A more abstract, machine-independent description of the collection of computable partial functions than provided by register/Turing machines:
they form the smallest collection of partial functions containing some basic functions and closed under some fundamental operations for forming new functions from old-composition, primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of Gödel and Herbrand.

Primitive recursion

Theorem. Given $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$
\begin{cases}h(\vec{x}, 0) & \equiv f(\vec{x}) \\ h(\vec{x}, x+1) & \equiv g(\vec{x}, x, h(\vec{x}, x))\end{cases}
$$

for all $\vec{x} \in \mathbb{N}^{n}$ and $x \in \mathbb{N}$.
We write $\rho^{n}(f, g)$ for h and call it the partial function defined by primitive recursion from f and g.

Primitive recursion

Theorem. Given $f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$
\text { (*) } \begin{cases}h(\vec{x}, 0) & \equiv f(\vec{x}) \\ h(\vec{x}, x+1) & \equiv g(\vec{x}, x, h(\vec{x}, x))\end{cases}
$$

for all $\vec{x} \in \mathbb{N}^{n}$ and $x \in \mathbb{N}$.
Proof (sketch). Existence: the set
$h \triangleq\left\{(\vec{x}, x, y) \in \mathbb{N}^{n+2} \mid \exists y_{0}, y_{1}, \ldots, y_{x}\right.$

$$
\left.f(\vec{x})=y_{0} \wedge\left(\wedge i=0, x\left(\vec{x}, i, y_{i}\right)=y_{i+1}\right) \wedge y_{x}=y\right\}
$$

defines a partial function satisfying (*).
Uniqueness: if h and h^{\prime} both satisfy ($*$), then one can prove by induction on x that $\forall \vec{x}\left(h(\vec{x}, x) \equiv h^{\prime}(\vec{x}, x)\right)$.

Example: addition

Addition add $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfies:

$$
\begin{cases}\operatorname{add}\left(x_{1}, 0\right) & \equiv x_{1} \\ \operatorname{add}\left(x_{1}, x+1\right) & \equiv \operatorname{add}\left(x_{1}, x\right)+1\end{cases}
$$

So add $=\rho^{1}(f, g)$ where $\begin{cases}f\left(x_{1}\right) & \triangleq x_{1} \\ g\left(x_{1}, x_{2}, x_{3}\right) & \triangleq x_{3}+1\end{cases}$
Note that $f=\operatorname{proj}_{1}^{1}$ and $g=\operatorname{succ} \circ \operatorname{proj}_{3}^{3}$; so add can be built up from basic functions using composition and primitive recursion: $a d d=\rho^{1}\left(\operatorname{proj}_{1}^{1}\right.$, succ $\left.\circ \operatorname{proj}_{3}^{3}\right)$.

Example: predecessor

Predecessor pred $\in \mathbb{N} \rightarrow \mathbb{N}$ satisfies:

$$
\begin{cases}\operatorname{pred}(0) & \equiv 0 \\ \operatorname{pred}(x+1) & \equiv x\end{cases}
$$

So pred $=\rho^{0}(f, g)$ where $\begin{cases}f() & \triangleq 0 \\ g\left(x_{1}, x_{2}\right) & \triangleq x_{1}\end{cases}$
Thus pred can be built up from basic functions using primitive recursion: pred $=\rho^{0}\left(\right.$ zero 0, proj $\left._{1}^{2}\right)$.

Example: multiplication

Multiplication mult $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$ satisfies:

$$
\begin{cases}\operatorname{mult}\left(x_{1}, 0\right) & \equiv 0 \\ \operatorname{mult}\left(x_{1}, x+1\right) & \equiv \operatorname{mult}\left(x_{1}, x\right)+x_{1}\end{cases}
$$

and thus mult $=\rho^{1}\left(\operatorname{zero}^{1}, a d d \circ\left(\operatorname{proj}_{3}^{3}, \operatorname{proj}_{1}^{3}\right)\right)$.
So mult can be built up from basic functions using composition and primitive recursion (since add can be).

Definition. A [partial] function f is primitive recursive ($f \in$ PRIM) if it can be built up in finitely many steps from the basic functions by use of the operations of composition and primitive recursion.

In other words, the set PRIM of primitive recursive functions is the smallest set (with respect to subset inclusion) of partial functions containing the basic functions and closed under the operations of composition and primitive recursion.

Definition. A [partial] function f is primitive recursive ($f \in$ PRIM) if it can be built up in finitely many steps from the basic functions by use of the operations of composition and primitive recursion.

Theorem. Every $f \in$ PRIM is computable.
Proof. Already proved: basic functions are computable; composition preserves computability. So just have to show:
$\rho^{n}(f, g) \in \mathbb{N}^{n+1} \rightharpoonup \mathbb{N}$ computable if $f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ are.

Suppose f and g are computed by RM programs F and G (with our usual I/O conventions). Then the RM specified on the next slide computes $\rho^{n}(f, g)$. (We assume $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n+1}, \mathrm{C}$ are some registers not mentioned in F and G; and that the latter only use registers $\mathrm{R}_{0}, \ldots, \mathrm{R}_{N}$, where $N \geq n+2$.)

START

$\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n+1}, \mathrm{R}_{n+1}\right)::=\left(\mathrm{R}_{1}, \ldots, \mathrm{R}_{n+1}, 0\right)$

$\left(\mathrm{R}_{1}, \ldots, \mathrm{R}_{n}, \mathrm{R}_{n+1}, \mathrm{R}_{n+2}\right)::=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}, \mathrm{C}, \mathrm{R}_{0}\right)$

G
$\left(\mathrm{R}_{0}, \mathrm{R}_{n+3}, \ldots, \mathrm{R}_{N}\right)::=(0,0, \ldots, 0)$

START
$\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n+1}, \mathrm{R}_{n+1}\right)::=\left(\mathrm{R}_{1}, \ldots, \mathrm{R}_{n+1}, 0\right)$

$\left(\mathrm{R}_{0}, \mathrm{R}_{n+3}, \ldots, \mathrm{R}_{N}\right)::=(0,0, \ldots, 0)$
while $c<x_{0}$ do $\left(R_{0}, c\right):=\left(g\left(x_{1}, \ldots, x_{n}, C, R_{0}\right), C+1\right)$

Definition. A [partial] function f is primitive recursive ($f \in$ PRIM) if it can be built up in finitely many steps from the basic functions by use of the operations of composition and primitive recursion.

Every $f \in$ PRIM is a total function, because:

- all the basic functions are total
- if f, g_{1}, \ldots, g_{n} are total, then so is $f \circ\left(g_{1}, \ldots, g_{n}\right)$ [why?]
- if f and g are total, then so is $\rho^{n}(f, g)$ [why?]

So we need something mure to characterize all computable partial

A more abstract, machine-independent description of the collection of computable partial functions than provided by register/Turing machines:
they form the smallest collection of partial functions containing some basic functions and closed under some fundamental operations for forming new functions from old-composition, primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of Gödel and Herbrand.

Minimization

Given a partial function $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$, define $\mu^{n} f \in \mathbb{N}^{n}-\mathbb{N}$ by
$\mu^{n} f(\vec{x}) \triangleq$ least x such that $f(\vec{x}, x)=0$ and for each $i=0, \ldots, x-1, f(\vec{x}, i)$ is defined and >0 (undefined if there is no such x)

In other words

$$
\begin{aligned}
& \mu^{n} f=\left\{(\vec{x}, x) \in \mathbb{N}^{n+1} \mid \exists y_{0}, \ldots, y_{x}\right. \\
&\left.\left(\bigwedge_{i=0}^{x} f(\vec{x}, i)=y_{i}\right) \wedge\left(\bigwedge_{i=0}^{x-1} y_{i}>0\right) \wedge y_{x}=0\right\}
\end{aligned}
$$

Example of minimization

integer part of $x_{1} / x_{2} \equiv$ least x_{3} such that
(undefined if $x_{2}=0$) $x_{1}<x_{2}\left(x_{3}+1\right)$

Example of minimization

integer part of $x_{1} / x_{2} \equiv$ least x_{3} such that (undefined if $x_{2}=0$)

$$
\begin{aligned}
& x_{1}<x_{2}\left(x_{3}+1\right) \\
\equiv \quad & \mu^{2} f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

where $f \in \mathbb{N}^{3} \rightarrow \mathbb{N}$ is

$$
f\left(x_{1}, x_{2}, x_{3}\right) \triangleq \begin{cases}1 & \text { if } x_{1} \geq x_{2}\left(x_{3}+1\right) \\ 0 & \text { if } x_{1}<x_{2}\left(x_{3}+1\right)\end{cases}
$$

(In fact, if we make the 'integer part of x_{1} / x_{2} ' function total by defining it to be $\mathbf{0}$ when $x_{2}=\mathbf{0}$, it can be shown to be in PRIM.)

Definition. A partial function f is partial recursive $(f \in \mathbf{P R})$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

In other words, the set PR of partial recursive functions is the smallest set (with respect to subset inclusion) of partial functions containing the basic functions and closed under the operations of composition, primitive recursion and minimization.

Definition. A partial function f is partial recursive $(f \in \mathbf{P R})$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

Theorem. Every $f \in \mathbf{P R}$ is computable.
Proof. Just have to show:
$\mu^{n} f \in \mathbb{N}^{n} \rightarrow \mathbb{N}$ is computable if $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is.
Suppose f is computed by RM program F (with our usual I / O conventions). Then the RM specified on the next slide computes $\mu^{n} f$. (We assume $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}, \mathrm{C}$ are some registers not mentioned in F; and that the latter only uses registers $\mathrm{R}_{0}, \ldots, \mathrm{R}_{\mathrm{N}}$, where $N \geq n+1$.)

START

START

Computable = partial recursive

Theorem. Not only is every $f \in \mathbf{P R}$ computable, but conversely, every computable partial function is partial recursive.

Proof (sketch). Let f be computed by RM M. Recall how we coded instantaneous configurations $c=\left(\ell, r_{0}, \ldots, r_{n}\right)$ of M as numbers
$\left\ulcorner\left[\ell, r_{0}, \ldots, r_{n}\right]\right\urcorner$. It is possible to construct primitive recursive functions lab, val ${ }_{0}$, next $_{M} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
\begin{aligned}
\operatorname{lab}\left(\left\ulcorner\left[\ell, r_{0}, \ldots, r_{n}\right]\right\urcorner\right) & =\ell \\
\operatorname{val}_{0}\left(\left\ulcorner\left[\ell, r_{0}, \ldots, r_{n}\right]\right\urcorner\right) & =r_{0} \\
\operatorname{next}_{M}\left(\left\ulcorner\left[\ell, r_{0}, \ldots, r_{n}\right]\right\urcorner\right) & =\text { code of } M \text { 's next configuration }
\end{aligned}
$$

(Showing that next $_{M} \in$ PRIM is tricky-proof omitted.)

Proof sketch, cont.

Writing \vec{x} for x_{1}, \ldots, x_{n}, let config ${ }_{M}(\vec{x}, t)$ be the code of M^{\prime} s configuration after t steps, starting with initial register values $\mathrm{R}_{0}=0, \mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$. It's in PRIM because:

$$
\begin{cases}\operatorname{config}_{M}(\vec{x}, 0) & =\ulcorner[0,0, \vec{x}]\urcorner \\ \operatorname{config}_{M}(\vec{x}, t+1) & =\operatorname{next}_{M}\left(\operatorname{config}_{M}(\vec{x}, t)\right)\end{cases}
$$

Proof sketch, cont.

Writing \vec{x} for x_{1}, \ldots, x_{n}, let config ${ }_{M}(\vec{x}, t)$ be the code of M^{\prime} 's configuration after t steps, starting with initial register values $\mathrm{R}_{0}=0, \mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$. It's in PRIM because:

$$
\begin{cases}\operatorname{config}_{M}(\vec{x}, 0) & =\ulcorner[0,0, \vec{x}]\urcorner \\ \operatorname{config}_{M}(\vec{x}, t+1) & =\operatorname{next}_{M}\left(\operatorname{config}_{M}(\vec{x}, t)\right)\end{cases}
$$

Can assume \boldsymbol{M} has a single HALT as last instruction, \boldsymbol{I} th say (and no erroneous halts). Let $\operatorname{halt}_{M}(\vec{x})$ be the number of steps \boldsymbol{M} takes to halt when started with initial register values \vec{x} (undefined if \boldsymbol{M} does not halt). It satisfies

$$
\operatorname{halt}_{M}(\vec{x}) \equiv \text { least } t \text { such that } I-\operatorname{lab}\left(\operatorname{config}_{M}(\vec{x}, t)\right)=0
$$

and hence is in PR (because lab, config M $^{\prime} I-() \in$ PRIM).

Proof sketch, cont.

Writing \vec{x} for x_{1}, \ldots, x_{n}, let config ${ }_{M}(\vec{x}, t)$ be the code of M^{\prime} 's configuration after t steps, starting with initial register values $\mathrm{R}_{0}=0, \mathrm{R}_{1}=x_{1}, \ldots, \mathrm{R}_{n}=x_{n}$. It's in PRIM because:

$$
\begin{cases}\operatorname{config}_{M}(\vec{x}, 0) & =\ulcorner[0,0, \vec{x}]\urcorner \\ \operatorname{config}_{M}(\vec{x}, t+1) & =\operatorname{next}_{M}\left(\operatorname{config}_{M}(\vec{x}, t)\right)\end{cases}
$$

Can assume \boldsymbol{M} has a single HALT as last instruction, \boldsymbol{I} th say (and no erroneous halts). Let $\operatorname{halt}_{M}(\vec{x})$ be the number of steps \boldsymbol{M} takes to halt when started with initial register values \vec{x} (undefined if \boldsymbol{M} does not halt). It satisfies

$$
\operatorname{halt}_{M}(\vec{x}) \equiv \text { least } t \text { such that } I-\operatorname{lab}\left(\operatorname{config}_{M}(\vec{x}, t)\right)=0
$$

and hence is in PR (because lab, config ${ }_{M^{\prime}} I-() \in$ PRIM).
So $f \in \mathrm{PR}$, because $f(\vec{x}) \equiv \operatorname{val}_{0}\left(\operatorname{config}_{M}\left(\vec{x}, \operatorname{Halt}_{M}(\vec{x})\right)\right)$.

