 & 46 & 26 \\ \text { II }\end{array}\)
\(\begin{array}{llllllllll}145 & 149 & 104 & 108 & 114 & 106 & 99 & 88 & 84 & 63\end{array} 4940\)

\(1871911461501561421371301251059081 \quad 41 \quad 10\)

\(\begin{array}{lllllllllllll}142 & \text { I46 IOI } 104 \text { III } & 97 & 91 & 85 & 86 & 75 & 51 & 59 & 29 & 53 & 48 & 21\end{array}\)

\(\begin{array}{llllllllllllllllllll}137 & 139 & 94 & 9^{6} & 94 & 80 & 7^{8} & 77 & 84 & 77 & 56 & 64 & 65 & 90 & 87 & 58 & 36 & 68 & 50 & 30\end{array}\)
\(17 \begin{array}{llllllllllllllllllll}122 & 77 & 80 & 83 & 68 & 62 & 60 & 61 & 50 & 34 & 42 & 49 & 82 & 77 & 60 & 30 & 62 & 70 & 49 & 21\end{array}\)
\(\begin{array}{lllllllllllllllllllllll}14 & 118 & 73 & 78 & 84 & 69 & 63 & 57 & 59 & 48 & 28 & 36 & 43 & 77 & 72 & 45 & 27 & 59 & 69 & 55 & 27 & 5\end{array}\)
\(\begin{array}{llllllllllllllllllllllll}85 & 89 & 44 & 48 & 53 & 4 \mathrm{I} & 34 & 28 & 29 & 22 & 23 & 35 & 69 & 105 & 102 & 74 & 56 & 88 & 99 & 81 & 54 & 32 & 29 & \\ 77 & 80 & 36 & 40 & 46 & 34 & 27 & 19 & 21 & 14 & 29 & 40 & 77 & 114 & 111 & 84 & 64 & 96 & 107 & 87 & 60 & 40 & 37 & 8\end{array}\)

\section*{The (Unique) Optimal Tour (699 Units \(\approx 12,345\) miles)}

Fig. 16. The optimal tour of 49 cities.

\section*{Iteration 1: Objective 641}

Iteration 1: Objective 641, Eliminate Subtour 1, 2, 41, 42

\section*{Iteration 2: Objective 676}

Iteration 2: Objective 676, Eliminate Subtour 3 - 9

\section*{Iteration 3: Objective 681}

Iteration 3: Objective 681, Eliminate Subtour 24, 25, 26, 27

\section*{Iteration 4: Objective 682.5}

Iteration 4: Objective 682.5, Eliminate Small Cut by 13 - 17

\section*{Iteration 5: Objective 686}

Iteration 5: Objective 686, Eliminate Subtour 10, 11, 12

\section*{Iteration 6: Objective 686}

Iteration 6: Objective 686, Eliminate Subtour 13 - 23

\section*{Iteration 7: Objective 688}

Iteration 7: Objective 688, Eliminate Subtour 11 - 23

\section*{Iteration 8: Objective 697}

Iteration 8: Objective 697, Branch on \(x(13,12)\)

Iteration 9, Branch a \(x(13,12)=1\) : Objective 699 (Valid Tour)

```

Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0
with Simplex, Mixed Integer \& Barrier Optimizers
5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21
Copyright IBM Corp. 1988, 2014. All Rights Reserved.
Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.
CPLEX> read tsp.lp
Problem 'tsp.lp' read.
Read time = 0.00 sec. (0.06 ticks)
CPLEX> primopt
Tried aggregator 1 time.
LP Presolve eliminated 1 rows and 1 columns.
Reduced LP has 49 rows, }860\mathrm{ columns, and }2483\mathrm{ nonzeros.
Presolve time = 0.00 sec. (0.36 ticks)
Iteration log . . .
Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 1510.000000
Iteration: 90 Objective = 923.000000
Iteration: 155 Objective = 711.000000
Primal simplex - Optimal: Objective = 6.9900000000e+02
Solution time = 0.00 sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)
CPLEX>

```

CPLEX> display solution variables -
Variable Name Solution Value
x_2_1 1.000000
\(\begin{array}{ll}\times _42 _1 & 1.000000 \\ \times 32^{2} & 1.000000\end{array}\)
x_3_2 1.000000
\(\times 1\)-4 1.000000
x_5_4
1.000000
x_6_5 1.000000
x_7_6
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
x_36_35
1.000000
x_38_37
1.000000
x_39_38
1.000000
x_40_39
1.000000
×_42_41
1.000000

All other variables in the range \(1-861\) are 0 .

Iteration 10, Branch b \(x(13,12)=0\) : Objective 701

\section*{Thank you for attending this course \& Best wishes for the rest of your Tripos!}
- Don't forget to visit the online feedback page!
- Please send comments on the slides to: tms41@cam.ac.uk```

