The halting problem

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \dots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \dots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if

the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed.

Theorem. No such register machine H can exist.

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

► Let H' be obtained from H by replacing START → by START → $Z := R_1$ → $push_{to} R_2$ →

(where Z is a register not mentioned in H's program).

Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $\longrightarrow \mathbb{R}_0^- \longrightarrow \mathbb{R}_0^+$.

HALT

▶ Let $c \in \mathbb{N}$ be the index of C's program.

L5

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0 if & only if H' started with H' s
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0 if & only if H started with R_1=c, R_2=\lceil [c] \rceil halts with R_0=0 if & only if L only if
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1 = c eventually halts
                        if & only if
      H' started with R_1 = c halts with R_0 = 0
                        if & only if
H started with R_1 = c, R_2 = \lceil c \rceil halts with R_0 = 0
                        if & only if
     prog(c) started with R_1 = c does not halt
                        if & only if
         C started with R_1 = c does not halt
```

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

```
C started with R_1 = c eventually halts
                        if & only if
      H' started with R_1 = c halts with R_0 = 0
                        if & only if
H started with R_1 = c, R_2 = \lceil c \rceil halts with R_0 = 0
                        if & only if
     prog(c) started with R_1 = c does not halt
                        if & only if
         C started with R_1 = c does not halt
                    —contradiction!
```

Computable functions

Recall:

```
Definition. f \in \mathbb{N}^n \rightarrow \mathbb{N} is (register machine)
computable if there is a register machine M with at least
n+1 registers R_0, R_1, ..., R_n (and maybe more)
such that for all (x_1, \ldots, x_n) \in \mathbb{N}^n and all y \in \mathbb{N},
     the computation of M starting with R_0 = 0,
     R_1 = x_1, \ldots, R_n = x_n and all other registers set
     to 0, halts with R_0 = y
if and only if f(x_1, \ldots, x_n) = y.
```

Note that the same RM M could be used to compute a unary function (n = 1), or a binary function (n = 2), etc. From now on we will concentrate on the unary case...

L5

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

$$e \mapsto \varphi_e$$

defines an <u>onto</u> function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N} .

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$.

Thus

 $e \mapsto \varphi_e$ So this is countable

defines an onto function from N to the collection of all computable partial functions from $\mathbb N$ to $\mathbb N$.

So IN - IN (uncountables by Cantor) contains uncomputable functions

An uncomputable function

```
Let f \in \mathbb{N} \to \mathbb{N} be the partial function with graph \{(x,0) \mid \varphi_x(x) \uparrow \}.

Thus f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ undefined & \text{if } \varphi_x(x) \downarrow \end{cases}
```

An uncomputable function

```
Let f \in \mathbb{N} \to \mathbb{N} be the partial function with graph \{(x,0) \mid \varphi_x(x) \uparrow \}.

Thus f(x) = \begin{cases} 0 & \text{if } \varphi_x(x) \uparrow \\ undefined & \text{if } \varphi_x(x) \downarrow \end{cases}
```

f is not computable, because if it were, then $f=arphi_e$ for some $e\in\mathbb{N}$ and hence

- if $\varphi_e(e)\uparrow$, then f(e)=0 (by def. of f); so $\varphi_e(e)=0$ (since $f=\varphi_e$), hence $\varphi_e(e)\downarrow$
- ▶ if $\varphi_e(e)\downarrow$, then $f(e)\downarrow$ (since $f=\varphi_e$); so $\varphi_e(e)\uparrow$ (by def. of f)

—contradiction! So f cannot be computable.

L5

(Un)decidable sets of numbers

Given a subset $S \subseteq \mathbb{N}$, its characteristic function

$$\chi_S \in \mathbb{N} \to \mathbb{N}$$
 is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example. . .

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

```
let e = R_1 and \lceil [a_1, \dots, a_n] \rceil = R_2 in R_1 := \lceil (R_1 := a_1); \dots; (R_n := a_n); prog(e) \rceil; R_2 := 0; run M_0
```

Then by assumption on M_0 , H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}\$ is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}\$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out:

let
$$e = R_1$$
 in $R_1 := \lceil R_1 := 0$; $prog(e) \rceil$; run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0})—contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.

[Exercise #5] If fen n computable, $S_0, S_1 \subseteq \mathbb{N}$ (Yeen) e = So () fe) eS1 5, decidable > 50 décidable [Exercise #5] If fEN-IN computable, $S_0, S_1 \subseteq \mathbb{N}$ & $(\forall e \in \mathbb{N}) e \in S_0 \Leftrightarrow f(e) \in S_1$ Hen 5, decidable > 50 decidable Proof: this says $\chi_{s} = \chi_{s_1} \circ f$ So χ_{S_1} computable $\Rightarrow \chi_{S_1}$ of computable >> Xs computable

For S_0 , S_1 as in notes, find computable $f \in \mathbb{N} \rightarrow \mathbb{N}$ so that $(\forall x) \varphi_{f(e)}(x) \equiv \varphi_e(0)$

Kleerré equivalence (p82)

LHS = RHS means "either LHS & RHS me undefined, or both one defined and equal"

1

tor So, Si as in notes, find computable fEN-IN so that $(\forall x) \varphi_{f(e)}(x) \equiv \varphi_{e}(0)$ Thus $e \in S_o \implies \varphi_e(o) \downarrow$ \Leftrightarrow $(\forall x)$ $\varphi_{f(e)}(x)$ \Leftrightarrow $\varphi_{f(e)} \in S_1$

tor So, Si as in notes, find computable fEN-IN so that $(\forall x) \varphi_{f(e)}(x) \equiv \varphi_{e}(0)$ Thus $e \in S_o \implies \varphi_e(o) \downarrow$ \Leftrightarrow $(\forall x)$ $\varphi_{f(e)}(x)$ So Si dacidable > 50 decidable **