
Computation Theory

12 lectures for
University of Cambridge

2015 Computer Science Tripos, Part IB
by Prof. Andrew Pitts

c⃝ 2015 AM Pitts

Contents

Introduction: algorithmically undecidable problems 6
Decision problems. The informal notion of algorithm, or effective procedure. Examples of
algorithmically undecidable problems.
[1 lecture]

Register machines 18
Definition and examples; graphical notation. Register machine computable functions. Doing
arithmetic with register machines.
[1 lecture]

Coding programs as numbers 34
Natural number encoding of pairs and lists. Coding register machine programs as numbers.
[1 lecture]

Universal register machine 41
Specification and implementation of a universal register machine.
[1 lecture]

The halting problem 50
Statement and proof of undecidability. Example of an uncomputable partial function. Decidable
sets of numbers; examples of undecidable sets of numbers.
[1 lecture]

Turing machines 59
Informal description. Definition and examples. Turing computable functions. Equivalence of
register machine computability and Turing computability. The Church-Turing Thesis.
[2 lectures]

Primitive and partial recursive functions 84
Definition and examples. Existence of a recursive, but not primitive recursive function. A partial
function is partial recursive if and only if it is computable.
[2 lectures]

Lambda calculus 103
Alpha and beta conversion. Normalization. Encoding data. Writing recursive functions in the
λ-calculus. The relationship between computable functions and λ-definable functions.
[3 lectures]

These notes are designed to accompany 12 lectures on computation theory for Part IB of the
Computer Science Tripos. The aim of this course is to introduce several apparently different
formalisations of the informal notion of algorithm; to show that they are equivalent; and to use
them to demonstrate that there are uncomputable functions and algorithmically undecidable
problems.

At the end of the course you should:

! be familiar with the register machine, Turing machine and λ-calculus models of
computability;

! understand the notion of coding programs as data, and of a universal machine;

! be able to use diagonalisation to prove the undecidability of the Halting Problem;

! understand the mathematical notion of partial recursive function and its relationship to
computability.

The prerequisites for taking this course are the Part IA courses Discrete Mathematics and Regular
Languages and Finite Automata.

This incaration of the Computation Theory course builds on previous lecture notes by Ken Moody,
Glynn Winskel, Larry Paulson and myself. It contains some material that everyone who calls
themselves a computer scientist should know. It is also a prerequisite for the Part IB course on
Complexity Theory.

An exercise sheet, any corrections to the notes and additional material can be found on the course
web page.

4

Recommended books

! Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to Automata Theory,
Languages and Computation, Second Edition. Addison-Wesley.

! Hindley, J.R. & Seldin, J.P. (2008). Lambda-Calculus and Combinators, an Introduction.
Cambridge University Press (2nd ed.).

! Cutland, N.J. (1980) Computability. An introduction to recursive function theory.
Cambridge University Press.

! Davis, M.D., Sigal, R. & Wyuker E.J. (1994). Computability, Complexity and Languages,
2nd edition. Academic Press.

! Sudkamp, T.A. (1995). Languages and Machines, 2nd edition. Addison-Wesley.

5

Introduction

6

Algorithmically undecidable
problems

Computers cannot solve all mathematical problems, even if
they are given unlimited time and working space.

Three famous examples of computationally unsolvable
problems are sketched in this lecture.

! Hilbert’s Entscheidungsproblem

! The Halting Problem
! Hilbert’s 10th Problem.

7

Hilbert’s Entscheidungsproblem
Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Such an algorithm would be useful! For example, by running it on

∀k > 1∃p, q (2k = p + q∧ prime(p) ∧ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a prime
number) we could solve Goldbach’s Conjecture (“every even integer
strictly greater than two is the sum of two primes”), a famous open
problem in number theory.

8

Hilbert’s Entscheidungsproblem
Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Posed by Hilbert at the 1928 International Congress of
Mathematicians. The problem was actually stated in a more ambitious
form, with a more powerful formal system in place of first-order logic.

In 1928, Hilbert believed that such an algorithm could be found.
A few years later he was proved wrong by the work of Church and
Turing in 1935/36, as we will see.

8

Decision problems

Entscheidungsproblem means “decision problem”. Given

! a set S whose elements are finite data structures of
some kind
(e.g. formulas of first-order arithmetic)

! a property P of elements of S
(e.g. property of a formula that it has a proof)

the associated decision problem is:

find an algorithm which
terminates with result 0 or 1 when fed an element s ∈ S
and
yields result 1 when fed s if and only if s has property P.

9

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples, such as:

! Procedure for multiplying numbers in decimal place
notation.

! Procedure for extracting square roots to any desired
accuracy.

! Euclid’s algorithm for finding highest common factors.

10

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.

10

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in Princeton
independently gave negative solutions to Hilbert’s
Entscheidungsproblem.

! First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

! Then one can regard algorithms as data on which
algorithms can act and reduce the problem to. . .

10

The Halting Problem

is the decision problem with

! set S consists of all pairs (A, D), where A is an algorithm and D
is a datum on which it is designed to operate;

! property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

Turing and Church’s work shows that the Halting Problem
is undecidable, that is, there is no algorithm H such that
for all (A, D) ∈ S

H(A, D) =

{

1 if A(D)↓

0 otherwise.
11

There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an H,
let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

12

From HP to Entscheidungsproblem

Final step in Turing/Church proof of undecidability of the
Entscheidungsproblem: they constructed an algorithm
encoding instances (A, D) of the Halting Problem as
arithmetic statements ΦA,D with the property

ΦA,D is provable ↔ A(D)↓

Thus any algorithm deciding provability of arithmetic
statements could be used to decide the Halting
Problem—so no such exists.

13

Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in the
formal language of first-order arithmetic, determines in a
finite number of steps whether or not the statement is
provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

With hindsight, a positive solution to the Entscheidungsproblem would
be too good to be true. However, the algorithmic unsolvability of some
decision problems is much more surprising. A famous example of this
is. . .

14

Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

One of a number of important open problems listed by Hilbert at the
International Congress of Mathematicians in 1900.

15

Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn with
coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

(x1x2 + x3− x2)2 + (x2x3 + x1− y2)2 + (x3x1 + x2− z2)2 = 0

16

Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

! Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction from the Halting Problem.

! Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines—we will use them in this
course to begin with and return to Turing and Church’s
formulations of the notion of “algorithm” later.

17

Register machines

18

Register Machines, informally

They operate on natural numbers N = {0, 1, 2, . . .}
stored in (idealized) registers using the following
“elementary operations”:

! add 1 to the contents of a register
! test whether the contents of a register is 0
! subtract 1 from the contents of a register if it is

non-zero
! jumps (“goto”)
! conditionals (“if_then_else_”)

20

Definition. A register machine is specified by:
! finitely many registers R0, R1, . . . , Rn

(each capable of storing a natural number);
! a program consisting of a finite list of instructions of

the form label : body, where for i = 0, 1, 2, . . ., the
(i + 1)th instruction has label Li.

Instruction body takes one of three forms:

R+
! L′

add 1 to contents of register R and
jump to instruction labelled L′

R− ! L′, L′′
if contents of R is > 0, then subtract
1 from it and jump to L′, else jump to
L′′

HALT stop executing instructions

21

Example
registers:
R0 R1 R2

program:
L0 : R−1 ! L1, L2

L1 : R+
0 ! L0

L2 : R−2 ! L3, L4

L3 : R+
0 ! L2

L4 : HALT

example computation:
Li R0 R1 R2

0 0 1 2
1 0 0 2
0 1 0 2
2 1 0 2
3 1 0 1
2 2 0 1
3 2 0 0
2 3 0 0
4 3 0 0

22

Register machine computation

Register machine configuration:

c = (ℓ, r0, . . . , rn)

where ℓ = current label and ri = current contents of Ri.

Notation: “Ri = x [in configuration c]” means
c = (ℓ, r0, . . . , rn) with ri = x.

Initial configurations:

c0 = (0, r0, . . . , rn)

where ri = initial contents of register Ri.
23

Register machine computation

A computation of a RM is a (finite or infinite) sequence of
configurations

c0, c1, c2, . . .

where

! c0 = (0, r0, . . . , rn) is an initial configuration
! each c = (ℓ, r0, . . . , rn) in the sequence determines

the next configuration in the sequence (if any) by
carrying out the program instruction labelled Lℓ with
registers containing r0,. . . ,rn.

24

Halting

For a finite computation c0, c1, . . . , cm, the last
configuration cm = (ℓ, r, . . .) is a halting configuration,
i.e. instruction labelled Lℓ is

either HALT (a “proper halt”)

or R+
! L, or R− ! L, L′ with R > 0, or

R− ! L′, L with R = 0
and there is no instruction labelled L in the
program (an “erroneous halt”)

N.B. can always modify programs (without affecting their
computations) to turn all erroneous halts into proper halts by adding
extra HALT instructions to the list with appropriate labels.

25

Halting

For a finite computation c0, c1, . . . , cm, the last
configuration cm = (ℓ, r, . . .) is a halting configuration.

Note that computations may never halt. For example,

L0 : R+
0 ! L0

L1 : HALT
only has infinite computation sequences

(0, r), (0, r + 1), (0, r + 2), . . .

25

Graphical representation

! one node in the graph for each instruction

! arcs represent jumps between instructions

! lose sequential ordering of instructions—so need to indicate initial
instruction with START.

instruction representation

R+
! L R+ [L]

R− ! L, L′
[L]

R−

[L′]
HALT HALT

L0 START [L0]
26

Example
registers:
R0 R1 R2

program:
L0 : R−1 ! L1, L2

L1 : R+
0 ! L0

L2 : R−2 ! L3, L4

L3 : R+
0 ! L2

L4 : HALT

graphical representation:
START

R−1 R+
0

R−2 R+
0

HALT

Claim: starting from initial configuration (0, 0, x, y), this
machine’s computation halts with configuration
(4, x + y, 0, 0).

27

Partial functions
Register machine computation is deterministic: in any
non-halting configuration, the next configuration is
uniquely determined by the program.
So the relation between initial and final register contents
defined by a register machine program is a partial
function. . .

Definition. A partial function from a set X to a set Y is
specified by any subset f ⊆ X× Y satisfying

(x, y) ∈ f ∧ (x, y′) ∈ f → y = y′

for all x ∈ X and y, y′ ∈ Y .
28

Partial functions

Definition. A partial function from a set X to a set Y is
specified by any subset f ⊆ X× Y satisfying

(x, y) ∈ f ∧ (x, y′) ∈ f → y = y′

for all x ∈ X and y, y′ ∈ Y .

ordered pairs {(x, y) | x ∈ X ∧ y ∈ Y}

i.e. for all x ∈ X there is at
most one y ∈ Y with
(x, y) ∈ f

28

Partial functions
Notation:

! “ f(x) = y” means (x, y) ∈ f

! “ f(x)↓” means ∃y ∈ Y (f(x) = y)

! “ f(x)↑” means ¬∃y ∈ Y (f(x) = y)

! X⇀Y = set of all partial functions from X to Y
X!Y = set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y is
total if it satisfies

f(x)↓

for all x ∈ X.

28

Computable functions
Definition. f ∈ Nn

⇀N is (register machine)
computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers set
to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

Note the [somewhat arbitrary] I/O convention: in the initial
configuration registers R1, . . . , Rn store the function’s arguments (with
all others zeroed); and in the halting configuration register R0 stores it’s
value (if any).

29

Example
registers:
R0 R1 R2

program:
L0 : R−1 ! L1, L2

L1 : R+
0 ! L0

L2 : R−2 ! L3, L4

L3 : R+
0 ! L2

L4 : HALT

graphical representation:
START

R−1 R+
0

R−2 R+
0

HALT

Claim: starting from initial configuration (0, 0, x, y), this
machine’s computation halts with configuration
(4, x + y, 0, 0). So f(x, y) " x + y is computable.

30

Computable functions
Recall:
Definition. f ∈ Nn

⇀N is (register machine)
computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers set
to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

31

Multiplication f(x, y) " xy
is computable

START R+
3

R−1 R−2 R+
0

HALT R−3 R+
2

If the machine is started with (R0, R1, R2, R3) = (0, x, y, 0), it halts
with (R0, R1, R2, R3) = (xy, 0, y, 0).

32

Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)

projection: p(x, y) " x

constant: c(x) " n

truncated subtraction: x ·− y "

{

x− y if y ≤ x

0 if y > x

33

Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)

integer division:

x div y "

{

integer part of x/y if y > 0

0 if y = 0

integer remainder: x mod y " x ·− y(x div y)

exponentiation base 2: e(x) " 2x

logarithm base 2:

log2(x) "

{

greatest y such that 2y ≤ x if x > 0

0 if x = 0
33

Coding programs as numbers

34

Turing/Church solution of the Entscheidungsproblem uses
the idea that (formal descriptions of) algorithms can be the
data on which algorithms act.

To realize this idea with Register Machines we have to be
able to code RM programs as numbers. (In general, such
codings are often called Gödel numberings.)

To do that, first we have to code pairs of numbers and lists
of numbers as numbers. There are many ways to do that.
We fix upon one. . .

35

Numerical coding of pairs

For x, y ∈ N, define

{

⟨⟨x, y⟩⟩ " 2x(2y + 1)
⟨x, y⟩ " 2x(2y + 1)− 1

So
0b⟨⟨x, y⟩⟩ = 0by 1 0 · · · 0

0b⟨x, y⟩ = 0by 0 1 · · · 1

(Notation: 0bx " x in binary.)

E.g. 27 = 0b11011 = ⟨⟨0, 13⟩⟩ = ⟨2, 3⟩

36

Numerical coding of pairs

For x, y ∈ N, define

{

⟨⟨x, y⟩⟩ " 2x(2y + 1)
⟨x, y⟩ " 2x(2y + 1)− 1

So
0b⟨⟨x, y⟩⟩ = 0by 1 0 · · · 0

0b⟨x, y⟩ = 0by 0 1 · · · 1

⟨−,−⟩ gives a bijection (one-one correspondence)
between N×N and N.

⟨⟨−,−⟩⟩ gives a bijection between N×N and
{n ∈ N | n ̸= 0}.

36

Numerical coding of lists

list N " set of all finite lists of natural numbers, using ML
notation for lists:

! empty list: []

! list-cons: x :: ℓ ∈ list N (given x ∈ N and ℓ ∈ list N)

! [x1, x2, . . . , xn] " x1 :: (x2 :: (· · · xn :: [] · · ·))

37

Numerical coding of lists

list N " set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define #ℓ$ ∈ N by induction on the
length of the list ℓ:

{

#[]$ " 0

#x :: ℓ$ " ⟨⟨x, #ℓ$⟩⟩ = 2x(2 · #ℓ$+ 1)

0b#[x1, x2, . . . , xn]$ = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0

Hence ℓ 1→ #ℓ$ gives a bijection from list N to N.
37

Numerical coding of lists

list N " set of all finite lists of natural numbers, using ML
notation for lists.
For ℓ ∈ list N, define #ℓ$ ∈ N by induction on the
length of the list ℓ:

{

#[]$ " 0

#x :: ℓ$ " ⟨⟨x, #ℓ$⟩⟩ = 2x(2 · #ℓ$+ 1)

For example:
#[3]$ = #3 :: []$ = ⟨⟨3, 0⟩⟩ = 23(2 · 0 + 1) = 8 = 0b1000

#[1, 3]$ = ⟨⟨1, #[3]$⟩⟩ = ⟨⟨1, 8⟩⟩ = 34 = 0b100010

#[2, 1, 3]$ = ⟨⟨2, #[1, 3]$⟩⟩ = ⟨⟨2, 34⟩⟩ = 276 = 0b100010100

37

Numerical coding of programs

If P is the RM program

L0 : body0
L1 : body1

...
Ln : bodyn

then its numerical code is

#P$ " #[#body0$, . . . , #bodyn$]$

where the numerical code #body$ of an instruction body is

defined by:

⎧

⎨

⎩

#R+
i ! Lj$ " ⟨⟨2i, j⟩⟩

#R−i ! Lj, Lk$ " ⟨⟨2i + 1, ⟨j, k⟩⟩⟩
#HALT$ " 0

38

Any x ∈ N decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = ⟨⟨y, z⟩⟩ in

if y = 2i is even, then
body(x) is R+

i ! Lz,
else y = 2i + 1 is odd, let z = ⟨j, k⟩ in

body(x) is R−i ! Lj, Lk

So any e ∈ N decodes to a unique program prog(e),
called the register machine program with index e:

prog(e) "
L0 : body(x0)

...
Ln : body(xn)

where e = #[x0, . . . , xn]$

39

Example of prog(e)

! 786432 = 219 + 218 = 0b110 . . . 0
︸ ︷︷ ︸

18 ”0”s

= #[18, 0]$

! 18 = 0b10010 = ⟨⟨1, 4⟩⟩ = ⟨⟨1, ⟨0, 2⟩⟩⟩ = #R−0 ! L0, L2$

! 0 = #HALT$

So prog(786432) =
L0 : R−0 ! L0, L2

L1 : HALT

N.B. In case e = 0 we have 0 = #[]$, so prog(0) is the program with
an empty list of instructions, which by convention we regard as a RM
that does nothing (i.e. that halts immediately).

40

Universal register machine, U

41

High-level specification

Universal RM U carries out the following computation,
starting with R0 = 0, R1 = e (code of a program), R2 = a
(code of a list of arguments) and all other registers zeroed:

! decode e as a RM program P
! decode a as a list of register values a1, . . . , an

! carry out the computation of the RM program P
starting with R0 = 0, R1 = a1, . . . , Rn = an (and any
other registers occurring in P set to 0).

42

Mnemonics for the registers of U and the role they play in
its program:

R1 ≡ P code of the RM to be simulated

R2 ≡ A code of current register contents of simulated RM

R3 ≡ PC program counter—number of the current instruction
(counting from 0)

R4 ≡ N code of the current instruction body

R5 ≡ C type of the current instruction body

R6 ≡ R current value of the register to be incremented or
decremented by current instruction (if not HALT)

R7 ≡ S, R8 ≡ T and R9 ≡ Z are auxiliary registers.

R0 result of the simulated RM computation (if any).

43

Overall structure of U’s program

1 copy PCth item of list in P to N (halting if PC > length
of list); goto 2

2 if N = 0 then halt, else decode N as ⟨⟨y, z⟩⟩; C ::= y;
N ::= z; goto 3

{at this point either C = 2i is even and current instruction is R
+
i ! Lz,

or C = 2i + 1 is odd and current instruction is R
−
i ! Lj, Lk where z = ⟨j, k⟩}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .

44

The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

precondition:
R = x
S = y
Z = 0

postcondition:
R = x
S = x
Z = 0

45

The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

START Z+ L− Z− X− HALT

Z+ L+

precondition:
X = x
L = ℓ

Z = 0

postcondition:
X = 0
L = ⟨⟨x, ℓ⟩⟩ = 2x(2ℓ+ 1)
Z = 0

46

The program START→ pop L

to X

→HALT

%EXIT
specified by

“if L = 0 then (X ::= 0; goto EXIT) else
let L = ⟨⟨x, ℓ⟩⟩ in (X ::= x; L ::= ℓ; goto HALT)”

can be implemented by

START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+

47

The program for U

START T ::= P pop T

to N
HALT

PC− pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C− pop A

to R

R− pop N

to PC
N+ C− push R

to S

49

The halting problem

50

Definition. A register machine H decides the Halting
Problem if for all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = #[a1, . . . , an]$

and all other registers zeroed, the computation of H always
halts with R0 containing 0 or 1; moreover when the
computation halts, R0 = 1 if and only if

the register machine program with index e eventually halts
when started with R0 = 0, R1 = a1, . . . , Rn = an and all
other registers zeroed.

Theorem. No such register machine H can exist.

51

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

! Let H′ be obtained from H by replacing START→ by

START→ Z ::= R1→ push Z

to R2
→

(where Z is a register not mentioned in H’s program).

! Let C be obtained from H′ by replacing each HALT (&
each erroneous halt) by R−0 R+

0

HALT

.

! Let c ∈ N be the index of C’s program.

52

Proof of the theorem
Assume we have a RM H that decides the Halting Problem
and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = #[c]$ halts with R0 = 0
if & only if

prog(c) started with R1 = c does not halt
if & only if

C started with R1 = c does not halt
—contradiction!

52

Computable functions
Recall:
Definition. f ∈ Nn

⇀N is (register machine)
computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers set
to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

Note that the same RM M could be used to compute a unary function
(n = 1), or a binary function (n = 2), etc. From now on we will
concentrate on the unary case. . .

53

Enumerating computable functions

For each e ∈ N, let ϕe ∈ N⇀N be the unary partial
function computed by the RM with program prog(e). So
for all x, y ∈ N:

ϕe(x) = y holds iff the computation of prog(e) started
with R0 = 0, R1 = x and all other registers zeroed
eventually halts with R0 = y.

Thus
e 1→ ϕe

defines an onto function from N to the collection of all
computable partial functions from N to N.

54

An uncomputable function
Let f ∈ N⇀N be the partial function with graph
{(x, 0) | ϕx(x)↑}.

Thus f(x) =

{

0 if ϕx(x)↑

undefined if ϕx(x)↓

f is not computable, because if it were, then f = ϕe for some e ∈ N

and hence

! if ϕe(e)↑, then f(e) = 0 (by def. of f); so ϕe(e) = 0 (since
f = ϕe), hence ϕe(e)↓

! if ϕe(e)↓, then f(e)↓ (since f = ϕe); so ϕe(e)↑ (by def. of f)

—contradiction! So f cannot be computable.

55

(Un)decidable sets of numbers

Given a subset S ⊆ N, its characteristic function

χS ∈ N!N is given by: χS(x) "

{

1 if x ∈ S

0 if x /∈ S.

56

(Un)decidable sets of numbers
Definition. S ⊆ N is called (register machine) decidable if
its characteristic function χS ∈ N!N is a register machine
computable function. Otherwise it is called undecidable.

So S is decidable iff there is a RM M with the property: for all x ∈ N,

M started with R0 = 0, R1 = x and all other registers zeroed eventually

halts with R0 containing 1 or 0; and R0 = 1 on halting iff x ∈ S.

Basic strategy: to prove S ⊆ N undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. . .

56

Claim: S0 " {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0. From M0’s
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e = R1 and #[a1, . . . , an]$ = R2 in
R1 ::= #(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)$;

R2 ::= 0 ;
run M0

Then by assumption on M0, H decides the Halting
Problem—contradiction. So no such M0 exists, i.e. χS0 is
uncomputable, i.e. S0 is undecidable.

57

Claim: S1 " {e | ϕe a total function} is undecidable.

Proof (sketch): Suppose M1 is a RM computing χS1. From M1’s
program we can construct a RM M0 to carry out:

let e = R1 in R1 ::= #R1 ::= 0 ; prog(e)$;
run M1

Then by assumption on M1, M0 decides membership of S0 from
previous example (i.e. computes χS0)—contradiction. So no such M1

exists, i.e. χS1 is uncomputable, i.e. S1 is undecidable.

58

Turing machines

59

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

! finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

! deterministic (next step uniquely determined if there is
one)

! procedure may not terminate on some input data, but
we can recognize when it does terminate and what the
result is.

60

Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as bit
strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of symbols
and increment/decrement/zero-test programmed in terms
of more elementary symbol-manipulating operations.

61

Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

machine is in one of
a finite set of states

tape symbol
being scanned by
tape head

special left endmarker symbol
special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain
non-blank symbols.

62

Turing machines, informally

q

↓
◃ 0 ␣ 1 0 1 ␣ 1 ␣ ␣ · · ·

! Machine starts with tape head pointing to the special left
endmarker ◃.

! Machine computes in discrete steps, each of which depends only
on current state (q) and symbol being scanned by tape head (0).

! Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and change
state.

62

Turing Machines

are specified by:

! Q, finite set of machine states

! Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols ◃ (left endmarker) and ␣ (blank)

! s ∈ Q, an initial state

! δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}, a
transition function, satisfying:

for all q ∈ Q, there exists q′ ∈ Q∪ {acc, rej}
with δ(q, ◃) = (q′, ◃, R)
(i.e. left endmarker is never overwritten and machine always

moves to the right when scanning it)

63

Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

64

Turing machine computation

Turing machine configuration: (q, w, u)

where

! q ∈ Q∪ {acc, rej} = current state

! w = non-empty string (w = va) of tape symbols under and to
the left of tape head, whose last element (a) is contents of cell
under tape head

! u = (possibly empty) string of tape symbols to the right of tape
head (up to some point beyond which all symbols are ␣)

Initial configurations: (s,◃, u)

65

Turing machine computation

Given a TM M = (Q, Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean q ̸= acc, rej, w = va (for some v, a) and

either δ(q, a) = (q′, a′, L), w′ = v, and u′ = a′u

or δ(q, a) = (q′, a′, S), w′ = va′ and u′ = u

or δ(q, a) = (q′, a′, R), u = a′′u′′ is non-empty,
w′ = va′a′′ and u′ = u′′

or δ(q, a) = (q′, a′, R), u = ε is empty, w′ = va′␣ and
u′ = ε.

65

Turing machine computation

A computation of a TM M is a (finite or infinite) sequence
of configurations c0, c1, c2, . . .

where

! c0 = (s,◃, u) is an initial configuration
! ci →M ci+1 holds for each i = 0, 1,

The computation

! does not halt if the sequence is infinite
! halts if the sequence is finite and its last element is of

the form (acc, w, u) or (rej, w, u).

65

Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {◃, ␣, 0, 1}

transition function

δ ∈ (Q× Σ)!(Q∪ {acc, rej})× Σ× {L, R, S}:

δ ◃ ␣ 0 1
s (s, ◃, R) (q, ␣, R) (rej, 0, S) (rej, 1, S)
q (rej, ◃, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ◃, R) (acc, ␣, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ◃, ␣1n0) halts in configuration (acc, ◃␣, 1n+10).

66

The computation of M starting from configuration
(s , ◃ , ␣1n0):

(s , ◃ , ␣1n0) →M (s , ◃␣ , 1n0)
→M (q , ◃␣1 , 1n−10)

...
→M (q , ◃␣1n , 0)
→M (q , ◃␣1n0 , ε)
→M (q , ◃␣1n+1␣ , ε)
→M (q′ , ◃␣1n+1 , 0)

...
→M (q′ , ◃␣ , 1n+10)
→M (acc , ◃␣ , 1n+10)

67

Theorem. The computation of a Turing machine M can
be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M’s states, tape
symbols, tape contents and configurations.

Step 2: implement M’s transition function (finite table)
using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out→M.

68

Step 1

! Identify states and tape symbols with particular
numbers:

acc = 0 ␣ = 0
rej = 1 ◃ = 1

Q = {2, 3, . . . , n} Σ = {0, 1, . . . , m}

! Code configurations c = (q, w, u) by:

#c$ = #[q, #[an , . . . , a1]$, #[b1, . . . , bm]$]$

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.
69

Step 2

Using registers

Q = current state

A = current tape symbol

D = current direction of tape head
(with L = 0, R = 1 and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying δ into a RM program→ (Q, A, D) ::= δ(Q, A)→ so
that starting the program with Q = q, A = a, D = d (and
all other registers zeroed), it halts with Q = q′, A = a′,
D = d′, where (q′, a′, d′) = δ(q, a).

70

Step 3

The next slide specifies a RM to carry out M’s
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head (reading
right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C

holds the code of the final configuration.
71

START HALT

#[Q,W,U]$::=C Q<2?

yes

no pop W

to A
(Q,A,D)::=δ(Q,A)

C::=#[Q,W,U]$

push A

to U
D−

push B

to W

pop U

to B
D− push A

to W

72

Computable functions
Recall:
Definition. f ∈ Nn

⇀N is (register machine)
computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers set
to 0, halts with R0 = y

if and only if f(x1, . . . , xn) = y.

73

We’ve seen that a Turing machine’s computation can be
implemented by a register machine.

The converse holds: the computation of a register machine
can be implemented by a Turing machine.

To make sense of this, we first have to fix a tape
representation of RM configurations and hence of numbers
and lists of numbers. . .

74

Tape encoding of lists of numbers
Definition. A tape over Σ = {◃, ␣, 0, 1} codes a list of
numbers if precisely two cells contain 0 and the only cells
containing 1 occur between these.

Such tapes look like:

◃␣ · · · ␣0 1 · · · 1
︸ ︷︷ ︸

n1

␣ 1 · · · 1
︸ ︷︷ ︸

n2 · · ·
␣ · · · ␣ 1 · · · 1

︸ ︷︷ ︸

nk

0 ␣ · · ·
︸ ︷︷ ︸

all ␣′s

which corresponds to the list [n1, n2, . . . , nk].

75

Turing computable function
Definition. f ∈ Nn

⇀N is Turing computable if and only
if there is a Turing machine M with the following property:

Starting M from its initial state with tape head
on the left endmarker of a tape coding
[0, x1, . . . , xn], M halts if and only if
f(x1, . . . , xn)↓, and in that case the final tape
codes a list (of length ≥ 1) whose first element is
y where f(x1, . . . , xn) = y.

76

Theorem. A partial function is Turing computable if and
only if it is register machine computable.

Proof (sketch). We’ve seen how to implement any TM by a RM.
Hence

f TM computable implies f RM computable.

For the converse, one has to implement the computation of a RM in
terms of a TM operating on a tape coding RM configurations. To do
this, one has to show how to carry out the action of each type of RM
instruction on the tape. It should be reasonably clear that this is
possible in principle, even if the details (omitted) are tedious.

77

Notions of computability

! Church (1936): λ-calculus [see later]
! Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

78

Notions of computability
Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

Further evidence for the thesis:

! Gödel and Kleene (1936): partial recursive functions

! Post (1943) and Markov (1951): canonical systems for generating
the theorems of a formal system

! Lambek (1961) and Minsky (1961): register machines

! Variations on all of the above (e.g. multiple tapes,
non-determinism, parallel execution. . .)

All have turned out to determine the same collection of computable
functions.

78

Notions of computability
Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

In rest of the course we’ll look at

! Gödel and Kleene (1936): partial recursive functions

(& branch of mathematics called recursion theory)

! Church (1936): λ-calculus

(& branch of CS called functional programming)

78

Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided by
register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

79

Basic functions

! Projection functions, projn
i ∈ Nn

!N:

projn
i (x1, . . . , xn) " xi

! Constant functions with value 0, zeron ∈ Nn
!N:

zeron(x1, . . . , xn) " 0

! Successor function, succ ∈ N!N:

succ(x) " x + 1

80

Basic functions
are all RM computable:

! Projection projn
i is computed by

START→ R0 ::= Ri→HALT

! Constant zeron is computed by

START→HALT

! Successor succ is computed by

START→R+
1→ R0 ::= R1→HALT

81

Composition

Composition of f ∈ Nn
⇀N with g1, . . . , gn ∈ Nm

⇀N is
the partial function f ◦ [g1, . . . , gn] ∈ Nm

⇀N satisfying
for all x1, . . . , xm ∈ N

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

where ≡ is “Kleene equivalence” of possibly-undefined
expressions: LHS ≡ RHS means “either both LHS and
RHS are undefined, or they are both defined and are
equal.”

82

Composition

Composition of f ∈ Nn
⇀N with g1, . . . , gn ∈ Nm

⇀N is
the partial function f ◦ [g1, . . . , gn] ∈ Nm

⇀N satisfying
for all x1, . . . , xm ∈ N

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

So f ◦ [g1, . . . , gn](x1, . . . , xm) = z iff there exist
y1, . . . , yn with gi(x1, . . . , xm) = yi (for i = 1..n) and
f(y1, . . . , yn) = z.

N.B. in case n = 1, we write f ◦ g1 for f ◦ [g1].

82

Composition
f ◦ [g1, . . . , gn] is computable if f and g1, . . . , gn are.

Proof. Given RM programs

{

F
Gi

computing

{

f(y1, . . . , yn)
gi(x1, . . . , xm)

in R0

starting with

{

R1, . . . , Rn

R1, . . . , Rm
set to

{

y1, . . . , yn

x1, . . . , xm
, then the next slide

specifies a RM program computing f ◦ [g1, . . . , gn](x1, . . . , xm) in R0

starting with R1, . . . , Rm set to x1, . . . , xm.

(Hygiene [caused by the lack of local names for registers in the RM
model of computation]: we assume the programs F, G1, . . . , Gn only
mention registers up to RN (where N ≥ max{n, m}) and that
X1, . . . , Xm, Y1, . . . , Yn are some registers Ri with i > N.)

82

START

(X1,...,Xm)::=(R1,...,Rm) G1 Y1 ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rm)::=(X1,...,Xm) G2 Y2 ::= R0 (R0,...,RN)::=(0,...,0)

· · · · · · · · · · · ·

(R1,...,Rm)::=(X1,...,Xm) Gn Yn ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rn)::=(Y1,...,Yn) F

83

Partial recursive functions

84

Examples of recursive definitions
{

f1(0) ≡ 0

f1(x + 1) ≡ f1(x) + (x + 1)
f1(x) = sum of
0, 1, 2, . . . , x

⎧

⎪
⎨

⎪
⎩

f2(0) ≡ 0

f2(1) ≡ 1

f2(x + 2) ≡ f2(x) + f2(x + 1)

f2(x) = xth Fibonacci
number

{

f3(0) ≡ 0

f3(x + 1) ≡ f3(x + 2) + 1
f3(x) undefined except
when x = 0

f4(x) ≡ if x > 100 then x− 10
else f4(f4(x + 11))

f4 is McCarthy’s "91
function", which maps x
to 91 if x ≤ 100 and to
x− 10 otherwise

85

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N, there

is a unique h ∈ Nn+1
⇀N satisfying

{

h(⃗x, 0) ≡ f (⃗x)

h(⃗x, x + 1) ≡ g(⃗x, x, h(⃗x, x))

for all x⃗ ∈ Nn and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

87

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N, there

is a unique h ∈ Nn+1
⇀N satisfying

(∗)

{

h(⃗x, 0) ≡ f (⃗x)

h(⃗x, x + 1) ≡ g(⃗x, x, h(⃗x, x))

for all x⃗ ∈ Nn and x ∈ N.

Proof (sketch). Existence: the set
h " {(⃗x, x, y) ∈ Nn+2 | ∃y0, y1, . . . , yx

f (⃗x) = y0 ∧ (
∧x−1

i=0 g(⃗x, i, yi) = yi+1)∧ yx = y}
defines a partial function satisfying (∗).

Uniqueness: if h and h′ both satisfy (∗), then one can prove by
induction on x that ∀⃗x (h(⃗x, x) = h′ (⃗x, x)).

88

Example: addition

Addition add ∈ N2
!N satisfies:

{

add(x1, 0) ≡ x1

add(x1, x + 1) ≡ add(x1, x) + 1

So add = ρ1(f , g) where

{

f(x1) " x1

g(x1, x2, x3) " x3 + 1

Note that f = proj1
1 and g = succ ◦ proj3

3; so add can
be built up from basic functions using composition and
primitive recursion: add = ρ1(proj1

1, succ ◦ proj3
3).

89

Example: predecessor

Predecessor pred ∈ N!N satisfies:

{

pred(0) ≡ 0

pred(x + 1) ≡ x

So pred = ρ0(f , g) where

{

f() " 0

g(x1, x2) " x1

Thus pred can be built up from basic functions using
primitive recursion: pred = ρ0(zero0, proj2

1).

90

Example: multiplication

Multiplication mult ∈ N2
!N satisfies:

{

mult(x1, 0) ≡ 0

mult(x1, x + 1) ≡ mult(x1, x) + x1

and thus mult = ρ1(zero1, add ◦ (proj3
3, proj3

1)).

So mult can be built up from basic functions using
composition and primitive recursion (since add can be).

91

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic functions
and closed under the operations of composition and
primitive recursion.

92

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Every f ∈ PRIM is a total function, because:

! all the basic functions are total
! if f , g1, . . . , gn are total, then so is f ◦ (g1, . . . , gn)

[why?]
! if f and g are total, then so is ρn(f , g) [why?]

92

Definition. A [partial] function f is primitive recursive
(f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Theorem. Every f ∈ PRIM is computable.

Proof. Already proved: basic functions are computable; composition
preserves computability. So just have to show:

ρn(f , g) ∈ Nn+1
⇀N computable if f ∈ Nn

⇀N and
g ∈ Nn+2

⇀N are.

Suppose f and g are computed by RM programs F and G (with our
usual I/O conventions). Then the RM specified on the next slide
computes ρn(f , g). (We assume X1, . . . , Xn+1, C are some registers not
mentioned in F and G; and that the latter only use registers
R0, . . . , RN , where N ≥ n + 2.)

92

START (X1,...,Xn+1,Rn+1)::=(R1,...,Rn+1,0)

F

C+ C=Xn+1? yes

no

HALT

(R1,...,Rn,Rn+1,Rn+2)::=(X1,...,Xn,C,R0)

G (R0,Rn+3,...,RN)::=(0,0,...,0)

93

Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided by
register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

94

Minimization
Given a partial function f ∈ Nn+1

⇀N, define
µn f ∈ Nn

⇀N by
µn f (⃗x) " least x such that f (⃗x, x) = 0 and

for each i = 0, . . . , x− 1, f (⃗x, i)
is defined and > 0
(undefined if there is no such x)

In other words

µn f = {(⃗x, x) ∈ N
n+1 | ∃y0, . . . , yx

(
x
∧

i=0

f (⃗x, i) = yi)∧ (
x−1
∧

i=0

yi > 0)∧ yx = 0}

95

Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)

≡ µ2 f(x1, x2)

where f ∈ N3
!N is

f(x1, x2, x3) "

{

1 if x1 ≥ x2(x3 + 1)

0 if x1 < x2(x3 + 1)

(In fact, if we make the ‘integer part of x1/x2’ function total by

defining it to be 0 when x2 = 0, it can be shown to be in PRIM.)

96

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

In other words, the set PR of partial recursive functions is
the smallest set (with respect to subset inclusion) of partial
functions containing the basic functions and closed under
the operations of composition, primitive recursion and
minimization.

97

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

Theorem. Every f ∈ PR is computable.

Proof. Just have to show:

µn f ∈ Nn
⇀N is computable if f ∈ Nn+1

⇀N is.

Suppose f is computed by RM program F (with our usual I/O
conventions). Then the RM specified on the next slide computes µn f .
(We assume X1, . . . , Xn, C are some registers not mentioned in F; and
that the latter only uses registers R0, . . . , RN , where N ≥ n + 1.)

97

START

(X1,...,Xn)::=(R1,...,Rn)

(R1,...,Rn,Rn+1)::=(X1,...,Xn,C)

C+ (R0,Rn+2,...,RN)::=(0,0,...,0)

F

R−0 R0::=C HALT
98

Computable = partial recursive
Theorem. Not only is every f ∈ PR computable, but
conversely, every computable partial function is partial
recursive.

Proof (sketch). Let f be computed by RM M. Recall how we coded
instantaneous configurations c = (ℓ, r0, . . . , rn) of M as numbers
![ℓ, r0, . . . , rn]". It is possible to construct primitive recursive functions
lab, val0, nextM ∈ N!N satisfying

lab(![ℓ, r0, . . . , rn]") = ℓ

val0(![ℓ, r0, . . . , rn]") = r0

nextM(![ℓ, r0, . . . , rn]") = code of M’s next configuration

(Showing that nextM ∈ PRIM is tricky—proof omitted.)

L8 99

Proof sketch, cont.

Writing x⃗ for x1, . . . , xn, let configM (⃗x, t) be the code of M’s
configuration after t steps, starting with initial register values
R0 = 0, R1 = x1, . . . , Rn = xn. It’s in PRIM because:

{

configM (⃗x, 0) = ![0, 0, x⃗]"

configM (⃗x, t + 1) = nextM(configM (⃗x, t))

Can assume M has a single HALT as last instruction, Ith say (and no
erroneous halts). Let haltM (⃗x) be the number of steps M takes to
halt when started with initial register values x⃗ (undefined if M does not
halt). It satisfies

haltM (⃗x) ≡ least t such that I− lab(configM (⃗x, t)) = 0

and hence is in PR (because lab, configM , I− () ∈ PRIM).

L8 100

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps from
the basic functions by use of the operations of composition,
primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. . .

101

Ackermann’s function
There is a (unique) function ack ∈ N2

!N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

! ack is computable, hence recursive [proof: exercise].
! Fact: ack grows faster than any primitive recursive

function f ∈ N2
!N:

∃Nf ∀x1, x2 > Nf (f(x1, x2) < ack(x1, x2)).
Hence ack is not primitive recursive.

102

Lambda calculus

103

Notions of computability

! Church (1936): λ-calculus
! Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

104

λ-Terms, M

are built up from a given, countable collection of

! variables x, y, z, . . .

by two operations for forming λ-terms:

! λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

! application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))

105

Free and bound variables
In λx.M, we call x the bound variable and M the body of
the λ-abstraction.

An occurrence of x in a λ-term M is called

! binding if in between λ and .
(e.g. (λx.y x) x)

! bound if in the body of a binding occurrence of x
(e.g. (λx.y x) x)

! free if neither binding nor bound
(e.g. (λx.y x)x).

106

Free and bound variables
Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or combinator.

106

α-Equivalence M =α M′

λx.M is intended to represent the function f such that

f(x) = M for all x.

So the name of the bound variable is immaterial: if
M′ = M{x′/x} is the result of taking M and changing all
occurrences of x to some variable x′ # M, then λx.M and
λx′.M′ both represent the same function.

For example, λx.x and λy.y represent the same function
(the identity function).

107

α-Equivalence M =α M′

is the binary relation inductively generated by the rules:

x =α x

z # (M N) M{z/x} =α N{z/y}

λx.M =α λy.N

M =α M′ N =α N ′

M N =α M′ N ′

where M{z/x} is M with all occurrences of x replaced by
z.

107

α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

107

α-Equivalence M =α M′

Fact: =α is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So α-equivalence classes of
λ-terms are more important than λ-terms themselves.

! Textbooks (and these lectures) suppress any notation for
α-equivalence classes and refer to an equivalence class via a
representative λ-term (look for phrases like “we identify terms up
to α-equivalence” or “we work up to α-equivalence”).

! For implementations and computer-assisted reasoning, there are
various devices for picking canonical representatives of
α-equivalence classes (e.g. de Bruijn indexes, graphical
representations, . . .).

107

Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y ̸= x) makes substitution “capture-avoiding”.

E.g. if x ̸= y ̸= z ̸= x

(λy.x)[y/x] =α (λz.x)[y/x] = λz.y

In fact N 1→ N[M/x] induces a totally defined function
from the set of α-equivalence classes of λ-terms to itself.

108

β-Reduction

Recall that λx.M is intended to represent the function f
such that f(x) = M for all x. We can regard λx.M as a
function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is given
by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

109

β-Reduction

One-step β-reduction, M→ M′:

(λx.M)N → M[N/x]

M→ M′

λx.M → λx.M′

M→ M′

M N → M′ N

M→ M′

N M→ N M′

N =α M M→ M′ M′ =α N ′

N → N ′

109

β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

E.g. of “up to α-equivalence” aspect of reduction:

(λx.λy.x)y =α (λx.λz.x)y→ λz.y

109

Many-step β-reduction, M % M′:

M =α M′

M % M′

(no steps)

M→ M′

M % M′

(1 step)

M % M′ M′ → M′′

M % M′′

(1 more step)

E.g.

(λx.x y)((λy z.z)u) % y

(λx.λy.x)y % λz.y

110

β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

111

β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′
M→ M′

M =β M′
M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′
M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′

111

Church-Rosser Theorem
Theorem. % is confluent, that is, if M1 ' M % M2,
then there exists M′ such that M1 % M′ ' M2.

Corollary. M1 =β M2 iff ∃M (M1 % M ' M2).

Proof. =β satisfies the rules generating %; so M % M′ implies
M =β M′. Thus if M1 % M ' M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 % M ' M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =β M2 implies ∃M (M1 % M′ ' M2).

112

β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Note that if N is a β-nf and N % N ′, then it must be that N =α N ′

(why?).

Hence if N1 =β N2 with N1 and N2 both β-nfs, then N1 =α N2. (For

if N1 =β N2, then by Church-Rosser N1 % M′ ' N2 for some M′,

so N1 =α M′ =α N2.)

So the β-nf of M is unique up to α-equivalence if it
exists.

113

Non-termination
Some λ terms have no β-nf.

E.g. Ω " (λx.x x)(λx.x x) satisfies

! Ω→ (x x)[(λx.x x)/x] = Ω,

! Ω% M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

A term can possess both a β-nf and infinite chains of
reduction from it.

E.g. (λx.y)Ω→ y, but also (λx.y)Ω→ (λx.y)Ω→ · · · .

114

Non-termination
Normal-order reduction is a deterministic strategy for
reducing λ-terms: reduce the “left-most, outer-most” redex
first.

! left-most: reduce M before N in M N, and then
! outer-most: reduce (λx.M)N rather than either of

M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β-nf
of M if it possesses one.

115

Lambda-Definable Functions

116

Encoding data in λ-calculus

Computation in λ-calculus is given by β-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, . . . as λ-terms.

We will use the original encoding of numbers due to
Church. . .

117

Church’s numerals
0 " λ f x.x
1 " λ f x. f x
2 " λ f x. f(f x)

...
n " λ f x. f(· · · (f

︸ ︷︷ ︸

n times

x) · · ·)

Notation:

⎧

⎪
⎨

⎪
⎩

M0N " N

M1N " M N

Mn+1N " M(Mn N)

so we can write n as λ f x. f nx and we have n M N =β Mn N .

118

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a closed
λ-term F that represents it: for all (x1, . . . , xn) ∈ Nn and
y ∈ N

! if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P " λx1 x2.λ f x. x1 f(x2 f x):

P m n =β λ f x. m f(n f x)

=β λ f x. m f(f nx)

=β λ f x. f m(f nx)

= λ f x. f m+nx

= m + n
119

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

! every partial recursive function is λ-definable
! λ-definable functions are RM computable

120

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a closed
λ-term F that represents it: for all (x1, . . . , xn) ∈ Nn and
y ∈ N

! if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

This condition can make it quite tricky to find a λ-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are λ-definable.

121

Basic functions

! Projection functions, projn
i ∈ Nn

!N:

projn
i (x1, . . . , xn) " xi

! Constant functions with value 0, zeron ∈ Nn
!N:

zeron(x1, . . . , xn) " 0

! Successor function, succ ∈ N!N:

succ(x) " x + 1

122

Basic functions are representable

! projn
i ∈ Nn

!N is represented by λx1 . . . xn.xi

! zeron ∈ Nn
!N is represented by λx1 . . . xn.0

! succ ∈ N!N is represented by

Succ " λx1 f x. f(x1 f x)

since

Succ n =β λ f x. f(n f x)

=β λ f x. f(f n x)

= λ f x. f n+1 x

= n + 1

123

Representing composition

If total function f ∈ Nn
!N is represented by F and total

functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

because F (G1 a1 . . . am) . . . (Gn a1 . . . am)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)
=β f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))
= f ◦ (g1, . . . , gn)(a1, . . . , am)

.

124

Representing composition

If total function f ∈ Nn
!N is represented by F and total

functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

This does not necessarily work for partial functions. E.g. totally

undefined function u ∈ N⇀N is represented by U " λx1.Ω (why?)
and zero1 ∈ N!N is represented by Z " λx1.0; but zero1 ◦ u is not
represented by λx1. Z(U x1), because (zero1 ◦ u)(n)↑ whereas
(λx1. Z(U x1)) n =β Z Ω =β 0. (What is zero1 ◦ u represented
by?)

125

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N, there

is a unique h ∈ Nn+1
⇀N satisfying

{

h(⃗x, 0) ≡ f (⃗x)

h(⃗x, x + 1) ≡ g(⃗x, x, h(⃗x, x))

for all x⃗ ∈ Nn and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

126

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying
{

h(⃗a, 0) = f (⃗a)

h(⃗a, a + 1) = g(⃗a, a, h(⃗a, a))

or equivalently

h(⃗a, a) = if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

127

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(⃗a, a) " if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

128

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by. . .

Strategy:

! show that Φ f ,g is λ-definable;
! show that we can solve fixed point equations

X = M X up to β-conversion in the λ-calculus.

129

Representing booleans

True " λx y. x
False " λx y. y

If " λ f x y. f x y

satisfy

! If True M N =β True M N =β M
! If False M N =β False M N =β N

130

Representing test-for-zero

Eq0 " λx. x(λy. False)True

satisfies

! Eq0 0 =β 0 (λy. False)True
=β True

! Eq0 n + 1 =β n + 1 (λy. False)True
=β (λy. False)n+1 True
=β (λy. False)((λy. False)n True)
=β False

131

Representing ordered pairs

Pair " λx y f . f x y
Fst " λ f . f True

Snd " λ f . f False

satisfy

! Fst(Pair M N) =β Fst(λ f . f M N)
=β (λ f . f M N)True
=β True M N
=β M

! Snd(Pair M N) =β · · · =β N

132

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Have to show how to reduce the “n + 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f , iterating the function g f : (x, y) 1→ (f(x), x) n + 1

times starting from (x, x) gives the pair (f n+1(x), f n(x)). So we can
get f n(x) from f n+1(x) parametrically in f and x, by building g f

from f , iterating n + 1 times from (x, x) and then taking the second
component.

Hence. . .

133

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Pred " λy f x. Snd(y (G f)(Pair x x))
where

G " λ f p. Pair(f(Fst p))(Fst p)

has the required β-reduction properties. [Exercise]

134

Curry’s fixed point combinator Y

Y " λ f . (λx. f(x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M % M((λx. M(x x))(λx. M(x x))) ' M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)

135

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(⃗a, a) " if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

We now know that h can be represented by

Y(λz⃗xx. If(Eq0 x)(F x⃗)(G x⃗ (Pred x)(z x⃗ (Pred x)))).
136

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying Recall that the class PRIM of
primitive recursive functions is the smallest collection of
(total) functions containing the basic functions and closed
under the operations of composition and primitive
recursion.

Combining the results about λ-definability so far, we have:
every f ∈ PRIM is λ-definable.

So for λ-definability of all recursive functions, we just have
to consider how to represent minimization. Recall. . . 137

Minimization
Given a partial function f ∈ Nn+1

⇀N, define
µn f ∈ Nn

⇀N by
µn f (⃗x) " least x such that f (⃗x, x) = 0 and

for each i = 0, . . . , x− 1, f (⃗x, i)
is defined and > 0
(undefined if there is no such x)

Can express µn f in terms of a fixed point equation:

µn f (⃗x) ≡ g(⃗x, 0) where g satisfies g = Ψ f (g)

with Ψ f ∈ (Nn+1
⇀N)!(Nn+1

⇀N) defined by

Ψ f(g)(⃗x, x) ≡ if f (⃗x, x) = 0 then x else g(⃗x, x + 1)

138

Representing minimization

Suppose f ∈ Nn+1
!N (totally defined function) satisfies

∀⃗a∃a (f (⃗a, a) = 0), so that µn f ∈ Nn
!N is totally

defined.

Thus for all a⃗ ∈ Nn, µn f (⃗a) = g(⃗a, 0) with g = Ψ f(g)
and Ψ f(g)(⃗a, a) given by
if (f (⃗a, a) = 0) then a else g(⃗a, a + 1).

So if f is represented by a λ-term F, then µn f is
represented by

λ⃗x.Y(λz x⃗ x. If(Eq0(F x⃗ x)) x (z x⃗ (Succ x))) x⃗ 0

139

Recursive implies λ-definable

Fact: every partial recursive f ∈ Nn
⇀N can be expressed

in a standard form as f = g ◦ (µnh) for some
g, h ∈ PRIM. (Follows from the proof that computable =

partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is
λ-definable, but matching up ↑ with ̸ ∃β−nf makes the
representations more complicated than for total functions:
see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

140

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that computable = partial recursive⇒ λ-definable.
So it just remains to see that λ-definable functions are RM
computable. To show this one can

! code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

! write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

141

