
Computation Theory

12 lectures for
University of Cambridge

2015 Computer Science Tripos, Part IB
by Prof. Andrew Pitts

c⃝ 2015 AM Pitts



Introduction

L1 6



Algorithmically undecidable
problems

Computers cannot solve all mathematical problems, even if
they are given unlimited time and working space.

Three famous examples of computationally unsolvable
problems are sketched in this lecture.

! Hilbert’s Entscheidungsproblem

! The Halting Problem
! Hilbert’s 10th Problem.

L1 7



Hilbert’s Entscheidungsproblem
Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Such an algorithm would be useful! For example, by running it on

∀k > 1∃p, q (2k = p + q∧ prime(p) ∧ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a prime
number) we could solve Goldbach’s Conjecture (“every even integer
strictly greater than two is the sum of two primes”), a famous open
problem in number theory.

L1 8



Hilbert’s Entscheidungsproblem
Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Posed by Hilbert at the 1928 International Congress of
Mathematicians. The problem was actually stated in a more ambitious
form, with a more powerful formal system in place of first-order logic.

In 1928, Hilbert believed that such an algorithm could be found.
A few years later he was proved wrong by the work of Church and
Turing in 1935/36, as we will see.

L1 8



Alan Turing
1912-54

Alonzo Church
1903-95



Decision problems

Entscheidungsproblem means “decision problem”. Given

! a set S whose elements are finite data structures of
some kind
(e.g. formulas of first-order arithmetic)

! a property P of elements of S
(e.g. property of a formula that it has a proof)

the associated decision problem is:

find an algorithm which
terminates with result 0 or 1 when fed an element s ∈ S
and
yields result 1 when fed s if and only if s has property P.

L1 9



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples, such as:

! Procedure for multiplying numbers in decimal place
notation.

! Procedure for extracting square roots to any desired
accuracy.

! Euclid’s algorithm for finding highest common factors.

L1 10



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.

L1 10



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.

L1 10



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in Princeton
independently gave negative solutions to Hilbert’s
Entscheidungsproblem.

! First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

! Then one can regard algorithms as data on which
algorithms can act and reduce the problem to. . .

L1 10



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in Princeton
independently gave negative solutions to Hilbert’s
Entscheidungsproblem.

! First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

! Then one can regard algorithms as data on which
algorithms can act and reduce the problem to. . .

L1 10



The Halting Problem

is the decision problem with

! set S consists of all pairs (A, D), where A is an algorithm and D
is a datum on which it is designed to operate;

! property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

L1 11



The Halting Problem

is the decision problem with

! set S consists of all pairs (A, D), where A is an algorithm and D
is a datum on which it is designed to operate;

! property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

Turing and Church’s work shows that the Halting Problem
is undecidable, that is, there is no algorithm H such that
for all (A, D) ∈ S

H(A, D) =

{

1 if A(D)↓

0 otherwise.
L1 11



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

L1 12



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

L1 12



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

L1 12



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

L1 12



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction! p↔ ¬p is always false

L1 12



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

why is A “a datum on which
A is designed to operate”?

L1 12



230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.



From HP to Entscheidungsproblem

Final step in Turing/Church proof of undecidability of the
Entscheidungsproblem: they constructed an algorithm
encoding instances (A, D) of the Halting Problem as
arithmetic statements ΦA,D with the property

ΦA,D is provable ↔ A(D)↓

Thus any algorithm deciding provability of arithmetic
statements could be used to decide the Halting
Problem—so no such exists.

L1 13



Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

With hindsight, a positive solution to the Entscheidungsproblem would
be too good to be true. However, the algorithmic unsolvability of some
decision problems is much more surprising. A famous example of this
is. . .

L1 14



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

One of a number of important open problems listed by Hilbert at the
International Congress of Mathematicians in 1900.

L1 15



Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn with
coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

(x1x2 + x3− x2)2 + (x2x3 + x1− y2)2 + (x3x1 + x2− z2)2 = 0

L1 16



Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn with
coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

(x1x2 + x3− x2)2 + (x2x3 + x1− y2)2 + (x3x1 + x2− z2)2 = 0

L1 16



Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn with
coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

x2
1x2

2 + x2
2x2

3 + x2
3x2

1 + · · · = x2x1x2 + y2x2x3 + z2x3x1 + · · ·

[One solution: (x1, x2, x3) = (1, 4, 12), with (x, y, z) = (4, 7, 4).]

L1 16



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

! Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction from the Halting Problem.

L1 17



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

! Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction from the Halting Problem.

! Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines

L1 17



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

! Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction from the Halting Problem.

! Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines—we will use them in this
course to begin with and return to Turing and Church’s
formulations of the notion of “algorithm” later.

L1 17


