
Lecture 06 (revised version) : Database updates

Outline

ACID transactions

Update anomalies

General integrity constraints

Problems with data redundancy

A simple language for transactions

Reasoning about transactions.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 1 / 15

Transactions — The ACID abstraction

ACID

Atomicity Either all actions are carried out, or none are

logs needed to undo operations, if needed

Consistency If each transaction is consistent, and the database is

initially consistent, then it is left consistent

This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of

other scheduled transactions

Serializability, 2-phase commit protocol

Durability If a transactions completes successfully, then its effects

persist

Logging and crash recovery

Should be review from Concurrent and Distributed Systems so we will

not go into the details of how these abstractions are implemented.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 2 / 15

Bad design

Big Table

sid name college course part term_name

yy88 Yoni New Hall Algorithms I IA Easter

uu99 Uri King’s Algorithms I IA Easter

bb44 Bin New Hall Databases IB Lent

bb44 Bin New Hall Algorithms II IB Michaelmas

zz70 Zip Trinity Databases IB Lent

zz70 Zip Trinity Algorithms II IB Michaelmas

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 3 / 15

Data anomalies

Insertion anomalies

How can we tell if an inserted record is consistent with current

records? Can we record data about a course before students enroll?

Deletion anomalies

Will we wipe out information about a college when last student

associated with the college is deleted?

Update anomalies

Change New Hall to Murray Edwards College

Conceptually simple update

May require locking entire table.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 4 / 15

General database integrity constraints

Just write predicates with quantifiers ∀x ∈ Q,P(x) and ∃x ∈ Q,P(x),
where Q is a query in a relational calculus.

For a database assertion P, the notation DB |= P means that P holds

in the database instance DB.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 5 / 15

Examples

Example. A key constraint for R:

∀t ∈ R, ∀u ∈ R, t .key = u.key→ t = u

Example. A foreign key constraint (key is a key of S):

∀t ∈ R, ∃u ∈ S, t .key = u.key

One goal of database schema design

Design a database schema so that almost all integrity constraints are

key constraints or foreign key constraints.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 6 / 15

One possible approach

Suppose that C is some constraint we would like to enforce on our

database.

Let Q
¬C be a query that captures all violations of C.

Enforce (somehow) that the assertion that is always Q
¬C empty.

create view C_violations as

create assertion check_C

check not (exists C_violations)

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 7 / 15

A simple language for transactions?

Although the relational algebra or relational calculi are widely used,

there seems to be no analogous formalism for database updates and

transactions. So we invent one!

Transactions will have the form

transaction f (x1, x2, ..., xk) = E

where

E ::= skip (do nothing)
| abort (abort transaction)
| INS(R, t) (insert tuple t into R)
| DEL(R, p) (delete σp(R) from R)
| E1; E2 (sequence)
| if P then E1 else E2 (P a predicate)

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 8 / 15

Hoare Logic for Database updates

We write

{P} E {Q}

to mean that if DB |= P then E(DB) |= Q, where E(DB) denotes the

result of executing E in database DB.

One way to think about an integrity constraint C

For all transactions

transaction f (x1, x2, ..., xk) = E

and all values v1, . . . vk we want

{C} f (v1, v2, ..., vk) {C}

That is, constraint C is an invariant of for all transactions.

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 9 / 15

The weakest precondition

Defined the weakest precondition of E with respect to Q, wpc(E , Q),
to be a database predicate such that if

P → wpc(E , Q),

then

{P} E {Q}.

That is, wpc(E , Q) is the weakest predicate such that

{wpc(E , Q)} E {Q}.

In other words, if DB |= wpc(E , Q) then E(DB) |= Q.

So, for C to be an invariant of f we want for all v1, v2, ..., vk ,

C → wpc(f (v1, v2, ..., vk), C).

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 10 / 15

The weakest precondition

For simplicity we ignore abort ...

wpc(skip, Q) = Q

wpc(INS(R, t), Q) = Q[R ∪ {t}/R]
wpc(DEL(R, p), Q) = Q[{t ∈ R | ¬p(t)}/R]

wpc(E1; E2, Q) = wpc(E1, wpc(E2, Q))
wpc(if T then E1 else E2, Q) = (T → wpc(E1, Q))∧

(¬T → wpc(E2, Q))

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 11 / 15

Example (a foreign key constraint, key is a key of S)

Q = ∀t ∈ R, ∃u ∈ S, t .key = u.key

E = INS(R, v); INS(S, w)

wpc(E , Q)

= wpc(INS(R, v), wpc(INS(S, w), Q))

= wpc(INS(R, v), ∀t ∈ R, ∃u ∈ S ∪ {w}, t .key = u.key)

= ∀t ∈ R ∪ {v}, ∃u ∈ S ∪ {w}, t .key = u.key

↔ ∀t ∈ R ∪ {v}, (t .key = w .key) ∨ (∃u ∈ S, t .key = u.key)

↔ ((v .key = w .key) ∨ (∃u ∈ S, v .key = u.key))

∧∀t ∈ R, (t .key = w .key) ∨ ∃u ∈ S, t .key = u.key

← ((v .key = w .key) ∨ (∃u ∈ S, v .key = u.key)) ∧Q

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 12 / 15

Example (a foreign key constraint, key is a key of S)

Conclude that the integrity constraint

Q = ∀t ∈ R, ∃u ∈ S, t .key = u.key

is an invariant of the following transaction.

transaction f (v , w) =
if (v .key = w .key) ∨ (∃u ∈ S, v .key = u.key

then INS(R, v); INS(S, w)
else skip

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 13 / 15

Example : key constraint

In a similar way, we can show that the transaction

transaction insert(R, t) =
if ∀u ∈ R, u.key 6= t .key

then INS(R, t)
else skip

has invariant

Q = ∀t ∈ R, ∀u ∈ R, t .key = u.key→ t = u.

Exercise: Show that

Q → wpc(insert(R, t), Q).

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 14 / 15

Redundancy is the root of (almost) all database evils

It may not be obvious, but redundancy is also the cause of update

anomalies.

By redundancy we do not mean that some values occur many
times in the database!

◮ A foreign key value may be have millions of copies!

But then, what do we mean?

We will model logical redundancy with functional dependencies

(next lecture).

tgg22 (cl.cam.ac.uk) Databases 2015 DB 2015 15 / 15

