Distributed systems

Lecture 7: Replication in distributed
systems, CAP, case studies

Dr Robert N. M. Watson



Last time

* General issue of consensus:

— How to get processes to agree on something

— FLP says “impossible” in asynchronous networks with at least 1
failure ... but in practice we’re OK!

— General idea useful for leadership elections, distributed mutual
exclusion: relies on being able to detect failures

 Distributed transactions:

— Need to commit a set of “sub-transactions” across multiple
servers — want all-or-nothing semantics

— Use atomic commit protocol like 2PC

* Replication:
— Performance, load-balancing, and fault tolerance
— Introduction to consistency



ReEIication and Consistency

* Gets more challenging if clients can perform updates
* For example, imagine x has value 3 (in all replicas)

— C1 requests write(x, 5) from S4

— C2 requests read(x) from S3

— What should occur?

e With strong consistency, the distributed system
behaves as if there is no replication present:

— i.e.in above, C2 should get the value 5

— requires coordination between all servers

With weak consistency, C2 may get 3 or 5 (or ..."?)
— Less satisfactory, but much easier to implement



Replication for fault tolerance

e Replication for services, not just data objects

* Easiest is for a stateless services:

— Simply duplicate functionality over k machines

— Clients use any (e.g. closest), fail over to another
* Very few totally stateless services

— But e.g. many web apps have per-session soft state
— State generated per-client, lost when client leaves

* For examp

e: multi-tier web farms (Facebook, ...):

—>

Web server

>

App server

Cache server | Database

—>

Web server

>

App server

Cache server

—>

Web server

—>

App server

Database

I
Cache server |

—> session soft state only

consistent replication (transactioné)



Passive Replication

* A solution for stateful services is primary/backup:
— Backup server takes over in case of failure

* Based around persistent logs and system checkpoints:

— Periodically (or continuously) checkpoint primary
— |If detect failure, start backup from checkpoint

A few variants trade-off fail-over time:

— Cold-standby: backup server must start service (software),
load checkpoint & parse logs

— Warm-standby: backup server has software running in
anticipation — just needs to load primary state

— Hot-standby: backup server mirrors primary work, but
output is discarded; on failure, enable output



Active Replication

* Alternative: have k replicas running at all times

* Front-end server acts as an ordering node:

— Receives requests from client and forwards them to all
replicas using totally ordered multicast

— Replicas each perform operation and respond to front-end
— Front-end gathers responses, and replies to client
* Typically require replicas to be “state machines”:
— i.e. act deterministically based on input
— ldea is that all replicas operate ‘in lock step’
* Active replication is expensive (in terms of resources)...

— ... and not really worth it in the common case.
— However valuable if consider Byzantine failures



Achieving Strong Consistency

 Need to ensure any update propagates to all replicas
before allow any subsequent reads
* One solution:

— When S, receives request to update x, first locks x at all other
replicas

— Once successful, S, makes update, and propagates to all other
replicas, who acknowledge

— Finally, S, instructs all replicas to unlock
— Once C; has an ACK for its write, C, (including C;) will see update
 Need to handle failure (of replica, or network)

— Add step to tentatively apply update, and only actually apply
(“commit”) update if all replicas agree

e We've reinvented distributed transactions & 2PC!



Quorum Systems

* Transactional consistency works, but:
— High overhead, and
— Poor availability during update (worse if crash!)

* An alternative is a quorum system:

— Imagine there are N replicas, a write quorum Q,,, and
a read quorum Q,, where Q, > N/2 and (Q, +Q,) > N

* To perform a write, must update Q,, replicas
— Ensures a majority of replicas have new value

* To perform a read, must read Q, replicas
— Ensures that we read at least one updated value



Example

S, S, S, S, Se Se S, time

- ‘ - ‘

X=5 v1,S1 X—5 vl,sl " X=5 v1,S1 X=5 v1,S1 X—5 vl,sl " X=5 v1,S1 " X=5 v1,S1

FLITJ_TTT

X—5 vl,sl " X=0 v2,S3 X=0 v2,S3 X—5 vl,sl X=0 v2,S3 X=0 v2,S3 X=0 v2,S3

\ l \ l

* Seven replicas (N=7),Q,=5,Q, =3
e All objects have associated version (T, S)

— T is logical timestamp, initialized to zero
— Sis aserver ID (used to break ties)

* Any write will update at least Q, replicas

* Performing a read is easy:
— Choose replicas to read from until get Q, responses
— Correct value is the one with highest version




Quorum Systems: Writes

* Performing a write is trickier:
— Must ensure get entire quorum, or cannot update
— Hence need a commit protocol (as before)

* |n fact, transactional consistency is a quorum
protocol with Q,, = Nand Q, = 1!

— But when Q,, < N, additional complexity since must
bring replicas up-to-date before updating

 Quorum systems are good when expect failures
— Additional work on update, additional work on reads...
— ... but increased availability during failure

* How might client-server traffic scale with Q,/Q,?



Weak Consistency

 Maintaining strong consistency has costs:
— Need to coordinate updates to all (or Q) replicas
— Slow... and will block other accesses for the duration

* Weak consistency provides fewer guarantees:
— e.g. C1 updates (replica of) object x at S3
— S3 lazily propagates changes to other replicas
— Other clients can potentially read old (“stale”) value

* Considerably more efficient:

— Write is simpler, and doesn’t need to wait for
communication with lots of other replicas...

— ... hence is also more available (i.e. fault tolerant)

11



FIFO Consistency

e As with group communication primitives, various
ordering guarantees possible

* FIFO consistency: all updates at S; occur in the same
order at all other replicas

— As with FIFO multicast, can buffer for as long as we like!

— But says nothing about how S,’s updates are interleaved
with S;’s at another replica (may put S, first, or S;, or mix)

Still useful in some circumstances

— e.g. single user accessing different replicas at disjoint times
— |l.e., client will see its writes serialised

— Essentially primary replication with primary=Ilast accessed



Eventual Consistency

FIFO consistency doesn’t provide very nice semantics:
— E.g. C1 writes V, of file fto S,

— Later C1 reads f from S,, and writes V,

— Much later, C1 reads f from S; and gets V; — changes lost!

What happened?

— V, arrived at S; after V,, thus overwrote it (stoooopid S;)

A desirable property in weakly consistent systems is
that they converge to a more correct state

— |l.e. in the absence of further updates, every replica will
eventually end up with the same latest version

This is called eventual consistency

13



Implementing Eventual Consistency

* Servers S, keep a version vector V.,(O) for each object
— For each update of O on S;, increment V,(O)([i]
— (essentially a vector clock reused as a version number)
e Servers synchronize pair-wise from time to time
— For each object O, compare V;(0O) to V;(O)
— If V{(0) < V,(0), S, gets an up-to-date copy from S;;
if V;(0) < V,(0), S; gets an up-to-date copy from S,.
* If Vi(O) ~ Vj(O) we have a write-conflict:
— Concurrent updates have occurred at 2 or more servers
— Must apply some kind of reconciliation method
— (similar to revision control systems, and equally painful)



Amazon’'s Dynamo [2007]

« Storage service used within Amazon’s web services

» Designed to prioritise availability above consistency:
— SLA to give bounded response time 99.99% of the time

— if customer wants to add something to shopping basket
and there’s a failure... still want addition to ‘work’

— Even if get (temporarily) inconsistent view... fix later!
 Built around notion of a so-called sloppy quorum:

— Have N, Q,,, Q, as we saw earlier... but don’t actually
require that Q,, > N/2, or that (Q, + Q,) > N

— Instead make tunable: lower Q values = higher
availability (i.e. read/write) throughput

— Also let system continue during failure



Session Guarantees

e Eventual consistency seems great, but how can you
program to it?
— Need to know something about what guarantees are provided
to the client
 These are called session guarantees:
— Not system wide, just for one (identified) client
— Client must be a more active participant, e.g. client maintains
version vectors of objects it has read & written
 Example: Read Your Writes (RYW):

— if C, writes a new value to x, a subsequent read of x should see
this update ... even if C, is now reading from a different replica

— Need C, to remember highest id of any update it made
— Only read from a server if it has seen that update

16



Session Guarantees + Availability

 There are many variations on session guarantees

— All deal with allowable state on replica given history of
accesses by a specific client

e Session guarantees are weaker than strong
consistency, but stronger than ‘pure’ weak
consistency:

— But this means that they sacrifice availability

— i.e. choosing not to allow a read or write if it would break a
session guarantee means not allowing that operation!

— ‘pure’ weak consistency would allow the operation
 Can we get the best of both worlds?



Consistency, Availability & Partitions

e Short answer: No ;-)

 The CAP Theorem (Brewer 2000, Gilbert & Lynch 2002)
says you can only guarantee two of:

— Consistent data, Availability, Partition-tolerance
e ..inasingle system.

* |nlocal-area systems, can sometimes drop partition-
tolerance by using redundant networks
* |n the wide-area, this is not an option:
— Must choose between consistency & availability
— Most Internet-scale systems ditch consistency

* NB: this doesn’t mean that things are always inconsistent,
just that they’re not always guaranteed to be consistent

18



A Google Datacentre

* Very brief overview of:

 MapReduce
» BigTable
« Spanner



Google: Architecture Overview

Web serving:
Parallel data Fast data GWS
processing: analytics: Cross-datacenter
MapReduce Dremel RDBMS: Spanner
A
8 —> Structured storage: BigTable
ol
a4 Distributed locking:
! Chubby Cluster managment
Distributed storage: a; d sclhce)dulmg "
Colossus org /¥ mega




Google’'s MapReduce [2004]

* Programming framework for scale
— Run a program on 100’s to 10,000’s machines

« Framework takes care of:

— Parallelization, distribution, load-balancing, scaling up (or
down) & fault-tolerance

— Locality: compute close to (distributed) data

* Programmer implements two methods
— map(key, value) — list of <key’, value’> pairs
— reduce(key’, value’) — result
— Inspired by functional programming

— E.g., for every word, count documents using word(s):
— First, extract words from local documents in map() phase
— Then, aggregate and generate sums in reduce() phase



MapReduce: The Big Picture

Perform Map() query against local data matching input spec ;
|np write new keys/values (e.g., 5 instances of X found here)

N g\\\/ NS

Aggregate gathered results for each
intermediate key using Reduce()
(e.g., X

sum ~

e ~ L N S —_—

End user can query results via
distributed key/value store

Results: X,,m: 8, Youm: 9



MapReduce Example Programs

« Sorting data is trivial (map, reduce both identity function)
— Works since the shuffle step essentially sorts data

* Distributed grep (search for words)
— map: emit a line if it matches a given pattern
— reduce: just copy the intermediate data to the output

 Count URL access frequency
— map: process logs of web page access; output <URL, 1>
— reduce: add all values for the same URL

* Reverse web-link graph
— map: output <target, source> for each link to target in a page

— reduce: concatenate the list of all source URLs associated with
a target. Output <target, list(source)>



MapReduce: Pros and Cons

« Extremely simple, and:

— Can auto-parallelize (since operations on every element
in input are independent)

— Can auto-distribute (since rely on underlying Colossus/
BigTable distributed storage)

— Gets fault-tolerance (since tasks are idempotent, i.e.
can just re-execute if a machine crashes)

* Doesn’t really use any of the sophisticated algorithms
we've seen (except storage replication)

 However not a panacea:

— Limited to batch jobs, and computations which are
expressible as a map() followed by a reduce()



Google’s BigTable [2006]

* ‘Three-dimensional® structured key-value store:
— <row key, column key, timestamp> — value

 Effectively a distributed, sorted, sparse map

cell

row
(key: string)

<“larry.page”, “websearch”,133746428> - “cat pictur(V7
Y E— _—— timestamp

> (key: int64)

column
(key: string)



Google's BigTable [20006]

Distributed tablets (~1 GB max) hold subsets of map

« Adjacent rows have user-specifiable locality
« E.g., store pages for a particular website in the same tablet

On top of Collossus, which handles replication and fault
tolerance: only one (active) server per tablet!

Reads & writes within a row are transactional

— Independently of the number of columns touched

— But: no cross-row transactions possible

METAO tablet is “root” for name resolution
— Filesystem meta stored in BigTable itself

Use Chubby to elect master (METAO tablet server), and
to maintain list of tablet servers & schemas

— 5-way replicated Paxos consensus on data in Chubby



Google’s Spanner [2012]

« BigTable insufficient for some consistency needs

« Often have transactions across >1 datacentres
— May buy app on Play Store while travelling in the U.S.
— Hit U.S. server, but customer billing data is in U.K.

« Spanner offers transactional consistency: full RDBMS
power, ACID properties, at global scale!

* Wide-area consistency is hard
— due to long delays and clock skew

« Secret sauce: hardware-assisted clock sync
— Using GPS and atomic clocks in datacentres
— Use global timestamps and Paxos to reach consensus
— Still have a period of uncertainty for write TX: wait it out!



Comparison

Dynamo BigTable Spanner
Consistency eventual weak(ish) strong
high throughput, low throughput,
low latency high latency

Availability <

row transactions full transactions

Expressivity—__Simple key-value




Next time

e Security [for distributed systems]
* Distributed-filesystem case studies++
* Very briefly
— Message-Oriented Middleware (MOM)
— Publish-Subscribe (PubSub)

* Summary and some advice on exam questions

29



