Lambda-Definable Functions

Encoding data in λ -calculus

Computation in λ -calculus is given by β -reduction. To relate this to register/Turing-machine computation, or to partial recursive functions, we first have to see how to encode numbers, pairs, lists, ... as λ -terms.

We will use the original encoding of numbers due to Church...

Church's numerals

Notation: $\begin{cases} M^0 N & \triangleq N \\ M^1 N & \triangleq M N \\ M^{n+1} N & \triangleq M(M^n N) \end{cases}$

so we can write \underline{n} as $\lambda f x \cdot f^n x$ and we have $\underline{n} M N =_{\beta} M^n N$.

Church's numerals

$$\begin{array}{l} \underline{0} \triangleq \lambda f x.x \\ \underline{1} \triangleq \lambda f x.f x \\ \underline{2} \triangleq \lambda f x.f(f x) \\ \vdots \\ \underline{n} \triangleq \lambda f x. f(\cdots (f x) \cdots) \\ n \text{ times} \end{array}$$

$$\begin{array}{l} NB. \text{ not } ffx, \\ NB.$$

Notation:
$$\begin{cases} M^0 N & \triangleq N \\ M^1 N & \triangleq M N \\ M^{n+1} N & \triangleq M(M^n N) \end{cases}$$

so we can write \underline{n} as $\lambda f x. f^n x$ and we have $\underline{n} M N =_{\beta} M^n N$.

λ -Definable functions

Definition. $f \in \mathbb{N}^n \to \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$

• if
$$f(x_1,\ldots,x_n) = y$$
, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$

• if $f(x_1,\ldots,x_n)\uparrow$, then $F \underline{x_1}\cdots \underline{x_n}$ has no β -nf.

For example, addition is λ -definable because it is represented by $P \triangleq \lambda x_1 x_2 \cdot \lambda f x \cdot x_1 f(x_2 f x)$:

$$P \underline{m} \underline{n} =_{\beta} \lambda f x. \underline{m} f(\underline{n} f x)$$

=_{\beta} \lambda f x. \underset f(f^n x)
=_{\beta} \lambda f x. f^m(f^n x)
= \lambda f x. f^{m+n} x
= m + n

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

- We already know that
 - Register Machine computable
 - = Turing computable
 - = partial recursive.
- Using this, we break the theorem into two parts:
 - every partial recursive function is λ -definable
 - λ -definable functions are RM computable

λ -Definable functions

Definition. $f \in \mathbb{N}^n \to \mathbb{N}$ is λ -definable if there is a closed λ -term F that represents it: for all $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and $y \in \mathbb{N}$

- if $f(x_1,\ldots,x_n) = y$, then $F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$
- if $f(x_1,\ldots,x_n)\uparrow$, then $F \underline{x_1}\cdots \underline{x_n}$ has no β -nf.

This condition can make it quite tricky to find a λ -term representing a non-total function.

For now, we concentrate on total functions. First, let us see why the elements of **PRIM** (primitive recursive functions) are λ -definable.

Basic functions

• Projection functions, $\operatorname{proj}_i^n \in \mathbb{N}^n \to \mathbb{N}$:

$$\operatorname{proj}_i^n(x_1,\ldots,x_n) \triangleq x_i$$

- Constant functions with value 0, $ext{zero}^n \in \mathbb{N}^n o \mathbb{N}$: $ext{zero}^n(x_1, \dots, x_n) \triangleq 0$
- Successor function, succ $\in \mathbb{N} \rightarrow \mathbb{N}$: succ $(x) \triangleq x + 1$

Basic functions are representable

- $\operatorname{proj}_i^n \in \mathbb{N}^n o \mathbb{N}$ is represented by $\lambda x_1 \dots x_n . x_i$
- $\operatorname{zero}^n \in \mathbb{N}^n \to \mathbb{N}$ is represented by $\lambda x_1 \dots x_n . \underline{0}$
- succ $\in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

Succ $\triangleq \lambda x_1 f x.f(x_1 f x)$

since

Succ
$$\underline{n} =_{\beta} \lambda f x. f(\underline{n} f x)$$

= $_{\beta} \lambda f x. f(f^{n} x)$
= $\lambda f x. f^{n+1} x$
= $\underline{n+1}$

Basic functions are representable

- $\operatorname{proj}_i^n \in \mathbb{N}^n o \mathbb{N}$ is represented by $\lambda x_1 \dots x_n . x_i$
- $\operatorname{zero}^n \in \mathbb{N}^n \to \mathbb{N}$ is represented by $\lambda x_1 \dots x_n . \underline{0}$
- succ $\in \mathbb{N} \rightarrow \mathbb{N}$ is represented by

Succ $\triangleq \lambda x_1 f x.f(x_1 f x)$

since

Succ
$$\underline{n} \equiv_{\beta} \lambda f x. f(\underline{n} f x)$$

 $\equiv_{\beta} \lambda f x. f(f^{n} x)$
 $= \lambda f x. f^{n+1} x$
 $= \underline{n+1}$

 $(\lambda x_1 f x \cdot x_1 f (f x))$ also represents succ)

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

$$\lambda x_1 \ldots x_m. F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$$

because

$$F(G_1 \underline{a_1} \dots \underline{a_m}) \dots (G_n \underline{a_1} \dots \underline{a_m})$$

= $_{\beta} F \underline{g_1(a_1, \dots, a_m)} \dots \underline{g_n(a_1, \dots, a_m)}$
= $_{\beta} \frac{f(g_1(a_1, \dots, a_m), \dots, g_n(a_1, \dots, a_m))}{f \circ (g_1, \dots, g_n)(a_1, \dots, a_m)}$

Representing composition

If total function $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by F and total functions $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$ are represented by G_1, \ldots, G_n , then their composition $f \circ (g_1, \ldots, g_n) \in \mathbb{N}^m \to \mathbb{N}$ is represented simply by

 $\lambda x_1 \ldots x_m$. $F(G_1 x_1 \ldots x_m) \ldots (G_n x_1 \ldots x_m)$

This does not necessarily work for partial functions. E.g. totally undefined function $u \in \mathbb{N} \to \mathbb{N}$ is represented by $U \triangleq \lambda x_1 \cdot \Omega$ (why?) and zero¹ $\in \mathbb{N} \to \mathbb{N}$ is represented by $Z \triangleq \lambda x_1 \cdot \underline{0}$; but zero¹ $\circ u$ is not represented by $\lambda x_1 \cdot Z(U x_1)$, because $(zero^1 \circ u)(n)\uparrow$ whereas $(\lambda x_1 \cdot Z(U x_1)) \underline{n} =_{\beta} Z \Omega =_{\beta} \underline{0}$. (What is zero¹ $\circ u$ represented by?)

Primitive recursion

Theorem. Given $f \in \mathbb{N}^n \to \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$, there is a unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{x},0) &\equiv f(\vec{x}) \\ h(\vec{x},x+1) &\equiv g(\vec{x},x,h(\vec{x},x)) \end{cases}$$

for all $\vec{x} \in \mathbb{N}^n$ and $x \in \mathbb{N}$.

We write $\rho^n(f,g)$ for h and call it the partial function defined by primitive recursion from f and g.

If $f \in \mathbb{N}^n
ightarrow \mathbb{N}$ is represented by a λ -term F and

 $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G,

we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$\begin{cases} h(\vec{a},0) = f(\vec{a}) \\ h(\vec{a},a+1) = g(\vec{a},a,h(\vec{a},a)) \end{cases}$$

or equivalently

$$h(\vec{a}, a) = if \ a = 0 \ then \ f(\vec{a})$$

else $g(\vec{a}, a - 1, h(\vec{a}, a - 1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} o \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by... Strategy:

- show that $\Phi_{f,g}$ is λ -definable;
- show that we can solve fixed point equations X = M X up to β -conversion in the λ -calculus.

Representing booleans

True $\triangleq \lambda x y. x$ **False** $\triangleq \lambda x y. y$ **If** $\triangleq \lambda f x y. f x y$

satisfy

- If True $M N =_{\beta} \text{True } M N =_{\beta} M$
- If False $MN =_{\beta} \text{False } MN =_{\beta} N$

Representing test-for-zero $Eq_0 \triangleq \lambda x. x(\lambda y. False)$ True

satisfies

• $Eq_0 \underline{0} =_{\beta} \underline{0} (\lambda y. False) True$ $=_{\beta} True$ • $Eq_0 \underline{n+1} =_{\beta} \underline{n+1} (\lambda y. False) True$ $=_{\beta} (\lambda y. False)^{n+1} True$ $=_{\beta} (\lambda y. False) ((\lambda y. False)^n True)$ $=_{\beta} False$

Representing predecessor

Want λ -term **Pred** satisfying

$\operatorname{Pred} \underline{n+1}$	=β	<u>n</u>
Pred 0	$=_{\beta}$	<u>0</u>

Have to show how to reduce the "n + 1-iterator" $\underline{n+1}$ to the "*n*-iterator" \underline{n} .

Idea: given f, iterating the function $g_f : (x, y) \mapsto (f(x), x) \ n + 1$ times starting from (x, x) gives the pair $(f^{n+1}(x), f^n(x))$. So we can get $f^n(x)$ from $f^{n+1}(x)$ parametrically in f and x, by building g_f from f, iterating n + 1 times from (x, x) and then taking the second component.

Hence...

Representing ordered pairs

Pair
$$\triangleq$$
 $\lambda x y f. f x y$ Fst \triangleq $\lambda f. f$ Snd \triangleq $\lambda f. f$ False

satisfy

• Fst(Pair MN) $=_{\beta}$ Fst($\lambda f. f MN$) $=_{\beta} (\lambda f. f MN)$ True $=_{\beta}$ True MN $=_{\beta} M$ • Snd(Pair MN) $=_{\beta} \cdots =_{\beta} N$

Representing predecessor

Want λ -term **Pred** satisfying

$$\frac{\operatorname{Pred} n+1}{\operatorname{Pred} \underline{0}} =_{\beta} \underline{n}$$

 $Pred \triangleq \lambda y f x. Snd(y (G f)(Pair x x))$ where $G \triangleq \lambda f p. Pair(f(Fst p))(Fst p)$

has the required β -reduction properties.

 $(\forall n \in \mathbb{N}) \underbrace{n+1}(Gf)(\operatorname{Pair} xx) = \beta \operatorname{Pair}(\underbrace{n+1}{fx})(\underline{n}fx)$ by induction on NEN: Base case N = 0: $\underline{1}(G_{n}f)(Pair xx) = G_{n}G_{n}f(Pair xx)$ = Pair (fr) x $= \rho \operatorname{Pain}\left(\frac{1}{2}\operatorname{fx}\right)\left(\operatorname{ofx}\right)$

 $(\forall n \in \mathbb{N}) \underbrace{n+1}(Gf)(\operatorname{Pair} xx) = \beta \operatorname{Pair}(\underbrace{n+1}{fx})(\underline{n}fx)$ by induction on NEN: Induction step: $\underline{n+2}(Gf)(\operatorname{Pairxn}) = (Gf)\underline{n+1}(Gf)(\operatorname{Pairxn})$ by ind.hyp. $\Rightarrow =_{\mathcal{B}}(Grf) \operatorname{Pair}(n+1) f_{2}(n f_{2})$

 $(\forall n \in \mathbb{N})$ <u>n+1</u> $(Gf)(Pair xx) = \beta Pair (\underline{n+1} fx)(\underline{n} fx)$ by induction on NEN: Induction step: $\underline{n+2}(G_{f})(\operatorname{Pair}_{x_{n}}) = (G_{f})\underline{n+1}(G_{f})(\operatorname{Pair}_{x_{n}})$ by ind.hyp. $\Rightarrow =_{\mathcal{B}}(Grf) Pair(\underline{n+1}fx)(\underline{n}fx)$ $=_{\beta} \operatorname{Pair} \left(f\left(\frac{n+1}{2} \right) \right) \left(\frac{n+1}{2} \right)$ = $p \operatorname{Pair}(\underline{n+2}fx)(\underline{n+1}fx)$ /

 $(\forall n \in \mathbb{N}) \underline{n+1}(Gf)(\operatorname{Pair} xx) = \beta \operatorname{Pair}(\underline{n+1} fx)(\underline{n} fx)$ $Pred_{n+1} =_{\beta} \lambda fx. Snd(n+1(Gf)(Pair xx))$ $\Rightarrow =_{\beta} \lambda f_{\pi}$. Snd (Pair (<u>n+1</u>f_{\pi})(<u>n</u>f_{\pi}))

 $\operatorname{Pred} \underline{n+1} =_{\beta} \lambda f x \cdot \operatorname{Snd}(\underline{n+1}(Gf)(\operatorname{Pair} x x))$ = $\lambda f x$. Snd (Pair (<u>n+1</u> f x)(<u>n</u> f x)) $=_{B} \lambda f_{\pi} \cdot n f_{\pi}$ $= \beta \lambda x. f^{n} x$ = \bigwedge

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} o \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} o \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ is given by... Strategy: