
27/10/2014

1

1

Inter-process communication (IPC)

• We have studied IPC (strictly, inter-thread communication) via shared data in main memory.
• Processes in separate address spaces also need to communicate.
• Consider system architecture – both shared memory and cross-address-space IPC is needed
• Recall that the OS runs in every process address space:

user threads user threads

shared
data

shared memory IPC
between user threads

of a process
shared memory IPC

In OS

cross-address-space IPC
e.g. pipes, message passing

(via OS)

OS

user
space

user
space

an address space
of a process

an address space
of a process

shared memory IPC
between user threads

of a process

Cross address-space IPC

2

Concurrent programming paradigms – Overview

IPC via shared data – processes/threads share an address space – we have covered:
1. shared data is a passive object accessed via concurrency-controlled operations:

conditional critical regions, monitors, pthreads, Java
2. active objects (shared data has a managing process/thread)

Ada select/accept and rendezvous

We now consider: Cross-address-space IP
Recall UNIX pipes – covered in Part 1A case study
Message passing – asynchronous – supported by all modern OS

Programming language examples:
Tuple spaces (TS)
Erlang – message passing between isolated processes in shared memory

generalises to cross-address-space and distributed message passing
Scala (Michael Oderski) DEBS 2012 keynote
“Actors reloaded – from Scala Actors to Akka”
Kilim CL PhD 2010, TR 769 Sriram Srinivasan
“A server framework with lightweight actors”

Message passing – synchronous e.g. occam

Can these be extended to use for distributed programming?
Cross address-space IPC

27/10/2014

2

3

UNIX pipes outline - revision

A UNIX pipe is a synchronised, inter-process byte-stream
A process attempting to read bytes from an empty pipe is blocked.
There is also an implementation-specific notion of a “full” pipe

- a process is blocked on attempting to write to a full pipe.
(recall – a pipe is implemented as an in-memory buffer in the file buffer-cache.
The UNIX designers attempted to unify file, device and inter-process I/O).

To set up a pipe a process makes a pipe system call and is returned two file descriptors
in its open file table. It then creates, using fork two children who inherit all the parent’s

open files, including the pipe’s two descriptors.

Typically, one child process uses one descriptor to write bytes into the pipe
and the other child process uses the other descriptor to read bytes from the pipe.
Hence: pipes can only be used between processes with a common ancestor.

Later schemes used “named pipes” to avoid this restriction.
UNIX originated in the late 1960s, and IPC came to be seen as a major deficiency.
Later UNIX systems also offered inter-process message-passing, a more general scheme.

Cross address-space IPC

4

Unix pipes visualisation

child process A

child process B

pipe implementation

Parent process

2D integer array pipe ()
fork()

fork() both children inherit parent’s OFT

Cross address-space IPC

pipe is a file-block buffer
in the buffer-cache

in main memory

execve (fileA) \\ program to do work and write to pipe
write (fd2, bytes)

execve (fileB) \\ program to read from pipe and do work
read (fd1, bytes)

bytes

pipe returns two file descriptors for the pipe
(open (pathname) returns one file descriptor)

so that one fd1 can be used for reading
and the other fd2 for writing

A blocks on write to a full pipe B blocks on read from an empty pipe

27/10/2014

3

5

Asynchronous message passing implementation

A B

address space of a process

OS implementation of message passing

process A’s
conceptual

message queue
(actually in shared

data area,
“waiting messages”)

waitMess () may call OS_block_thread (waiter-tID)
sendMess () may call OS_unblock_thread (waiter-tID)

waiting
messages

waitMess (ptr)sendMess (ptr)

implementation of waitMess and sendMess

waitMess ()

sendMess ()

address space of a process

= potential delay

waitMess ()
before

sendMess ()
avoids buffering

Cross address-space IPC

6

Asynchronous message passing: Client-Server
Note no delay on sendMess in asynchronous message passing (OS buffers if no-one waiting)

Note cross-address-space IPC implemented by shared memory IPC in OS (see previous slide)

Details of message header and body are system and language-specific
e.g. typed messages at language level (e.g. Java JMS)
At OS-level, message transport probably sees a header plus unstructured bytes.

Server with many (unknown) clients: Need to be able to wait for a message from “anyone”
as well as from specific sources. No delay problem sending replies to clients.

A a client S a server

waitMess (ptr)sendMess (ptr)

waitMess (ptr) sendMess (ptr)

= potential delay

Cross address-space IPC

27/10/2014

4

7

Programming language example: Tuple spaces 1

Since Linda was designed (Gelernter, 1985) people have found the simplicity of tuple spaces (TS)
appealing as a concurrent programming model. TS is logically shared by all processes.

Messages are programming language data-types in the form of tuples
e.g. (“tag”, 15.01, 17, “some string”)

Each field is either an expression or a formal parameter of the form ? var,
where var is a local variable in the executing process

sending processes write tuples into TS, a non-blocking operation
out (“tag”, 15.01, 17, “some string”)

receiving processes read with a template that is pattern-matched against the tuples in the TS

reads can be non-destructive: rd (“tag”, ? f, ? i, “some string”), which leaves the tuple(s) in TS

or destructive: in (“tag”, ? f, ? i, “some string”), which removes the tuple from TS

A read blocks if a matching tuple is not found (setting a ‘notify’ was added later)

Cross address-space IPC

8

Tuple space visualisation ?

book price title

tuples for tag “book”

Cross address-space IPC

book £10 some-title
book £5 another title
book £9 some-title
book ….
…………
…… etc

swap title1 title2

tuples for tag “swap”

swap X Y
swap A B
swap D B
…. etc ….

Process with book to swap
rd (swap, ?string, B)
look at returned tuples
decide and remove one
in (swap, D, B)

race conditions?

Process with book to sell:
out (book, £9, “titleA”)
assume types for tag “book” defined

Concurrency control? Does TS have a manager through which to single-thread messages?

Where is the TS? Main memory for performance – what about crashes?

Need to achieve persistence of results of “out” “in” (Transactions again – lectures 6, 7).

New subjects make TS obsolete - from DB: in-memory databases, column stores, key-value stores for “big data” ?

- ? publish/subscribe message passing for communication in distributed systems

27/10/2014

5

9

Programming language example: Tuple spaces 2

Even in a centralised implementation, scalability is a problem:
• inefficient: the implementation needs to look at the contents of all fields, not just a header
• protection is an issue, since a TS is shared by all processes.
• naming is by an unstructured string literal “tag” - how to ensure uniqueness?

Several projects have tried to extend tuple spaces for distributed programming
e.g. JavaSpaces within Jini, IBM Tspaces, and various research projects.

Destructive reads are hard to implement over more than a single TS,
and high performance has never been demonstrated in a distributed implementation.

Cross address-space IP

10

Programming language example: Erlang

Erlang is a functional language with the following properties:
1. single assignment – a value can be assigned to a variable only once, after which the

variable is immutable

2. Erlang processes are lightweight (language-level, not OS) but share no common resources.
New processes can be forked (spawned), and execute in parallel with the creator:

Pid = spawn (Module, FunctionName, ArgumentList)
returns immediately – doesn’t wait for function to be evaluated
process terminates when function evaluation completes
Pid returned is known only to calling process (basis of security)
Pid is a first class value that can be put into data structures and passed in messages

3. asynchronous message passing is the only supported communication between processes.
Pid ! Message

! means send
Pid is the identifier of the destination process
Message can be any valid Erlang term

Erlang came from Ericsson and was developed for telecommunications applications.
It is becoming increasingly popular and more widely used.

Cross address-space IPC

27/10/2014

6

11

Erlang – 2: receiving messages

The syntax for receiving messages is (recall guarded commands and Ada active objects):
receive

Message1 (when Guard1) ->
Actions1 ;

Message2 (when Guard2) ->
Actions2 ;

..........
end

Each process has a mailbox – messages are stored in it in arrival order.
Message1 and Message2 above are patterns that are matched against messages in the process
mailbox. A process executing receive is blocked until a message is matched.
When a matching MessageN is found and the corresponding GuardN succeeds, the message is
removed from the mailbox, the corresponding ActionsN are/is evaluated and receive returns
the value of the last expression evaluated in ActionsN.
Programmers are responsible for making sure that the system does not fill up

with unmatched messages.
Messages can be received from a specific process if the sender includes its Pid

in the pattern to be matched: Pid ! {self(), abc}
receive {Pid, Msg}

Cross address-space IPC

12

Erlang – 3: example fragment

Client:
PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), get, <pointer for returned data> }

Buffer Manager:
receive {PidClient, put, <data> } (buffer not full)

insert item into buffer and return

{PidClient, get, <pointer for returned data> } (buffer not empty)
remove item from buffer and return it to client

Cross address-space IPC

27/10/2014

7

13

Example: Producers/Consumers with Erlang

Mailbox of Buffer Manager to receive from: (FCFS order)

PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), put, <data> }

PidBufferManager ! { self (), get, <ptr for returned data> }
PidBufferManager ! { self (), get, <ptr for returned data> }
PidBufferManager ! { self (), get, <ptr for returned data> }

self() gives sender’s PID for any return message

Actions1 = put

outptr

inptr

Guard1: buffer not full

insert item

Actions2 = get

data: cyclic, N-slot buffer

managing process searches through mailbox (FCFS order)
- It matches put when Guard 1 is true, matches get when Guard2 is true
- Asynchronous message passing is the only IPC supported
- ACK may be returned in a message after a put
- data is returned in a message after a get

Guard2: buffer not empty

remove item
return to sender

Buffer manager

13Classical shared memory concurrency control

14

Erlang - 4: further information and examples

Part 1 of Concurrent Programming in Erlang is available for download from
http://erlang.org/download/erlang-book-part1.pdf

The first part develops the language and includes many small programs, including
distributed programs, e.g. page 89 (page 100 in pdf) has the server and client code,
with discussion, for an ATM machine.

The second part contains worked examples of applications, not available free.

A free version of Erlang can be obtained from
http://www.ericsson.com/technology/opensource/erlang

Erlang also works cross-address-space, and distributed.
e.g. Steve Vinoski’s “favourite language of all time”
ACM Middleware conference keynote 2009

Cross address-space IPC

27/10/2014

8

15

Synchronous message passing -1
Delay on both sendMess and waitMess in synchronous message passing

Sender and receiver “hand-shake” - OS copies message cross-address-space

Note no message buffering in OS

A B

waitMess (ptr)sendMess (ptr) .

waitMess (ptr) sendMess (ptr).

.

.

Cross address-space IPC

.= potential delay

16

Synchronous message passing - 2

Designed for pipelines of processes, known statically e.g. in embedded systems.

For client-server?

How to avoid busy servers being delayed by non-waiting clients (on sending answer)?

- use fork

- build buffers at application-level

(difficult to program – which way to synchronise, with next in or with next out?)

Not suitable for general client-server programming

Cross address-space IPC

27/10/2014

9

17

Synchronous message passing example – occam 1
In occam communication takes place via named channels. IPC is equivalent to assignment

from one process to another, so for variable := expression, the destination process can hold

the variable and the source process evaluates the expression and communicates its value:

destination process (? = input from channel) source process (! = output to channel)

channel ? variable channel ! expression

e.g. channelA ? x channelA ! y+z

input, output and assignment statements may be composed

sequentially using SEQ or in parallel using PAR

Cross address-space IPC

18

Synchronous message passing example – occam 2

PROC square (CHAN source, sink)
WHILE TRUE

VAR x
SEQ

source ? x
sink ! x*x

PROC is a non-terminating procedure that takes a value from channel source and outputs its

square on channel sink. We might then make a parallel composition:

CHAN comms:
PAR
square (chan1, comms)
square (comms, chan2)

Cross address-space IPC

square sinksource
x x*x

square chan2chan1
x x*x

square
x*x*x*x

comms

27/10/2014

10

19

Synchronous and asynchronous systems

Historically, synchronous systems were favoured for theoretical modelling and proof.
e.g. occam was based on the CSP formalism, Hoare 1978

occam enforces static declaration of processes - more applicable to embedded systems than
general purpose ones: “assembly language for the transputer”.
Current applications need dynamic creation of large numbers of threads.

In practice, asynchronous systems are used when large scale and wide distribution are needed.
Asynchronous message passing is more general and more widely used than Remote Procedure Call (RPC).

NEXT
Moving on to
liveness properties, deadlock,
composite operations and transactions

Cross address-space IPC

