> Definition. A partial function f is partial recursive $(f \in \mathbf{P R})$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

The members of PR that are total are called recursive functions.

Fact: there are recursive functions that are not primitive recursive.

Examples of recursive definitions

\[

\]

Ackermann's function

There is a (unique) function ack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
\operatorname{ack}\left(0, x_{2}\right) & =x_{2}+1 \\
\operatorname{ack}\left(x_{1}+1,0\right) & =\operatorname{ack}\left(x_{1}, 1\right) \\
\operatorname{ack}\left(x_{1}+1, x_{2}+1\right) & =\operatorname{ack}\left(x_{1}, \operatorname{ack}\left(x_{1}+1, x_{2}\right)\right)
\end{aligned}
$$

Ackermann's function

There is a (unique) function ack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
\operatorname{ack}\left(0, x_{2}\right) & =x_{2}+1 \\
\operatorname{ack}\left(x_{1}+1,0\right) & =\operatorname{ack}\left(x_{1}, 1\right) \\
\operatorname{ack}\left(x_{1}+1, x_{2}+1\right) & =\operatorname{ack}\left(x_{1}, \operatorname{ack}\left(x_{1}+1, x_{2}\right)\right)
\end{aligned}
$$

- ack is computable, hence recursive [proof: exercise].

OCaml version 4.00.1

```
# let rec ack (x : int)(y : int) : int =
    match x ,y with
            0, y -> y+1
        | x , 0 -> ack (x-1) 1
        | x ,y -> ack (x-1) (ack x (y-1));;
val ack : int -> int -> int = <fun>
# ack 0 0;;
- : int = 1
# ack 1 1;;
- : int = 3
# ack 2 2;;
- : int = 7
# ack 3 3;;
- : int = 61
# ack 4 4;;
Stack overflow during evaluation (looping recursion?).
#
```


Ackermann's function

There is a (unique) function tack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfying $\operatorname{ack}\left(0, x_{2}\right)=x_{2}+1$ $\operatorname{ack}\left(x_{1}+1,0\right)=\operatorname{ack}\left(x_{1}, 1\right)$
$\operatorname{ack}\left(x_{1}+1, x_{2}+1\right)=\operatorname{ack}\left(x_{1}, \operatorname{ack}\left(x_{1}+1, x_{2}\right)\right)$

- ack is computable, hence recursive [proof: exercise].
- Fact: ack grows faster than any primitive recursive function $f \in \mathbb{N}^{2} \rightarrow \mathbb{N}$:
$\exists N_{f} \forall x_{1}, x_{2}>N_{f}\left(f\left(x_{1}, x_{2}\right)<\operatorname{ack}\left(x_{1}, x_{2}\right)\right)$. Hence lack is not primitive recursive.
In fact, writing a_{x} for $\operatorname{ack}(x,-) \in \mathbb{N} \rightarrow \mathbb{N}$, one has $a_{x+1}(y)=(\underbrace{\left.a_{x} \circ \cdots a_{x}\right)(1)}_{\text {compose } y \text { times }}<\begin{array}{c}\text { this is an eeg. of } \\ \text { a of higher rec. definition }\end{array}$

Lambda calculus

Notions of computability

- Church (1936): λ-calculus
- Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:
Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

Notation for function definitions in mathematical discourse:
NAMED
"Let f be the function $f(x)=x^{2}+x+1 \ldots$ [f].."
ANONYMOUS
"the function $x \mapsto x^{2}+x+1 \ldots$..
"the function $\frac{\lambda x \cdot x^{2}+x+1 \ldots}{T_{\text {LAMBDA }}}$ NOTATION

λ-Terms, \boldsymbol{M}

are built up from a given, countable collection of

- variables x, y, z, \ldots
by two operations for forming $\boldsymbol{\lambda}$-terms:
- λ-abstraction: $(\lambda x . M)$
(where \boldsymbol{x} is a variable and \boldsymbol{M} is a λ-term)
- application: ($\boldsymbol{M} \boldsymbol{M}^{\prime}$)
(where \boldsymbol{M} and \boldsymbol{M}^{\prime} are λ-terms).
Some random examples of λ-terms:

$$
x \quad(\lambda x \cdot x) \quad((\lambda y \cdot(x y)) x) \quad(\lambda y \cdot((\lambda y \cdot(x y)) x))
$$

λ-Terms, \boldsymbol{M}

Notational conventions:

- $\left(\lambda x_{1} x_{2} \ldots x_{n} \cdot M\right)$ means $\left(\lambda x_{1} \cdot\left(\lambda x_{2} \ldots\left(\lambda x_{n} \cdot M\right) \ldots\right)\right)$
- $\left(M_{1} M_{2} \ldots M_{n}\right)$ means $\left(\ldots\left(M_{1} M_{2}\right) \ldots M_{n}\right)$
(i.e. application is left-associative)
- drop outermost parentheses and those enclosing the body of a λ-abstraction. E.g. write $(\lambda x \cdot(x(\lambda y \cdot(y x))))$ as $\lambda x \cdot x(\lambda y \cdot y x)$.
- x \# M means that the variable x does not occur anywhere in the $\boldsymbol{\lambda}$-term \boldsymbol{M}.

Free and bound variables

In $\lambda x . M$, we call x the bound variable and M the body of the λ-abstraction.

An occurrence of x in a λ-term M is called

- binding if in between λ and .
(e.g. $(\lambda x . y x) x$)
- bound if in the body of a binding occurrence of x (e.g. $(\lambda x . y x) x$)
- free if neither binding nor bound (e.g. $(\lambda x . y x) x)$.

Free and bound variables

Sets of free and bound variables:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V(\lambda x . M) & =F V(M)-\{x\} \\
F V(M N) & =F V(M) \cup F V(N) \\
B V(x) & =\varnothing \\
B V(\lambda x \cdot M) & =B V(M) \cup\{x\} \\
B V(M N) & =B V(M) \cup B V(N)
\end{aligned}
$$

E.g. $\operatorname{FV}((\lambda x \cdot y x) x)=\{x, y\}$
$\operatorname{Bv}(\lambda x \cdot y x) x)=\{x\}$

Free and bound variables

Sets of free and bound variables:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V(\lambda x . M) & =F V(M)-\{x\} \\
F V(M N) & =F V(M) \cup F V(N) \\
B V(x) & =\varnothing \\
B V(\lambda x \cdot M) & =B V(M) \cup\{x\} \\
B V(M N) & =B V(M) \cup B V(N)
\end{aligned}
$$

If $F V(M)=\varnothing, M$ is called a closed term, or combinator.

$$
E \cdot g \cdot E v(\lambda y \cdot \lambda x \cdot(\lambda x \cdot y x) x)=\varnothing
$$

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

$\lambda x . M$ is intended to represent the function f such that

$$
f(x)=M \text { for all } x
$$

So the name of the bound variable is immaterial: if
$M^{\prime}=\boldsymbol{M}\left\{x^{\prime} / x\right\}$ is the result of taking \boldsymbol{M} and changing all occurrences of x to some variable $x^{\prime} \# M$, then $\lambda x . M$ and $\lambda x^{\prime} \cdot M^{\prime}$ both represent the same function.

For example, $\lambda x . x$ and $\lambda y . y$ represent the same function (the identity function).

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

is the binary relation inductively generated by the rules:

$$
\begin{gathered}
\overline{x={ }_{\alpha} x} \quad \frac{z \#(M N) \quad M\{z / x\}={ }_{\alpha} N\{z / y\}}{\lambda x \cdot M={ }_{\alpha} \lambda y \cdot N} \\
\frac{M={ }_{\alpha} M^{\prime} \quad N={ }_{\alpha} N^{\prime}}{M N={ }_{\alpha} M^{\prime} N^{\prime}}
\end{gathered}
$$

where $M\{z / x\}$ is M with all occurrences of x replaced by z.

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

For example:
because

$$
\lambda x \cdot\left(\lambda x x^{\prime} \cdot x\right) x^{\prime}={ }_{\alpha} \lambda y \cdot\left(\lambda x x^{\prime} \cdot x\right) x^{\prime}
$$

because

$$
\left(\lambda z x^{\prime} . z\right) x^{\prime}={ }_{\alpha}\left(\lambda x x^{\prime} . x\right) x^{\prime}
$$ because because

$$
\lambda z x^{\prime} \cdot z={ }_{\alpha} \lambda x x^{\prime} \cdot x \text { and } x^{\prime}={ }_{\alpha} x^{\prime}
$$

$$
\lambda x^{\prime} \cdot u={ }_{\alpha} \lambda x^{\prime} \cdot u \text { and } x^{\prime}={ }_{\alpha} x^{\prime}
$$

$$
u={ }_{\alpha} u \text { and } x^{\prime}={ }_{\alpha} x^{\prime} .
$$

α-Equivalence $\boldsymbol{M}={ }_{\alpha} \boldsymbol{M}^{\prime}$

Fact: $={ }_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive).

We do not care about the particular names of bound variables, just about the distinctions between them. So α-equivalence classes of λ-terms are more important than λ-terms themselves.

- Textbooks (and these lectures) suppress any notation for α-equivalence classes and refer to an equivalence class via a representative $\boldsymbol{\lambda}$-term (look for phrases like "we identify terms up to α-equivalence" or "we work up to α-equivalence").
- For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α-equivalence classes (e.g. de Bruijn indexes, graphical representations, ...).

